Matching Items (17)

128762-Thumbnail Image.png

Staying Connected on the Road: A Comparison of Different Types of Smart Phone Use in a Driving Simulator

Description

Previous research on smart phone use while driving has primarily focused on phone calls and texting. Drivers are now increasingly using their phone for other activities during driving, in particular social media, which have different cognitive demands. The present study

Previous research on smart phone use while driving has primarily focused on phone calls and texting. Drivers are now increasingly using their phone for other activities during driving, in particular social media, which have different cognitive demands. The present study compared the effects of four different smart phone tasks on car-following performance in a driving simulator. Phone tasks were chosen that vary across two factors: interaction medium (text vs image) and task pacing (self-paced vs experimenter-paced) and were as follows: Text messaging with the experimenter (text/other-paced), reading Facebook posts (text/self-paced), exchanging photos with the experimenter via Snapchat (image, experimenter -paced), and viewing updates on Instagram (image, experimenter -paced). Drivers also performed a driving only baseline. Brake reaction times (BRTs) were significantly greater in the text-based conditions (Mean = 1.16 s) as compared to both the image-based conditions (Mean = 0.92 s) and the baseline (0.88 s). There was no significant difference between BRTs in the image-based and baseline conditions and there was no significant effect of task-pacing. Similar results were obtained for Time Headway variability. These results are consistent with the picture superiority effect found in memory research and suggest that image-based interfaces could provide safer ways to “stay connected” while driving than text-based interfaces.

Contributors

Agent

Created

Date Created
2016-02-17

149433-Thumbnail Image.png

Relative phase dynamics in motor-respiratory coordination

Description

Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle.

Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as important for aerobic efficiency. However, performance can be overly attracted to stable relative phases, preventing the performance or learning of more complex patterns. Little research exists on relative phase dynamics in motor-respiratory coordination, although those observations underscore the importance of learning more. In contrast, there is an extensive literature on relative phase dynamics in interlimb coordination. The accuracy and stability of different relative phases, transitions between patterns, and asymmetries between components are well understood. Theoretically, motor-respiratory and interlimb coordination may share dynamical properties that operate in their different physiological substrates. An existing model of relative phase dynamics in interlimb coordination, the Haken, Kelso, Bunz model, was used to gain an understanding of relative phase dynamics in the less-researched motor-respiratory coordination. Experiments 1 and 2 were designed to examine the interaction of frequency asymmetries between movement and breathing with relative phase and frequency, respectively. In Experiment 3, relative phase stability and transitions in motor-respiratory coordination were explored. Perceptual constraints on differences in stability were investigated in Experiment 4. Across experiments, contributions relevant to questions of coordinative variability were made using a dynamical method called cross recurrence quantification analysis. Results showed much consistency with predictions from an asymmetric extension of the Haken, Kelso, Bunz model and theoretical interpretation in the interlimb coordination literature, including phase wandering, intermittency, and an interdependence of perception and action. There were, however, notable exceptions that indicated stability can decrease with more natural frequency asymmetries and the connection of cross recurrence measures to categories of variability needs further clarification. The complex relative phase dynamics displayed in this study suggest that movement and breathing are softly-assembled by functional constraints and indicate that motor-respiratory coordination is a self-organized system.

Contributors

Agent

Created

Date Created
2010

149440-Thumbnail Image.png

A comparison of the effects of imagery and action observation on baseball batting performance

Description

This study investigated the effect of two different preparation methods on hitting performance in a high&ndashfidelity; baseball batting simulation. Novice and expert players participated in one of three conditions: observation (viewing a video of the goal action), visualization (hearing a

This study investigated the effect of two different preparation methods on hitting performance in a high&ndashfidelity; baseball batting simulation. Novice and expert players participated in one of three conditions: observation (viewing a video of the goal action), visualization (hearing a script of the goal action), or a no&ndashpreparation; control group. Each participant completed three different hitting tasks: pull hit, opposite&ndashfield; hit, and sacrifice fly. Experts had more successful hits, overall, than novices. The number of successful hits was significantly higher for both the observation and visualization conditions than for the control. In most cases, performance was best in the observation condition. Experts demonstrated greater effects from the mental preparation techniques compared to novices. However, these effects were mediated by task difficulty. The difference between experts and novices, as well as the difference between the observation and visualization conditions was greater for the more difficult hitting task (opposite&ndashfield; hitting) than for the easier hitting task (sacrifice fly). These effects of mental preparation were associated with significant changes in batting kinematics (e.g., changes in point of bat/ball contact and swing direction). The results indicate that mental preparation can improve directional hitting ability in baseball with the optimal preparation methods depending on skill&ndashlevel; and task difficulty.

Contributors

Agent

Created

Date Created
2010

161791-Thumbnail Image.png

Weight for it: Measures that Capture More of a Lift Contribute to Heaviness Perception

Description

In order to perceive the heaviness of an object, one must wield it. This requires muscle activity and its resulting movements. Research has shown that muscle activity and movement combine for this perception in a manner inspired by

In order to perceive the heaviness of an object, one must wield it. This requires muscle activity and its resulting movements. Research has shown that muscle activity and movement combine for this perception in a manner inspired by Newton’s 2nd Law of Motion. Research in this area has relied on specific movement and muscle activity measures that often capture one moment of a lift. The current set of experiments set out to determine which measures best capture the underlying phenomena that lead to heaviness perception during a lift. In the first experiment, participants lifted stimuli with an elbow flexion lift while their muscle activity and movement were recorded. Participants reported their perceived heaviness of the stimuli as soon as they reached it, which resulted in an average decision angle of around 30-degrees. In the second and third experiments, participants the same stimuli with the same elbow flexion lift in four perturbation conditions – they experienced perturbations at 15-degrees of the lift, 30-degrees, 45-degrees, and with no perturbation. In the second experiment, participants experienced a physical perturbation and a cognitive perturbation in the third experiment. Across Experiments 2 and 3, the pattern of results suggested that the more time participants have in a lift, the more proportion correct, muscle activity, and movement measures appears like they do in the no perturbation condition. Additionally, a logistic least absolute shrinkage and selection operator (LASSO) regression was used to determine which measures best predicted perception. Results show that the integrated electromyogram of the biceps brachii that occurs after peak acceleration (iEMG BB after pACC) and Average Acceleration, which are both measures that capture more than one point of a lift, predicted heaviness perception. A new model of heaviness perception was then developed, using these new measures. Comparing this New Model to an Original Model from Waddell et al., 2016 resulted in better prediction from the New Model – suggesting that measure that capture more of a lift better predict heaviness perception, meaning that an entire ongoing action event is important for perception.

Contributors

Agent

Created

Date Created
2021

157501-Thumbnail Image.png

The Influence of Gender, Race and Intersectionality on Stress in Division I Head Basketball Coaches

Description

Research in intercollegiate athletics has provided a relatively large body of findings about the kinds of stressors found in high profile intercollegiate athletic environments and their effects on student-athletes. Research is less robust regarding stress and its effects on head

Research in intercollegiate athletics has provided a relatively large body of findings about the kinds of stressors found in high profile intercollegiate athletic environments and their effects on student-athletes. Research is less robust regarding stress and its effects on head coaches in high profile collegiate athletics. This study focuses on the types, frequencies, and intensities of stress experienced by NCAA, Division I head coaches. The purpose of the study is to identify the types, frequency, and intensity of stress common to 20 head basketball coaches participating in the study, as well as differences in their experiences based on gender, race and the intersectionality of race and gender. The participants in the study are 20 head coaches (five Black females, five Black males, five White females, and White males). The conceptual framework guiding the study is a definition of stress as an interaction between a person and her or his environment in which the person perceives the resources available to manage the situation to be inadequate (Lazarus & Folkman, 1984). The study’s design is an adaptation of prior research conducted by Frey, M., 2007 and Olusoga, P., Butt, J., Hays, K., & Maynard, I., 2009, and Olusoga, P., Butt, J., Maynard, I., & Hays, K., 2011. This study used qualitative and quantitative methods that triangulated results scores on Maslach’s Burn-out Inventory and the Perceived Stress Scale with the thick data collected from semi-structured interviews with the 20 head coaches from each of the three data sources to enhance the validity and reliability of the findings. The researcher analyzed the data collected by placing it in one of two categories, one representing attributes of the participants including race and gender; the second category was comprised of attributes of the Division I environment.

Contributors

Agent

Created

Date Created
2019

161525-Thumbnail Image.png

Executive Function (Anticipation) Differences Between Soccer Players With and Without a History of Traumatic Brain Injury

Description

The present study sought to understand traumatic brain injuries (TBI) impact on executive function (EF) in terms of anticipation amongst individuals with a background in soccer; along with other contributing factors of EF curtailments that inhibit athletes. Within this study

The present study sought to understand traumatic brain injuries (TBI) impact on executive function (EF) in terms of anticipation amongst individuals with a background in soccer; along with other contributing factors of EF curtailments that inhibit athletes. Within this study 57 participants, with a background in soccer (high school, collegiate, and semi-professional), completed five EF tasks: working memory, cognitive flexibility, attentional control, and anticipation; pattern detection and athletic cues (temporal occlusion). The results of this study concluded that when TBI history, gender, and soccer athletic level are factors, athletes with a soccer level of collegiate and semi-professional had decrements related to pattern detection anticipation; meaning athletes at higher levels had lower average scores on the Brixton Spatial Anticipation Test (BSAT). Additionally, female athletes showed more anticipation decrements related to athletic cues, especially those that are reliant on the initiation of judgment. Overall undiagnosed TBIs and limited understanding on how to approach rehabilitation to mitigate EF decrements, continue to impede individual autonomy amongst athletes. Keywords: Traumatic brain injury, executive function, anticipation, soccer, temporal occlusion, Brixton Spatial Anticipation Test (BSAT), collegiate, semi-professional, pattern detection, rehabilitation

Contributors

Agent

Created

Date Created
2021

161593-Thumbnail Image.png

The Perception of Speed Altered by Visual Priming: Application: Design Pattern and Color

Description

In an ever-faster world, products that are designed for enhancing the speed of a certain task can and are being designed in rapid iterations by means of adding or modifying features that impact the energetics, kinematics and kinetics of a

In an ever-faster world, products that are designed for enhancing the speed of a certain task can and are being designed in rapid iterations by means of adding or modifying features that impact the energetics, kinematics and kinetics of a given product. Given the ubiquity of said changes and the need to market these products in a very crowded marketplace, it is imperative for the products to communicate the ‘speed’ of the additional features. Thus, it has been hypothesized that adding a few simple changes to the visual representation of a product or the context in which it is being presented could enhance the perception of the product dynamics at a cognitive or emotional level. The present work is aimed at determining the impact of visual elements such as shapes, colors, and textures on the perception of speed. Three hundred and twenty subjects participated in a discrimination task and a reaction task to measure the impact of various patterns, textures, and colors on the perception of speed. Throughout both tasks, the subjects were exposed to a number of various visual patterns or colors presented as a static background or recognizable object for a set amount of time. Based on the subjects’ performance we have identified and quantified the impact of specific visual design patterns and colors on the perception of speed. Primary results indicate promising evidence that certain fundamental visual elements of shape, color, and texture when presented as a static background or object design could induce subtle changes in visual perception that can alter the overall movement dynamics perception.

Contributors

Agent

Created

Date Created
2021

157345-Thumbnail Image.png

Communicating intent in autonomous vehicles

Description

The prospects of commercially available autonomous vehicles are surely tantalizing, however the implementation of these vehicles and their strain on the social dynamics between motorists and pedestrians remains unknown. Questions concerning how autonomous vehicles will communicate safety and intent to

The prospects of commercially available autonomous vehicles are surely tantalizing, however the implementation of these vehicles and their strain on the social dynamics between motorists and pedestrians remains unknown. Questions concerning how autonomous vehicles will communicate safety and intent to pedestrians remain largely unanswered. This study examines the efficacy of various proposed technologies for bridging the communication gap between self-driving cars and pedestrians. Displays utilizing words like “safe” and “danger” seem to be effective in communicating with pedestrians and other road users. Future research should attempt to study different external notification interfaces in real-life settings to more accurately gauge pedestrian responses.

Contributors

Agent

Created

Date Created
2019

157628-Thumbnail Image.png

I Can’t Stand Thinking Anymore: An Analysis of Directed Attention on Posture

Description

Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to perform, research has shown that changes in cognitive (or “attentional”)

Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to perform, research has shown that changes in cognitive (or “attentional”) processes are reflected in the movements of sway. The purpose of this dissertation is to understand the relationship between attention and posture when attention is directly or indirectly shifted away from posture. Using a dual-task paradigm, attention was shifted directly by instructing participants to prioritize the balance task (minimize sway in a unipedal stance) or prioritize the cognitive task (minimize errors in an auditory n-back task) and indirectly by changing the difficulty level of the cognitive task (0-back vs. 2-back task). Postural sway was assessed using sample entropy (SampEn), standard deviation, (SD) and sway path (SP) of trunk movements to measure the regularity, variability, and overall distance of sway travelled, respectively. Dual-task behavior was examined when participants were in a controlled (i.e., non-fatigued) state (Experiment 1), in a state of physical fatigue (Experiment 2), and in a state of mental fatigue (Experiment 3). Across all three experiments, indirectly shifting attention away from posture in the more difficult 2-back task induced less regularity (higher SampEn) and variability (smaller SD) in postural sway. Directly shifting attention away from posture, by prioritizing the cognitive task, induced less regularity (higher SampEn) and a longer path length (higher SP) in Experiment 1, however this effect was not significant for the fatigued participants in Experiments 2 and 3. Neither physical fatigue (Experiment 2) or mental fatigue (Experiment 3) negatively affected postural sway or cognitive performance. Overall, the findings from this dissertation contribute to the relationship between movement regularity and attention in posture, and that the postural behavior that emerges is sensitive to methods in which attention is manipulated (direct, indirect) and fatigue (physical, mental).

Contributors

Agent

Created

Date Created
2019

155392-Thumbnail Image.png

Task relatedness and spatial distance of information: considerations for medical head mounted displays

Description

The medical field is constantly looking for technological solutions to reduce user-error and improve procedures. As a potential solution for healthcare environments, Augmented Reality (AR) has received increasing attention in the past few decades due to advances in computing capabilities,

The medical field is constantly looking for technological solutions to reduce user-error and improve procedures. As a potential solution for healthcare environments, Augmented Reality (AR) has received increasing attention in the past few decades due to advances in computing capabilities, lower cost, and better displays (Sauer, Khamene, Bascle, Vogt, & Rubino, 2002). Augmented Reality, as defined in Ronald Azuma’s initial survey of AR, combines virtual and real-world environments in three dimensions and in real-time (Azuma, 1997). Because visualization displays used in AR are related to human physiologic and cognitive constraints, any new system must improve on previous methods and be consistently aligned with human abilities in mind (Drascic & Milgram, 1996; Kruijff, Swan, & Feiner, 2010; Ziv, Wolpe, Small, & Glick, 2006). Based on promising findings from aviation and driving (Liu & Wen, 2004; Sojourner & Antin, 1990; Ververs & Wickens, 1998), this study identifies whether the spatial proximity affordance provided by a head-mounted display or alternative heads up display might benefit to attentional performance in a simulated routine medical task. Additionally, the present study explores how tasks of varying relatedness may relate to attentional performance differences when these tasks are presented at different spatial distances.

Contributors

Agent

Created

Date Created
2017