Detailed Modeling and Simulation of Distribution Systems Using Sub-Transmission-Distribution Co-Simulation

187826-Thumbnail Image.png
Description

There has been a significant growth in the distributed energy resources (DERs) connected to the distribution networks in recent years. For a distribution system with a high penetration of DERs, a detailed modeling and representation of the distribution network is

There has been a significant growth in the distributed energy resources (DERs) connected to the distribution networks in recent years. For a distribution system with a high penetration of DERs, a detailed modeling and representation of the distribution network is needed to accurately assess its steady-state and dynamic behavior. In this dissertation, a field-validated model for a real sub-transmission and distribution network is developed, including one of the feeders modeled with the secondary network and loads and solar PV units at their household/user location. A procedure is developed combining data from various sources such as the utility database, geoinformation data, and field measurements to create an accurate network model.
Applying a single line to ground fault to the detailed distribution feeder model, a high voltage swell, with potentially detrimental impacts on connected equipment, is shown in one of the non-faulted phases of the feeder. The reason for this voltage swell is analyzed in detail. It is found that with appropriate control the solar PV units on the feeder can reduce the severity of the voltage swell, but not entirely eliminate it.
For integrated studies of the transmission-distribution (T&D) network, a T&D co-simulation framework is developed, which is capable of power flow as well as dynamic simulations, and supports unbalanced modeling and disturbances in the distribution as well as the sub-transmission system. The power flow co-simulation framework is developed as a module that can be run on a cloud-based platform.
Using the developed framework, the T&D system response is studied for balanced and unbalanced faults on the distribution and sub-transmission system. For some faults the resultant loss of generation can potentially lead to the entire feeder tripping due to high unbalance at the substation. However, it is found that advanced inverter controls may improve the response of the distribution feeders to the faults. The dissertation also highlights the importance of modeling the secondary network for both steady-state and dynamic studies. Lastly, a preliminary investigation is conducted to include different dynamic elements such as grid-forming inverters in a T&D network simulation.

Date Created
2023
Agent

EMI Modeling and Optimized EMI Filter Design for PFC Topologies

187802-Thumbnail Image.png
Description

With the emergence of electric transportation and the infrastructure for electric vehicles (EVs), numerous viable approaches and topologies have emerged. In order to improve the power quality of the grid, it is essential for Onboard Battery Chargers (OBC) for electric

With the emergence of electric transportation and the infrastructure for electric vehicles (EVs), numerous viable approaches and topologies have emerged. In order to improve the power quality of the grid, it is essential for Onboard Battery Chargers (OBC) for electric vehicles to maintain a power factor closer to unity. This study mainly focuses on two prominent PFC topologies, Totem-pole PFC (TPFC) and H-Bridge PFC (HPFC), which are simple to implement and capable enough of providing high operating efficiency. This study elucidates the comprehensive comparison of the TPFC and HPFC converters using the comprehensive mathematical modeling approach, simulation models, and the hardware experiments. Also, the comparison of the EMI filter requirement and design of DM EMI filter for both the topologies is also extensively illustrated in this study. Firstly, focusing the comprehensive mathematical models of TPFC and HPFC converters, which includes the mathematical formation of the duty cycle for both the converters incorporating the discretized input current controller into the mathematical model which gives more closer comparison when it is compared to simulation models and the hardware experiment model operations. The input current FFT analysis and the THD modeling are also covered in the mathematical modeling of TPFC and HPFC converters. Moreover, the EMI noise is modeled, and the corresponding EMI filter is also designed for both the PFC topologies. Further, the simulation models of TPFC and HPFC converters are also developed and the outputs of the simulation models show an input AC current is precisely following the input AC voltage and also the output voltage of constant 400V is attained for both the PFC converters. Similarly, for the experimental results, the constant 400V regulated DC output voltage is obtained and the input AC current is following the input AC voltage with the power factor of 0.983 for TPFC and 0.99 for HPFC converter. Moreover, the implementation of the EMI filter at the front end of the converter succinctly attenuates the EMI noise and complied within the FCC Class A limit for both TPFC and HPFC converters.

Date Created
2023
Agent

Optimal Placement and Validation of PV Inverter with Voltage Control Capability in Active Distribution Systems

187366-Thumbnail Image.png
Description

The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As

The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As guided by the previous IEEE standard 1547-2003, most of the existing photovoltaic (PV) systems in the real distribution networks are equipped with conventional inverters, which only allow the PV systems to operate at unity power factor to generate active power. To utilize the voltage control capability of the existing PV systems following the guideline of the revised IEEE standard 1547-2018, this dissertation proposes a two-stage stochastic optimization strategy aimed at optimally placing the PV smart inverters with Volt-VAr capability among the existing PV systems for distribution systems with high PV penetration to mitigate voltage violations. PV smart inverters are fast-response devices compared to conventional voltage control devices in the distribution system. Historically, distribution system planning and operation studies are mainly based on quasi-static simulation, which ignores system dynamic transitions between static solutions. However, as high-penetration PV systems are present in the distribution system, the fast transients of the PV smart inverters cannot be ignored. A detailed dynamic model of the PV smart inverter with Volt-VAr control capability is developed as a dynamic link library (DLL) in OpenDSS to validate the system voltage stability with autonomous control of the optimally placed PV smart inverters. Static and dynamic verification is conducted on an actual 12.47 kV, 9 km-long Arizona utility feeder that serves residential customers. To achieve fast simulation and accommodate more complex PV models with desired accuracy and efficiency, an integrative dynamic simulation framework for OpenDSS with adaptive step size control is proposed. Based on the original fixed-step size simulation framework in OpenDSS, the proposed framework adds a function in the OpenDSS main program to adjust its step size to meet the minimum step size requirement from all the PV inverters in the system. Simulations are conducted using both the original and the proposed framework to validate the proposed simulation framework.

Date Created
2023
Agent

Improved Distribution Feeder and Load Modeling in Power Systems using Electro Magnetic Transient Models

171988-Thumbnail Image.png
Description

With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies.

With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies. Although, currently, most of the power system studies are being done using positive sequence commercial software packages for computational convenience purposes, it comes at the cost of reduced accuracy when compared to the more accurate electromagnetic transient (EMT) simulators (but more computationally intensive). However, it is expected, that in the next several years, the use of EMT simulators for large-scale system studies would become a necessity to implement the ambitious renewable energy targets adopted by many countries across the world. Currently, the issue of developing more accurate EMT feeder and load models has yet to be addressed. Therefore, in the first phase of this work, an optimization algorithm to synthesize an EMT distribution feeder and load model has been developed by capturing the current transients when three-phase voltage measurements (obtained from a local utility) are played-in as input, from events such as sub-transmission faults, to the synthesized model. Using the developed algorithm, for the proposed feeder model, both the load composition and the load parameters have been estimated. The synthesized load model has a load composition which includes impedance loads, single-phase induction motor (SPHIM) loads and three-phase induction motor loads.
In the second phase of this work, an analytical formulation of a 24 V EMT contactor is developed to trip the air conditioner EMT SPHIM load, in the feeder and load model developed in Phase 1 of this work, under low voltage conditions. Additionally, a new methodology is developed, to estimate and incorporate the trip and reconnection settings of the proposed EMT contactor model to trip, reconnect and stall the SPHIMs in a positive sequence simulator (PSLF) for single-line to ground faults. Also, the proposed methodology has been tested on a modified three-segment three-phase feeder model using a local utility’s practical feeder topological and loading information. Finally, the developed methodology is modified to accommodate three-phase faults in the system.

Date Created
2022
Agent

Comprehensive Framework Based on Dynamic and Steady State Analysis to Evaluate Power System Resilience Against Natural Calamities

171894-Thumbnail Image.png
Description

Power system robustness against high impact low probability events is becoming a major concern. About 90% of US power outages reported in the last three decades are due to Hurricanes and tropical storms. Various works of literature are focused on

Power system robustness against high impact low probability events is becoming a major concern. About 90% of US power outages reported in the last three decades are due to Hurricanes and tropical storms. Various works of literature are focused on modelling the resilience framework against hurricanes. To depict distinct phases of a system response during these disturbances, an aggregated trapezoid model is derived from the conventional trapezoid model and proposed in this work. The model is analytically investigated for transmission system performance, based on which resiliency metrics are developed for the same.A probabilistic-based Monte Carlo Simulations (MCS) approach has been proposed in this work to incorporate the stochastic nature of the power system and hurricane uncertainty. Furthermore, the system's resilience to hurricanes is evaluated on the modified reliability test system (RTS), which is provided in this work, by performing steady-state and dynamic security assessment incorporating protection modelling and corrective action schemes using the Siemens Power System Simulator for Engineering (PSS®E) software. Based on the results of steady-state (both deterministic and stochastic approach) and dynamic (both deterministic and stochastic approach) analysis, resilience metrics are quantified. Finally, this work highlights the interdependency of operational and infrastructure resilience as they cannot be considered discrete characteristics of the system.
The objective of this work is to incorporate dynamic analysis and stochasticity in the resilience evaluation for a wind penetrated power system.

Date Created
2022
Agent

Correlated Scenario Generation Using Generative Models

171883-Thumbnail Image.png
Description

With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more
challenging task for the modern power system. This is because with higher penetration
of renewable generation, the

With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more
challenging task for the modern power system. This is because with higher penetration
of renewable generation, the system has to bear a higher degree of variability
and uncertainty. One way to address this problem is by generating realistic scenarios
that complement and supplement actual system conditions. This thesis presents
a methodology to create such correlated synthetic scenarios for load and renewable
generation using machine learning.
Machine learning algorithms need to have ample amounts of data available to
them for training purposes. However, real-world datasets are often skewed in the
distribution of the different events in the sample space. Data augmentation and
scenario generation techniques are often utilized to complement the datasets with
additional samples or by filling in missing data points. Datasets pertaining to the
electric power system are especially prone to having very few samples for certain
events, such as abnormal operating conditions, as they are not very common in an
actual power system. A recurrent generative adversarial network (GAN) model is
presented in this thesis to generate solar and load scenarios in a correlated manner
using an actual dataset obtained from a power utility located in the U.S. Southwest.
The generated solar and load profiles are verified both statistically and by implementation
on a simulated test system, and the performance of correlated scenario
generation vs. uncorrelated scenario generation is investigated. Given the interconnected
relationships between the variables of the dataset, it is observed that correlated
scenario generation results in more realistic synthetic scenarios, particularly for abnormal
system conditions. When combined with actual but scarce abnormal conditions,
the augmented dataset of system conditions provides a better platform for performing contingency studies for a more thorough reliability planning.
The proposed scenario generation method is scalable and can be modified to work
with different time-series datasets. Moreover, when the model is trained in a conditional
manner, it can be used to synthesise any number of scenarios for the different
events present in a given dataset. In summary, this thesis explores scenario generation
using a recurrent conditional GAN and investigates the benefits of correlated
generation compared to uncorrelated synthesis of profiles for the reliability planning
problem of power systems.

Date Created
2022
Agent

Detailed Primary and Secondary Distribution System Modeling and Validation of Feeders, Loads and Distributed Energy Resources Using Field Measurements

171852-Thumbnail Image.png
Description

The past few years have witnessed a significant growth of distributed energy resources (DERs) in power systems at the customer level. Such growth challenges the traditional centralized model of conventional synchronous generation, making a transition to a decentralized network with

The past few years have witnessed a significant growth of distributed energy resources (DERs) in power systems at the customer level. Such growth challenges the traditional centralized model of conventional synchronous generation, making a transition to a decentralized network with a significant increase of DERs. This decentralized network requires a paradigm change in modeling distribution systems in more detail to maintain the reliability and efficiency while accommodating a high level of DERs. Accurate models of distribution feeders, including the secondary network, loads, and DER components must be developed and validated for system planning and operation and to examine the distribution system performance. In this work, a detailed model of an actual feeder with high penetration of DERs from an electrical utility in Arizona is developed. For the primary circuit, distribution transformers, and cables are modeled. For the secondary circuit, actual conductors to each house, as well as loads and photovoltaic (PV) units at each premise are represented. An automated tool for secondary network topology construction for load feeder topology assignation is developed. The automated tool provides a more accurate feeder topology for power flow calculation purposes. The input data for this tool consists of parcel geographic information system (GIS) delimitation data, and utility secondary feeder topology database. Additionally, a highly automated, novel method to enhance the accuracy of utility distribution feeder models to capture their performance by matching simulation results with corresponding field measurements is presented. The method proposed uses advanced metering infrastructure (AMI) voltage and derived active power measurements at the customer level, data acquisition systems (DAS) measurements at the feeder-head, in conjunction with an AC optimal power flow (ACOPF) to estimate customer active and reactive power consumption over a time horizon, while accounting for unmetered loads. The method proposed estimates both voltage magnitude and angle for each phase at the unbalanced distribution substation. The accuracy of the method developed by comparing the time-series power flow results obtained from the enhancement algorithm with OpenDSS results and with the field measurements available. The proposed approach seamlessly manages the data available from the optimization procedure through the final model verification.

Date Created
2022
Agent

Non-Isolated High Gain DC-DC Converters for Electric Vehicle and Renewable Energy Applications

171715-Thumbnail Image.png
Description

DC-DC converters are widely employed to interface one voltage level with another through step-up or step-down operation. In recent years, step-up DC-DC converters have been a key component in harnessing energy through renewable sources by providing an interface to integrate

DC-DC converters are widely employed to interface one voltage level with another through step-up or step-down operation. In recent years, step-up DC-DC converters have been a key component in harnessing energy through renewable sources by providing an interface to integrate low voltage systems to DC-AC converters or microgrids. They find increasing applications in battery and fuel cell electric vehicles which can benefit from high and variable DC link voltage. It is important to optimize these converters for higher efficiency while achieving high gain and high power density. Non-isolated DC-DC converters are an attractive option due to the reduced complexity of magnetic design, smaller size, and lower cost. However, in these topologies, achieving a very high gain along with high efficiency has been a challenge. This work encompasses different non-isolated high gain DC-DC converters for electric vehicle and renewable energy applications. The converter topologies proposed in this work can easily achieve a conversion ratio above 20 with lower voltage and current stress across devices. For applications requiring wide input or output voltage range, different control schemes, as well as modified converter configurations, are proposed. Moreover, the converter performance is optimized by employing wide band-gap devices-based hardware prototypes. It enables higher switching frequency operation with lower switching losses. In recent times, multiple soft-switching techniques have been introduced which enable higher switching frequency operation by minimizing the switching loss. This work also discusses different soft-switching mechanisms for the high conversion ratio converter and the proposed mechanism improves the converter efficiency significantly while reducing the inductor size. Further, a novel electric vehicle traction architecture with low voltage battery and multi-input high gain DC-DC converter is introduced in this work. The proposed architecture with multiple 48 V battery packs and integrated, multi-input, high conversion ratio DC-DC converters, can reduce the maximum voltage in the vehicle during emergencies to 48 V, mitigate cell balancing issues in battery, and provide a wide variable DC link voltage. The implementation of high conversion ratio converter in multiple configurations for the proposed architecture has been discussed in detail and the proposed converter operation is validated experimentally through a scaled hardware prototype.

Date Created
2022
Agent

Impact of High PV Penetration in a Real Large Feeder Network using Edge based Advanced Control and Novel Soft-switching DC-DC Topologies

171708-Thumbnail Image.png
Description

Large number of renewable energy based distributed energy resources(DERs) are integrated into the conventional power grid using power electronic interfaces. This causes increased need for efficient power conversion, advanced control, and DER situational awareness. In case of photovoltaic(PV) grid integration,

Large number of renewable energy based distributed energy resources(DERs) are integrated into the conventional power grid using power electronic interfaces. This causes increased need for efficient power conversion, advanced control, and DER situational awareness. In case of photovoltaic(PV) grid integration, power is processed in two stages, namely DC-DC and DC-AC. In this work, two novel soft-switching schemes for quadratic boost DC-DC converters are proposed for PV microinverter application. Both the schemes allow the converter to operate at higher switching frequency, reducing the converter size while still maintaining high power conversion efficiency. Further, to analyze the impact of high penetration DERs on the power system a real-time simulation platform has been developed in this work. A real, large distribution feeder with more than 8000 buses is considered for investigation. The practical challenges in the implementation of a real-time simulation (such as number of buses, simulation time step, and computational burden) and the corresponding solutions are discussed. The feeder under study has a large number of DERs leading to more than 200% instantaneous PV penetration. Opal-RT ePHASORSIM model of the distribution feeder and different types of DER models are discussed in detailed in this work. A novel DER-Edge-Cloud based three-level architecture is proposed for achieving solar situational awareness for the system operators and for real-time control of DERs. This is accomplished using a network of customized edge-intelligent-devices(EIDs) and end-to-end solar energy optimization platform(eSEOP). The proposed architecture attains superior data resolution, data transfer rate and low latency for the end-to-end communication. An advanced PV string inverter with control and communication capabilities exceeding those of state-of-the-art, commercial inverters has been developed to demonstrate the proposed real-time control. A power-hardware-in-loop(PHIL) and EID-in-loop(EIL) testbeds are developed to verify the impact of large number of controllable DERs on the distribution system under different operational modes such as volt-VAr, constant reactive power and constant power factor. Edge level data analytics and intelligent controls such as autonomous reactive power allocation strategy are implemented using EIL testbed for real-time monitoring and control. Finally, virtual oscillator control(VOC) for grid forming inverters and its operation under different X/R conditions are explored.

Date Created
2022
Agent

240°-Clamped Space Vector PWM to Achieve Superior Waveform Quality and Low Common Mode Noise in Electric Vehicle Powertrains and Grid-Connected Photovoltaic Converters

171673-Thumbnail Image.png
Description

The performance of voltage source inverter (VSI) in terms of output waveform quality, conversion efficiency and common mode noise depends greatly on the pulse width modulation (PWM) method. In this work, a low-loss space vector PWM i.e., 240°-clamped space vector

The performance of voltage source inverter (VSI) in terms of output waveform quality, conversion efficiency and common mode noise depends greatly on the pulse width modulation (PWM) method. In this work, a low-loss space vector PWM i.e., 240°-clamped space vector PWM (240CPWM) is proposed to improve the performance of VSIs in electric/hybrid electric vehicles (EV/HEVs) and grid connected photovoltaic (PV) systems. The salient features of 240CPWM include 240° clamping of each phase pole to positive or negative DC bus in a fundamental cycle ensuring that switching losses are reduced by a factor of seven as compared to conventional space vector PWM (CSVPWM) at unity power factor. Zero states are completely eliminated and only two nearest active states are used ensuring that there is no penalty in terms of total harmonic distortion (THD) in line current. The THD of the line current is analyzed using the notion of stator flux ripple and compared with conventional and discontinuous PWM method. Discontinuous PWM methods achieve switching loss reduction at the expense of higher THD while 240CPWM achieves a much greater loss reduction without impacting the THD. The analysis and performance of 240CPWM are validated on a 10 kW two-stage experimental prototype.
Common mode voltage (CMV) and leakage current characteristics of 240CPWM are analyzed in detail. It is shown analytically that 240CPWM reduces the CMV and leakage current as compared to other PWM methods while simultaneously reducing the switching loss and THD. Experimental results from a 10-kW hardware prototype conform to the analytical discussions and validate the superior performance of 240CPWM.
240CPWM requires a six-pulse dynamic DC link voltage that introduces low frequency harmonics in DC input current and/or AC line currents that can affect maximum power point tracking, battery life or THD in line current. Four topologies have been proposed to minimize the low frequency harmonics in input and line currents in grid-connected PV system with 240CPWM.
In order to achieve further benefits in terms of THD and device stress reduction, 240CPWM is extended to three-level inverters. The performance metrics such as THD and switching loss for 240CPWM are analyzed in three-level inverter.

Date Created
2022
Agent