Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Probabilistic fatigue damage diagnostics and prognostics for metallic and composite materials
  5. Full metadata

Probabilistic fatigue damage diagnostics and prognostics for metallic and composite materials

Full metadata

Description

In-situ fatigue damage diagnosis and prognosis is a challenging problem for both metallic and composite materials and structures. There are various uncertainties arising from material properties, component geometries, measurement noise, feature extraction techniques, and modeling errors. It is essential to manage and incorporate these uncertainties in order to achieve accurate damage detection and remaining useful life (RUL) prediction.

The aim of this study is to develop an integrated fatigue damage diagnosis and prognosis framework for both metallic and composite materials. First, Lamb waves are used as the in-situ damage detection technique to interrogate the damaged structures. Both experimental and numerical analysis for the Lamb wave propagation within aluminum are conducted. The RUL of lap joints under variable and constant fatigue loading is predicted using the Bayesian updating by incorporating damage detection information and various sources of uncertainties. Following this, the effect of matrix cracking and delamination in composite laminates on the Lamb wave propagation is investigated and a generalized probabilistic delamination size and location detection framework using Bayesian imaging method (BIM) is proposed and validated using the composite fatigue testing data. The RUL of the open-hole specimen is predicted using the overall stiffness degradation under fatigue loading. Next, the adjoint method-based damage detection framework is proposed considering the physics of heat conduction or elastic wave propagation. Different from the classical wave propagation-based method, the received signal under pristine condition is not necessary for estimating the damage information. This method can be successfully used for arbitrary damage location and shape profiling for any materials with higher accuracy and resolution. Finally, some conclusions and future work are generated based on the current investigation.

Date Created
2016
Contributors
  • Peng, Tishun (Author)
  • Liu, Yongming (Thesis advisor)
  • Chattopadhyay, Aditi (Committee member)
  • Mignolet, Marc (Committee member)
  • Papandreou-Suppappola, Antonia (Committee member)
  • Tang, Pingbo (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Mechanical Engineering
  • Composites
  • Damages
  • Diagnostics
  • Fatigue
  • Prognostics
  • Lamb waves
  • Materials--Fatigue.
  • Materials--Testing.
  • Composite materials--Defects.
  • Composite Materials
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
xiii, 158 pages : illustrations (chiefly color)
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.39408
Statement of Responsibility
by Tishun Peng
Description Source
Viewed on August 25, 2016
Level of coding
full
Note
Partial requirement for: Ph.D., Arizona State University, 2016
Note type
thesis
Includes bibliographical references (pages 150-158)
Note type
bibliography
Field of study: Mechanical engineering
System Created
  • 2016-08-01 08:01:04
System Modified
  • 2021-08-30 01:22:16
  •     
  • 1 year 6 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information