Description
The medical field is constantly looking for technological solutions to reduce user-error and improve procedures. As a potential solution for healthcare environments, Augmented Reality (AR) has received increasing attention in the past few decades due to advances in computing capabilities,

The medical field is constantly looking for technological solutions to reduce user-error and improve procedures. As a potential solution for healthcare environments, Augmented Reality (AR) has received increasing attention in the past few decades due to advances in computing capabilities, lower cost, and better displays (Sauer, Khamene, Bascle, Vogt, & Rubino, 2002). Augmented Reality, as defined in Ronald Azuma’s initial survey of AR, combines virtual and real-world environments in three dimensions and in real-time (Azuma, 1997). Because visualization displays used in AR are related to human physiologic and cognitive constraints, any new system must improve on previous methods and be consistently aligned with human abilities in mind (Drascic & Milgram, 1996; Kruijff, Swan, & Feiner, 2010; Ziv, Wolpe, Small, & Glick, 2006). Based on promising findings from aviation and driving (Liu & Wen, 2004; Sojourner & Antin, 1990; Ververs & Wickens, 1998), this study identifies whether the spatial proximity affordance provided by a head-mounted display or alternative heads up display might benefit to attentional performance in a simulated routine medical task. Additionally, the present study explores how tasks of varying relatedness may relate to attentional performance differences when these tasks are presented at different spatial distances.
Reuse Permissions
  • Downloads
    pdf (1000.2 KB)

    Details

    Title
    • Task relatedness and spatial distance of information: considerations for medical head mounted displays
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2017
      Note type
      thesis
    • Includes bibliographical references (pages 63-68)
      Note type
      bibliography
    • Field of study: Engineering

    Citation and reuse

    Statement of Responsibility

    by Richard A. del Rio

    Machine-readable links