Comparative Morphological Analysis of Crown Giant Anoles

192572-Thumbnail Image.png
Description
The morphological characteristics of organisms are intricately linked to their ecological features. As a result, species with similar ecological niches may exhibit shared morphological traits due to convergent evolution. Some genomic features could be relevant to influencing the occurrence of

The morphological characteristics of organisms are intricately linked to their ecological features. As a result, species with similar ecological niches may exhibit shared morphological traits due to convergent evolution. Some genomic features could be relevant to influencing the occurrence of convergence evolution. Anoles, with over 400 species, are an excellent model for studying this process. Within Anolis, groups of species that have evolved similar morphological traits and ecological adaptations in response to specific environmental niches are described as ecomorphs. One ecomorph, the crown-giant anoles, has independently evolved large body sizes and adapted to arboreal habitats, predominantly occupying the upper canopy layer of forests. The objective of this study was to explore the convergent evolution of morphological traits in crown giant anoles, by comparing the osteological traits of two crown giants, Anolis frenatus, and A. equestris, to four non-crown giant species from different ecomorphs, A. auratus, A. carolinensis, A. biporcatus, and A. sagrei. The analysis indicated an absence of convergence in most morphological traits except for body size (SVL). Additionally, this study explored the potential role of transposable elements (TEs) as a genomic feature shaping the morphological diversity of crown giant anoles. The genes located within TE-rich regions on the genome were identified across selected Anolis species. An enrichment of genes associated with regulation and developmental processes was detected in regions with high TE abundance for all analyzed species, but not exclusive to crown giants. The results suggest that crown giants seem to only converge in their substantial body size and that the variability in other morphological characteristics could be attributed to some other ecological features or the phylogenetic relationships of each species. Moreover, TEs may play a role in facilitating morphological evolution and adaptability in all Anolis species, as they could influence gene expression and regulatory pathways. This highlights the need for further investigation into the genomic mechanisms determining convergent evolution.
Date Created
2024-05
Agent

Octopus Arm Morphology, a Source of Inspiration for Engineering Applications

190970-Thumbnail Image.png
Description
Animals have always been a source of inspiration for real-life problems. The octopus is one such animal that has a lot of untapped potential. The octopus’s arm is without solid joints or bone structure and despite this it can achieve

Animals have always been a source of inspiration for real-life problems. The octopus is one such animal that has a lot of untapped potential. The octopus’s arm is without solid joints or bone structure and despite this it can achieve many complicated movements with virtually infinite degrees of freedom. This ability is made possible through the unique morphology of the arm. The octopus’s arm is divided into transverse, longitudinal, oblique, and circular muscle groups and each one has a unique muscle fiber orientation. The octopus’s arm is classified as a hydrostat because it maintains a constant volume while contracting with the help of its different muscle groups. These muscle groups allow elongation, shortening, bending, and twisting of the arm when they work in combination with each other. To confirm the role of transverse and longitudinal muscle groups, an electromyography (EMG) recording of these muscle groups was performed while an amputated arm of an Octopus bimaculoides was stimulated with an electrical signal to induce movement. Statistical analysis was performed on these results to confirm the roles of each muscle group quantitatively. Octopus arm morphology was previously assumed to be uniform along the arm. Through a magnetic resonance imaging (MRI) study at the proximal, middle, and distal sections of the arm this notion was disproven, and a new pattern was discovered. Drawing inspiration from this finding and previous octopus arm prototypes, 4 bio-inspired designs were conceived and tested in finite element analysis (FEA) simulations. Four tests in elongation, shortening, bending, and transverse-assisted bending movements were performed on all designs to compare each design’s performance. The findings in this study have applications in engineering and soft robotics fields for use cases such as, handling fragile objects, minimally invasive surgeries, difficult-to-access areas that require squeezing through small holes, and other novel cases.
Date Created
2023
Agent

EMG Analysis of Octopus Arms’ Muscles

171489-Thumbnail Image.png
Description
The unparalleled motion and manipulation abilities of an octopus have intrigued engineers and biologists for many years. How can an octopus having no bones transform its arms from a soft state to a one stiff enough to catch and even

The unparalleled motion and manipulation abilities of an octopus have intrigued engineers and biologists for many years. How can an octopus having no bones transform its arms from a soft state to a one stiff enough to catch and even kill prey? The octopus arm is a muscular hydrostat that enables these manipulations in and through its arm. The arm is a tightly packed array of muscle groups namely longitudinal, transverse and oblique. The orientation of these muscle fibers aids the octopus in achieving core movements like shortening, bending, twisting and elongation as hypothesized previously. Through localized electromyography (EMG) recordings of the longitudinal and transverse muscles of Octopus bimaculoides quantitatively the roles of these muscle layers will be confirmed. Five EMG electrode probes were inserted into the longitudinal and transverse muscle layers of an amputated octopus arm. One into the axial nerve cord to electrically stimulate the arm for movements. The experiments were conducted with the amputated arm submerged in sea water with surrounded cameras to record the movement, all housed in a Faraday cage. The findings of this research could possibly lead to the development of soft actuators built out of soft materials for applications in minimally invasive surgery, search-and-rescue operations, and wearable prosthetics.
Date Created
2022
Agent

Statistical Analyses of Octopus bimaculoides Morphology and Physiology

148387-Thumbnail Image.png
Description

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya and O. vulgaris, the anterior arms are utilized more frequently

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya and O. vulgaris, the anterior arms are utilized more frequently for grasping and exploring (Lee, 1992; Byrne et al., 2006a), while posterior arms are more frequently utilized for crawling in O. vulgaris (Levy et al., 2015). In addition, O. vulgaris uses favored arms when retrieving food and making contact with a T-maze as dictated by their lateralized vision (Byrne, 2006b). O. vulgaris also demonstrates a preference for anterior arms when retrieving food from a Y-maze (Gutnick et. al. 2020). In Octopus bimaculoides bending and elongation were more frequent in anterior arms than posterior arms during reaching and grasping tasks, and right arms displayed deformation more frequently than left arms, with the exception of the hectocotylus (R3) in males (Kennedy et. al. 2020). Given these observed functional differences, the goal of this study was to determine if morphological differences exist between different octopus arm identities, coded as L1-L4 and R1-R4. In particular, the relationship between arm length and arm identity was analyzed statistically. The dataset included 111 intact arms from 22 wild-caught specimens of O. bimaculoides (11 male and 11 female). Simple linear regressions and an analysis of covariance were performed to test the relationship between arm length and a number of factors, including body mass, sex, anterior versus posterior location, and left versus the right side. Mass had a significant linear relationship with arm length and a one-way ANOVA demonstrated that arm identity is significantly correlated with arm length. Moreover, an analysis of covariance demonstrated that independent of mass, arm identity has a significant linear relationship with arm length. Despite an overall appearance of bilateral symmetry, arms of different identities do not have statistically equivalent lengths in O. bimaculoides. Furthermore, differences in arm length do not appear to be related to sex, anterior versus posterior location, or left or right side. These results call into question the existing practice of treating all arms as equivalent by either using a single-arm measurement as representative of all eight or calculating an average length and suggest that morphological analyses of specific arm identities may be more informative.<br/><br/>Chapter 2: Predicting and Analyzing Octopus bimaculoides Sensitivity to Global Anesthetic<br/>Although global anesthetic is widely used in human and veterinary medicine the mechanism and impact of global anesthetic is relatively poorly comprehended, even in well-studied mammalian models. Invertebrate anesthetic is even less understood. In order to evaluate factors that impact anesthetic effectiveness analyses were conducted on 22 wild-caught specimens of Octopus bimaculoides during 72 anesthetic events.Three machine learning models: regression tree, random forest, and generalized additive model were utilized to make predictions of the concentration of anesthetic (percent ethanol by volume) from 11 features and to determine feature importance in making those predictions. The fit of each model was analyzed on three criteria: correlation coefficient, mean squared error, and relative error. Feature importance was determined in a model-specific manner. Predictions from the best performing model, random forest, have a .82 correlation coefficient with experimental values. Feature importance suggests that temperature on arrival and cohabitation factors strongly influence predictions for anesthesia concentration. This likely indicates the transportation process was incurring stress on the animals and that cohabitation was also stressful for the typically solitary O. bimaculoides. This long-term stress could lead to a decline in the animal’s well-being and a lower necessary ethanol concentration (Horvath et al., 2013). This analysis provides information to improve the care of octopus in laboratory settings and furthers the understanding of the effects of global anesthetic in invertebrates, particularly one with a distributed nervous system.

Date Created
2021-05
Agent

Chemoreception in Octopus bimaculoides

131595-Thumbnail Image.png
Description
Chemoreception is an important method for an octopus to sense and react to its surroundings. However, the density of chemoreceptors within different areas of the skin of the octopus arm is poorly documented. In order to assess the relative sensitivity

Chemoreception is an important method for an octopus to sense and react to its surroundings. However, the density of chemoreceptors within different areas of the skin of the octopus arm is poorly documented. In order to assess the relative sensitivity of various regions and the degree to which chemoreception is locally controlled, octopus arms were amputated and exposed to acetic acid, a noxious chemical stimulus that has previously been shown to elicit movement responses in amputated arms (Hague et al., 2013). To test this, 11 wild-caught Octopus bimaculoides (6 females, 5 males) were obtained. Acetic acid vapor was introduced in the distal oral, distal aboral, proximal oral, and proximal aboral regions of amputated arms. The frequency of the occurrence of movement was first analyzed. For those trials in which movement occurred, the latency (delay between the stimulus and the onset of movement) and the duration of movement were analyzed. The distal aboral and distal oral regions were both more likely to move than either the proximal oral or proximal aboral regions (p < 0.0001), and when they did move, were more likely to move for longer periods of time (p < 0.05). In addition, the proximal oral region was more likely to exhibit a delay in the onset of movement compared to the distal oral or distal aboral regions (p < 0.0001). These findings provide evidence that the distal arm is most sensitive to noxious chemical stimuli. However, there were no significant differences between the distal oral and distal aboral regions, or between the proximal oral and proximal aboral regions. This suggests that there may not be a significant difference in the density of chemoreceptors in the aboral versus oral regions of the arm, contrary to claims in the literature. The other independent variables analyzed, including sex, body mass, arm length, anterior versus posterior arm identity, and left versus right arm identity, did not have a significant effect on any of the three dependent variables analyzed. Further analysis of the relative density of chemoreceptors in different regions of the octopus arm is merited.
Date Created
2020-05
Agent

Octopus Transverse and Internal Longitudinal Arm Muscles in Relation to Fetching Movements

132543-Thumbnail Image.png
Description
Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering was mapped and area was measured using AMIRA image processing and the trends in
these layers at the proximal, middle, and distal portions of the arms were analyzed. A total of 39
arms from 6 specimens were scanned to give 112 total imaged sections (38 proximal, 37 middle,
37 distal), from which to ascertain and study the possible differences in musculature. The
images revealed significant increases in the internal longitudinal muscle layer percentages
between the proximal and middle, proximal and distal, and middle and distal sections of the
arms. These structural differences are hypothesized to be used for rapid retraction of the distal
segment when encountering predators or noxious stimuli. In contrast, a significant decrease in
the transverse muscle layer was found when comparing the same sections. These structural
differences are hypothesized to be a result of bending behaviors during retraction. Additionally,
the internal longitudinal layer was separately studied orally, toward the sucker, and aborally,
away from the sucker. The significant differences in oral and aboral internal longitudinal
musculature in proximal, middle, and distal sections is hypothesized to support the pseudo-joint
functionality displayed in octopus fetching behaviors. The results indicate that individual
octopus arm morphology is more unique than previously thought and supports that internal
structural differences exist to support behavioral functionality.
Date Created
2019-05
Agent

Internal Longitudinal and Transverse Muscles in Relation to Octopus Arm Function

132654-Thumbnail Image.png
Description
The entirely soft-tissue anatomy of the octopus arm provides the animal with a large amount of freedom of movement, while still allowing the specimen to support itself despite the lack of a skeletal system. This is made possible through the

The entirely soft-tissue anatomy of the octopus arm provides the animal with a large amount of freedom of movement, while still allowing the specimen to support itself despite the lack of a skeletal system. This is made possible through the use of various muscle layers within the octopus arm, which act as muscular hydrostats. Magnetic Resonance imaging of the octopus arm was employed to view the muscle layers within the octopus arm and observe trends and differences in these layers at the proximal, middle, and distal portions of the arms. A total of 39 arms from 6 specimens were imaged to give 112 total imaged sections (38 proximal, 37 middle, 37 distal). Significant increases in both the internal longitudinal muscle layer and the nervous core were found between the proximal and middle, proximal and distal, and middle and distal sections of the arms. This could reflect selection for these structures distally in the octopus arm for predator or other noxious stimuli avoidance. A significant decrease in the transverse muscle layer was found in the middle and distal sections of the arms. This could reflect selection for elongation in the proximal portion of the octopus arm or could be the result of selection for the internal longitudinal muscle layer and nervous core distally. Previous studies on Octopus vulgaris showed a preference for using the proximal arms in the pushing movement of crawling and a preference for using the anterior arms in exploring behaviors (Levy et al., 2015 and Byrne et al., 2006). Differences between the anterior and posterior arms for the transverse muscle layer, internal longitudinal muscle layer, and the nervous core were insignificant, reflecting a lack of structure-function relationships. This could also be due to a low sample size. Differences between the left and right arms for the transverse muscle layer, internal longitudinal muscle layer, and the nervous core were insignificant, supporting previous evidence that left versus right eye and arm preferences in octopus are not population-wide, but individual. Some slight trends can be found for individual arms, but the sample size was too small to make definitive statements regarding differences among specific arms.
Date Created
2019-05
Agent

The Relationship Between Vertebral Osteology and Microhabitat and Prey-capture Methods in Snakes

134881-Thumbnail Image.png
Description
Vertebral osteology varies greatly among snake species. This variation may be related to specialization in microhabitat and prey-capture. Radiographs of eight preserved male specimens were taken in order to analyze the vertebral length and morphology of snakes which exhibit extreme

Vertebral osteology varies greatly among snake species. This variation may be related to specialization in microhabitat and prey-capture. Radiographs of eight preserved male specimens were taken in order to analyze the vertebral length and morphology of snakes which exhibit extreme characteristics in microhabitat utilization and prey-capture methods (highly arboreal, effective constrictor). This group includes two representatives each from four major families within Serpentes: Boidae, Pythonidae, Viperidae, and Colubridae. The four boids and pythons are effective constrictors, while the four vipers and colubrids are non-constricting. One specimen of each pair is highly arboreal, while the other is terrestrial. Findings support previous research in that constrictors had larger total numbers of vertebrae than non-constrictors. When average maximum adult length and morphology of axial musculature was taken into consideration, however, flexibility gained by vertebral number alone does not theoretically confer a mechanical advantage during constriction, at least among the specimens examined. All arboreal specimens had tails with a greater number of vertebrae than their con-familial terrestrial counterpart, implicating greater flexibility in the caudal region as an important characteristic for arboreality across taxa. Examination of segments of 10 vertebrae revealed that the greatest vertebral elongation occurred at the midpoint of the thoracic region. Reduction in size and length of tail vertebrae appears to occur independently of thoracic vertebrae. Colubrids, specifically, demonstrated a unique caudal vertebral elongation pattern which could potentially be advantageous for quick locomotion. These results indicate that caudal morphology may be more important in behavioral specialization than previously thought.
Date Created
2016-12
Agent

Anthropomorphic Animated Animals

134665-Thumbnail Image.png
Description
Anthropomorphic animal characters are common in animation, but there is limited data on the factors that contribute to such a trend. I studied how animated animals in popular movies look and behave like humans, and what that indicates about us

Anthropomorphic animal characters are common in animation, but there is limited data on the factors that contribute to such a trend. I studied how animated animals in popular movies look and behave like humans, and what that indicates about us that we prefer them that way. My study was conducted via literature review, film review, facial measurements, and the creation of my own character. I discovered the physical importance of eyes in proportion to the rest of the face and the emotional importance of those animals acting as metaphors for us as humans.
Date Created
2016-12
Agent

Comparative Osteology and Morphometrics of the Caudal Axial Skeleton in Anolis carolinensis and Anolis sagrei

137452-Thumbnail Image.png
Description
Anole lizards that inhabit the islands and mainland of the Caribbean basin have evolved morphological traits adapted to the microhabitat that they occupy. The anoles on these islands have been characterized as "ecomorphs" or morphologically and behaviorally-adapted groups, including: crown-giant,

Anole lizards that inhabit the islands and mainland of the Caribbean basin have evolved morphological traits adapted to the microhabitat that they occupy. The anoles on these islands have been characterized as "ecomorphs" or morphologically and behaviorally-adapted groups, including: crown-giant, trunk-crown, trunk, grass-bush, twig, and trunk-ground. Ecomorphs display morphological features that are specifically adapted to the habitat that the anole occupies. One key morphological difference is tail length. While the anoles Anolis carolinensis and A. sagrei have similar ratios of tail length versus snout-to-vent length (SVL), they occupy different microhabitats. Specifically, A. carolinensis inhabits trunk-crown habitats while A. sagrei is found in trunk-ground regions. In this study, I focused on analysis of the caudal vertebrae of these two species, to determine if the structure of the osteological elements reflected differences in microhabitat adaptation. Skeletal preparations reveal that A. carolinensis have 40 \u2014 46 caudal vertebrae, and A. sagrei have 38 \u2014 49 caudal vertebrae. Transverse processes are present in Ca1-8 in A. carolinensis whereas transverse processes in A. sagrei span from Ca1-42 vertebrae. Ca6\u201440 have autotomy planes in A. sagrei, whereas only Ca8\u201417 have autotomy planes in A. carolinensis. These findings indicate that A. carolinensis are limited in the ability to autotomize their tail compared to A. sagrei. A. carolinensis, living higher in the trees than A. sagrei, might incur a greater impairment of locomotor function if autotomized. There appears to be no differences between males and females of both species in respect to vertebrae lengths. Differences between A. carolinensis and A. sagrei in terms of vertebral length are found in Ca12-15, 29-30, 34, and 37. The finding indicates that almost all caudal vertebrae between A. carolinensis and A. sagrei have similar relative lengths, but seven vertebrae have statistically significant differences. The biological significance of the findings is not clear, but functional and myological studies may help elucidate the reason of the observed differences.
Date Created
2013-05
Agent