Optimal Utilization of Third-Party Demand Response Resources in Vertically Integrated Utilities: A Game Theoretic Approach

187558-Thumbnail Image.png
Description

This report studies the optimal mechanisms for the vertically integrated utility to dispatch and incentivize the third-party demand response (DR) providers in its territory. A framework is proposed, with three-layer coupled Stackelberg and simultaneous games, to study the interactions and

This report studies the optimal mechanisms for the vertically integrated utility to dispatch and incentivize the third-party demand response (DR) providers in its territory. A framework is proposed, with three-layer coupled Stackelberg and simultaneous games, to study the interactions and competitions among the pro t-seeking process of the utility, the third-party DR providers, and the individual end users (EUs) in the DR programs. Two coupled single-leader-multiple-followers Stackelberg games with a three-layer structure are proposed to capture the interactions among the utility (modeled in the upper layer), the third-party DR providers (modeled in the middle layer), and the EUs in each DR program (modeled in the lower layer). The competitions among the EUs in each DR program is captured through a non-cooperative simultaneous game. An inconvenience cost function is proposed to model the DR provision willingness and capacity of different EUs. The Stackelberg game between the middle-layer DR provider and the lower-layer EUs is solved by converting the original bi-level programming to a single level programming. This converted single level programming is embedded in an iterative algorithm toward solving the entire coupled games framework. Case studies are performed on IEEE 34-bus and IEEE69-bus test systems to illustrate the application of the proposed framework.

Date Created
2023
Agent

Optimal Placement and Validation of PV Inverter with Voltage Control Capability in Active Distribution Systems

187366-Thumbnail Image.png
Description

The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As

The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As guided by the previous IEEE standard 1547-2003, most of the existing photovoltaic (PV) systems in the real distribution networks are equipped with conventional inverters, which only allow the PV systems to operate at unity power factor to generate active power. To utilize the voltage control capability of the existing PV systems following the guideline of the revised IEEE standard 1547-2018, this dissertation proposes a two-stage stochastic optimization strategy aimed at optimally placing the PV smart inverters with Volt-VAr capability among the existing PV systems for distribution systems with high PV penetration to mitigate voltage violations. PV smart inverters are fast-response devices compared to conventional voltage control devices in the distribution system. Historically, distribution system planning and operation studies are mainly based on quasi-static simulation, which ignores system dynamic transitions between static solutions. However, as high-penetration PV systems are present in the distribution system, the fast transients of the PV smart inverters cannot be ignored. A detailed dynamic model of the PV smart inverter with Volt-VAr control capability is developed as a dynamic link library (DLL) in OpenDSS to validate the system voltage stability with autonomous control of the optimally placed PV smart inverters. Static and dynamic verification is conducted on an actual 12.47 kV, 9 km-long Arizona utility feeder that serves residential customers. To achieve fast simulation and accommodate more complex PV models with desired accuracy and efficiency, an integrative dynamic simulation framework for OpenDSS with adaptive step size control is proposed. Based on the original fixed-step size simulation framework in OpenDSS, the proposed framework adds a function in the OpenDSS main program to adjust its step size to meet the minimum step size requirement from all the PV inverters in the system. Simulations are conducted using both the original and the proposed framework to validate the proposed simulation framework.

Date Created
2023
Agent

Snyder_Spring_2023_Presentation.pdf

Description

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the EV user in a single-unit residential application. In this experiment, an Electric Vehicle simulation tool was created using Python. A training dataset was generated from Alternative Fuels and Data Center (EVI-Pro) using charging data from Phoenix, Arizona. Similarly, the utility price plan chosen for this exercise was SRP Electric Vehicle Price plan. This will be the cost-basis for the thesis. There were four cases that were evaluated by the simulation tool. (1) Utility Guided Scheduling (2) Automatic Scheduling (3) Off-Site Enablement (4) Bidirectional enablement. These use-cases are some of the critical problems facing EV users when it comes to charging at home. Each of these scenarios and algorithms were proven to save the user money in their daily bill. Overall, the user will need some sort of weighted scenario that considers all four cases to provide the best solution to the user. All four scenarios support the use of Adaptive Charging techniques in residential level 2 electric vehicle chargers. By applying these techniques, the user can save up to 90% on their energy bill while offsetting the energy grid during peak hours. The adaptive charging techniques applied in this thesis are critical to the adoption of the next generation electric vehicles. Users need to be enabled to use the latest and greatest technology. In the future, individuals can use this report as a baseline to use an Artificial Intelligence model to make an educated case-by-case decision to deal with the variability of the data.

Date Created
2023-05
Agent

A Next-Generation Solution for Optimizing Residential Electric Vehicle Charging

Description

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the EV user in a single-unit residential application.
In this experiment, an Electric Vehicle simulation tool was created using Python. A training dataset was generated from Alternative Fuels and Data Center (EVI-Pro) using charging data from Phoenix, Arizona. Similarly, the utility price plan chosen for this exercise was SRP Electric Vehicle Price plan. This will be the cost-basis for the thesis.
There were four cases that were evaluated by the simulation tool. (1) Utility Guided Scheduling (2) Automatic Scheduling (3) Off-Site Enablement (4) Bidirectional enablement. These use-cases are some of the critical problems facing EV users when it comes to charging at home. Each of these scenarios and algorithms were proven to save the user money in their daily bill. Overall, the user will need some sort of weighted scenario that considers all four cases to provide the best solution to the user.
All four scenarios support the use of Adaptive Charging techniques in residential level 2 electric vehicle chargers. By applying these techniques, the user can save up to 90% on their energy bill while offsetting the energy grid during peak hours.
The adaptive charging techniques applied in this thesis are critical to the adoption of the next generation electric vehicles. Users need to be enabled to use the latest and greatest technology. In the future, individuals can use this report as a baseline to use an Artificial Intelligence model to make an educated case-by-case decision to deal with the variability of the data.

Date Created
2023-05
Agent

Improved Distribution Feeder and Load Modeling in Power Systems using Electro Magnetic Transient Models

171988-Thumbnail Image.png
Description

With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies.

With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies. Although, currently, most of the power system studies are being done using positive sequence commercial software packages for computational convenience purposes, it comes at the cost of reduced accuracy when compared to the more accurate electromagnetic transient (EMT) simulators (but more computationally intensive). However, it is expected, that in the next several years, the use of EMT simulators for large-scale system studies would become a necessity to implement the ambitious renewable energy targets adopted by many countries across the world. Currently, the issue of developing more accurate EMT feeder and load models has yet to be addressed. Therefore, in the first phase of this work, an optimization algorithm to synthesize an EMT distribution feeder and load model has been developed by capturing the current transients when three-phase voltage measurements (obtained from a local utility) are played-in as input, from events such as sub-transmission faults, to the synthesized model. Using the developed algorithm, for the proposed feeder model, both the load composition and the load parameters have been estimated. The synthesized load model has a load composition which includes impedance loads, single-phase induction motor (SPHIM) loads and three-phase induction motor loads.
In the second phase of this work, an analytical formulation of a 24 V EMT contactor is developed to trip the air conditioner EMT SPHIM load, in the feeder and load model developed in Phase 1 of this work, under low voltage conditions. Additionally, a new methodology is developed, to estimate and incorporate the trip and reconnection settings of the proposed EMT contactor model to trip, reconnect and stall the SPHIMs in a positive sequence simulator (PSLF) for single-line to ground faults. Also, the proposed methodology has been tested on a modified three-segment three-phase feeder model using a local utility’s practical feeder topological and loading information. Finally, the developed methodology is modified to accommodate three-phase faults in the system.

Date Created
2022
Agent

Localizing Solar Power in Different Distribution Grid Feeders and Identification of the Meter-Transformer Connectivity

171986-Thumbnail Image.png
Description

The increase in the photovoltaic (PV) generation on distribution grids may cause reverse power flows and challenges such as service voltage violations and transformer overloading. To resolve these issues, utilities need situational awareness, e.g., PV-feeder mapping to identify the potential

The increase in the photovoltaic (PV) generation on distribution grids may cause reverse power flows and challenges such as service voltage violations and transformer overloading. To resolve these issues, utilities need situational awareness, e.g., PV-feeder mapping to identify the potential back-feeding feeders and meter-transformer mapping for transformer overloading. As circuit schematics are outdated, this work relies on data. In cases where the advanced metering infrastructure (AMI) data is unavailable, e.g., analog meters or bandwidth limitation, the dissertation proposes to use feeder measurements from utilities and solar panel measurements from solar companies to identify PV-feeder mapping. Several sequentially improved methods based on quantitative association rule mining (QARM) are proposed, where a lower bound for performance guarantee is also provided. However, binning data in QARM leads to information loss. So, bands are designed to replace bins for increased robustness. For cases where AMI data is available but solar PV data is unavailable, the AMI voltage data and location data are used for situational awareness, i.e., meter-transformer mapping, to resolve voltage violation and transformer overloading. A density-based clustering method is proposed that leverages AMI voltage data and geographical information to efficiently segment utility meters such that the segments comprise meters of few transformers only. Although it is helpful for utilities, it may not directly recover the meter-transformer connectivity, which requires transformer-wise segmentation. The proposed density-based method and other past methods ignore two common scenarios, e.g., having large distance between a meter and parent transformer or high similarity of a meter's consumption pattern to a non-parent transformer's meters. However, going from meter-meter can lead to the parent transformer group meters due to the usual observation that the similarity of intra-cluster meter voltages is usually stronger than the similarity of inter-cluster meter voltages. Therefore, performance guarantee is provided via spectral embedding with voltage data under reasonable assumption. Moreover, the assumption is partially relaxed using location data. It will benefit the utility in many ways, e.g., mitigating voltage violations by transformer tap settings and identifying overloaded transformers.

Date Created
2022
Agent

Enhanced Energy Management System Including Detection Mechanisms and Post-Attack Corrective Actions against Load-Redistribution Attacks

171817-Thumbnail Image.png
Description

The fast growth of the power system industry and the increase in the usage of computerized management systems introduces more complexities to power systems operations. Although these computerized management systems help system operators manage power systems reliably and efficiently, they

The fast growth of the power system industry and the increase in the usage of computerized management systems introduces more complexities to power systems operations. Although these computerized management systems help system operators manage power systems reliably and efficiently, they introduce the threat of cyber-attacks. In this regard, this dissertation focuses on the load-redistribution (LR) attacks, which cause overflows in power systems. Previous researchers have shown the possibility of launching undetectable LR attacks against power systems, even when protection schemes exist. This fact pushes researchers to develop detection mechanisms. In this thesis, real-time detection mechanisms are developed based on the fundamental knowledge of power systems, operation research, and machine learning. First, power systems domain insight is used to identify an underlying exploitable structure for the core problem of LR attacks. Secondly, a greedy algorithm’s ability to solve the identified structure to optimality is proved, which helps operators quickly find the best attack vector and the most sensitive buses for each target transmission asset. Then, two quantitative security indices are proposed and leveraged to develop a measurement threat analysis (MTA) tool. Finally, a machine learning-based classifier is used to enhance the MTA tool’s functionality in flagging tiny LR attacks and distinguishing them from measurement/forecasting errors. On the other hand, after acknowledging that an adversarial LR attack interferes with the system, establishing a corrective action is imperative to mitigate or remove the potential consequences of the attack. This dissertation proposes two corrective actions; the first one is developed based on the worst-case attack scenario, considering the information provided by the MTA tool. After The MTA tool flags an LR attack in the system, it should determine the primary target and other affected transmission assets, using which the operator can estimate the actual loads in the post-attack stage. This estimation is essential since the corresponding security constraints in the first corrective action model are modeled based on these loads. The second one is a robust optimization that considers various load scenarios. The functionality of this robust model does not depend on the information provided by the MTA tool and is more reliable.

Date Created
2022
Agent

Analytical and Data-driven Strategies to Advance Operational Flexibility of Smart Grids with Bulk System Renewables and Distributed Energy Resources

171779-Thumbnail Image.png
Description

Due to the new and old challenges, modern-day market management systems continue ‎to evolve, including market reformulations, introducing new market products, and ‎proposing new frameworks for integrating distributed energy resources (DERs) into the ‎wholesale markets. Overall, questions is regarding how

Due to the new and old challenges, modern-day market management systems continue ‎to evolve, including market reformulations, introducing new market products, and ‎proposing new frameworks for integrating distributed energy resources (DERs) into the ‎wholesale markets. Overall, questions is regarding how to reflect these essential changes in ‎the market models (design, reformulation, and coordination frameworks), design market-‎based incentive structures to adequately compensate participants for providing ancillary ‎services, and assess these impacts on market settlements.‎First, this dissertation proposes the concept of securitized-LMP to solve the issue of how ‎market participants should be compensated for providing N-1 reliability services. Then, ‎pricing implications and settlements of three state-of-art market models are compared. The ‎results show that with a more accurate representation of contingencies in the market ‎models, N-1 grid security requirements are originally captured; thereby, the value of service ‎provided by generators is reflected in the prices to achieve grid security.‎
Also, new flexible ramping product (FRP) designs are proposed for different market ‎processes to (i) schedule day-ahead (DA) FRP awards that are more adaptive concerning ‎the real-time (RT) 15-min net load changes, and (ii) address the FRP deployability issue in ‎fifteen-minute market (FMM). The proposed market models performance with enhanced ‎FRP designs is compared against the DA market and FMM models with the existing FRP ‎design through a validation methodology based on California independent system operator ‎‎(ISO) RT operation. The proposed FRP designs lead to less expected final RT operating ‎cost, higher reliability, and fewer RT price spikes.‎
Finally, this dissertation proposes a distribution utility and ISO coordination framework ‎to enable ISO to manage the wholesale market while preemptively not allowing ‎aggregators to cause distribution ‎system (DS) violations. To this end, this coordination ‎framework architecture utilizes the statistical information obtained using different DS ‎conditions and data-mining algorithms to predict the aggregators qualified maximum ‎capacity. A validation phase considering Volt-VAr support provided by distributed PV smart ‎inverters is utilized for evaluate the proposed model performance. The proposed model ‎produces wholesale market awards for aggregators that fall within the DS operational limits ‎and, consequently, will not impose reliable and safety issues for the DS.‎

Date Created
2022
Agent

Impact of High PV Penetration in a Real Large Feeder Network using Edge based Advanced Control and Novel Soft-switching DC-DC Topologies

171708-Thumbnail Image.png
Description

Large number of renewable energy based distributed energy resources(DERs) are integrated into the conventional power grid using power electronic interfaces. This causes increased need for efficient power conversion, advanced control, and DER situational awareness. In case of photovoltaic(PV) grid integration,

Large number of renewable energy based distributed energy resources(DERs) are integrated into the conventional power grid using power electronic interfaces. This causes increased need for efficient power conversion, advanced control, and DER situational awareness. In case of photovoltaic(PV) grid integration, power is processed in two stages, namely DC-DC and DC-AC. In this work, two novel soft-switching schemes for quadratic boost DC-DC converters are proposed for PV microinverter application. Both the schemes allow the converter to operate at higher switching frequency, reducing the converter size while still maintaining high power conversion efficiency. Further, to analyze the impact of high penetration DERs on the power system a real-time simulation platform has been developed in this work. A real, large distribution feeder with more than 8000 buses is considered for investigation. The practical challenges in the implementation of a real-time simulation (such as number of buses, simulation time step, and computational burden) and the corresponding solutions are discussed. The feeder under study has a large number of DERs leading to more than 200% instantaneous PV penetration. Opal-RT ePHASORSIM model of the distribution feeder and different types of DER models are discussed in detailed in this work. A novel DER-Edge-Cloud based three-level architecture is proposed for achieving solar situational awareness for the system operators and for real-time control of DERs. This is accomplished using a network of customized edge-intelligent-devices(EIDs) and end-to-end solar energy optimization platform(eSEOP). The proposed architecture attains superior data resolution, data transfer rate and low latency for the end-to-end communication. An advanced PV string inverter with control and communication capabilities exceeding those of state-of-the-art, commercial inverters has been developed to demonstrate the proposed real-time control. A power-hardware-in-loop(PHIL) and EID-in-loop(EIL) testbeds are developed to verify the impact of large number of controllable DERs on the distribution system under different operational modes such as volt-VAr, constant reactive power and constant power factor. Edge level data analytics and intelligent controls such as autonomous reactive power allocation strategy are implemented using EIL testbed for real-time monitoring and control. Finally, virtual oscillator control(VOC) for grid forming inverters and its operation under different X/R conditions are explored.

Date Created
2022
Agent