Matching Items (34)

133899-Thumbnail Image.png

Battleship: A Case Study of the Augmented Reality User Experience

Description

Emerging technologies, such as augmented reality (AR), are growing in popularity and accessibility at a fast pace. Developers are building more and more games and applications with this technology but few have stopped to think about what the best practices

Emerging technologies, such as augmented reality (AR), are growing in popularity and accessibility at a fast pace. Developers are building more and more games and applications with this technology but few have stopped to think about what the best practices are for creating a good user experience (UX). Currently, there are no universally accepted human-computer interaction guidelines for augmented reality because it is still relatively new. This paper examines three features - virtual content scale, indirect selection, and virtual buttons - in an attempt to discover their impact on the user experience in augmented reality. A Battleship game was developed using the Unity game engine with Vuforia, an augmented reality platform, and built as an iOS application to test these features. The hypothesis was that both virtual content scale and indirect selection would result in a more enjoyable and engaging user experience whereas the virtual button would be too confusing for users to fully appreciate the feature. Usability testing was conducted to gauge participants' responses to these features. After playing a base version of the game with no additional features and then a second version with one of the three features, participants rated their experiences and provided feedback in a four-part survey. It was observed during testing that people did not inherently move their devices around the augmented space and needed guidance to navigate the game. Most users were fascinated with the visuals of the game and two of the tested features. It was found that movement around the augmented space and feedback from the virtual content were critical aspects in creating a good user experience in augmented reality.

Contributors

Agent

Created

Date Created
2018-05

132683-Thumbnail Image.png

leARn: Supplementing Proven Teaching Techniques with AR Tools

Description

Augmented Reality (AR) is a tool increasingly available to young learners and educators. This paper documents and analyzes the creation of an AR app used as a tool to teach fractions to young learners and enhance their engagement in the

Augmented Reality (AR) is a tool increasingly available to young learners and educators. This paper documents and analyzes the creation of an AR app used as a tool to teach fractions to young learners and enhance their engagement in the classroom. As an emerging technology reaching diffusion into the general populace, AR presents a unique opportunity to engage users in the digital and real world. Additionally, AR can be enabled on most modern phones and tablets; therefore, it is extremely accessible and has a low barrier to entry. To integrate AR into the classroom in an affordable way, I created leARn, an AR application intended to help young learners understand fractions. leARn is an application intended to be used alongside traditional teaching methods, in order to enhance the engagement of students in the classroom. Throughout the development of the product, I not only considered usability and design, but also the effectiveness of the app in the classroom. Moreover, due to collaboration with Arizona State University Research Enterprises, I tested the application in a classroom with sixth, seventh and eighth grade students. This paper presents the findings from that testing period and analysis of the educational effectiveness of the concept based on data received from students.

Contributors

Agent

Created

Date Created
2019-05

133536-Thumbnail Image.png

Optimizing Engine Troubleshooting and Repair: Augmented Reality

Description

Large companies that produce engines all have a customer service side of their business to help clients solve the issues they may be having with the company's product. Communication, safety, connectivity, and the shear problem-solving process during these troubleshoots have

Large companies that produce engines all have a customer service side of their business to help clients solve the issues they may be having with the company's product. Communication, safety, connectivity, and the shear problem-solving process during these troubleshoots have long since been issues felt within the industry. The aim of this Honors Thesis was to see how augmented reality could meet the needs of these companies and what it would take to actually implement it. Cummins Care provided a real world example of some of these needs, troubleshooting methods and application. The research conducted into the field of AR shows great promise. The technology available today, and its direction of development, allow for augmented reality to create a much better communication tool. It also allows for engine companies to bring their own engines into the 3D world to benefit troubleshooting. Lastly, as technology continues to advance well into the future, augmented reality will become a needed and powerful tool for analyzing engines in live time through an AR experience.

Contributors

Agent

Created

Date Created
2018-05

131313-Thumbnail Image.png

4D Data Visualization in Augmented Reality: An Application to aid with decision-making for Ebola Vaccines

Description

A mobile phone application was designed as part of an X-Prize challenge at Arizona State University (ASU). The team created an application that displays 4D visualization of time sensitive contagion data, specifically focusing on the Ebola Virus Disease. The application,

A mobile phone application was designed as part of an X-Prize challenge at Arizona State University (ASU). The team created an application that displays 4D visualization of time sensitive contagion data, specifically focusing on the Ebola Virus Disease. The application, named “Ebola Resource Decision Evaluator” (ERDE), is a tool to aid in resource allocation for decision-makers during epidemics and outbreaks. The predictive algorithm was based on the SIR Model—susceptible, infected, and recovered (or immune). We adapted this predictive model into our application to forecast weeks forward the Ebola incidence in three cities in the Democratic Republic of Congo (DRC).
The current 2D map used by the Center for Disease Control (CDC) displays only the number of deaths in a city caused by the outbreak. But, the cities differ in ways 2D cannot convey. We implemented the augmented reality (AR) aspect to give more meaning to data and to give decision-makers interactive 4D city-by-city comparisons. The outbreak is ongoing as of September 2019 and ASU has committed to hosting the application for other healthcare workers to use. The application incorporates the most recent data on the disease and updates to visualize how many are predicted to become infected given X units of vaccine. We are able to use the data and compare the effectiveness to other cities. After this collection of data, professionals would determine the most efficient action to take against the spread of the disease.

Contributors

Created

Date Created
2020-05

Effectiveness of Augmented Reality as a Learning Tool to Advance Personalized Learning

Description

In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental grou

In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control group with the use of the Elements 4D mobile application by Daqri to learn basic chemical elements and compounds. The control group learning material provided all the exact information as the application, but in the 2D form of a printed packet. It was expected the experimental group would outperform the control group and have a more enjoyable experience and higher performance. After data analysis, it was concluded that the control group outperformed the experimental group on performance and both groups has similar experiences in contradiction to the hypothesis. Once the factors that contribute to the limitations of different study duration, learning the application beforehand, and only-memorization questions are addressed, the study can be conducted again. Application improvements may also alter the future results of the study and hopefully lead to full implementation into a curriculum.

Contributors

Agent

Created

Date Created
2017-05

136850-Thumbnail Image.png

Development of a Head's Up Display (HU)

Description

Head's up displays (HUD) are now emerging into the technological market that is used in various functionalities, but most of all, they are expensive. An alternative method to find cheaper ways to develop a head's up display is researched and

Head's up displays (HUD) are now emerging into the technological market that is used in various functionalities, but most of all, they are expensive. An alternative method to find cheaper ways to develop a head's up display is researched and implemented. The HUD is equipped with a processor and projector. Both of these hardware components encompasses most part of the HUD along with some manipulation of the material that the image is projected on. In this study, the software and the optics of the HUD will be explored and lastly, taking into full consideration on the future work that can be done to make improvements on the HUD.

Contributors

Agent

Created

Date Created
2014-05

136586-Thumbnail Image.png

Enhancing Object Detection In An Augmented Reality Learning System

Description

The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for

The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for 5 featureful objects (a Lego girl piece, a Lego guy piece, a blue Lego car piece, a window piece, and a fence piece). Functionality was added to determine the location of these 5 featureful objects within a frame as well by using the SURF keypoints associated with detection. Finally, the feedback mechanism by which the system detects connections between objects was improved to consider the size of the blocks in determining connections rather than using static values. Additional user features such as adding a new object and using voice commands were also implemented to make the system more user friendly.

Contributors

Created

Date Created
2015-05

147946-Thumbnail Image.png

Campus Kit: Gamifying the College Experience

Description

When examining the average college campus, it becomes obvious that students feel rushed from one place to another as they try to participate in class, clubs, and extracurricular activities. One way that students can feel more comfortable and relaxed around

When examining the average college campus, it becomes obvious that students feel rushed from one place to another as they try to participate in class, clubs, and extracurricular activities. One way that students can feel more comfortable and relaxed around campus is to introduce the aspect of gaming. Studies show that “Moderate videogame play has been found to contribute to emotional stability” (Jones, 2014). This demonstrates that the stress of college can be mitigated by introducing the ability to interact with video games. This same concept has been applied in the workplace, where studies have shown that “Gaming principles such as challenges, competition, rewards and personalization keep employees engaged and learning” (Clark, 2020). This means that if we manage to gamify the college experience, students will be more engaged which will increase and stabilize the retention rate of colleges which utilize this type of experience. Gaming allows students to connect with their peers in a casual environment while also allowing them to find resources around campus and find new places to eat and relax. We plan to gamify the college experience by introducing augmented reality in the form of an app. Augmented reality is “. . . a technology that combines virtual information with the real world” (Chen, 2019). College students will be able to utilize the resources and amenities available to them on campus while completing quests that help them within the application. This demonstrates the ability for video games to engage students using artificial tasks but real actions and experiences which help them feel more connected to campus. Our Founders Lab team has developed and tested an AR application that can be used to connect students with their campus and the resources available to them.

Contributors

Agent

Created

Date Created
2021-05

147948-Thumbnail Image.png

Campus Kit: Gamifying the College Experience

Description

When examining the average college campus, it becomes obvious that students feel rushed from one place to another as they try to participate in class, clubs, and extracurricular activities. One way that students can feel more comfortable and relaxed around

When examining the average college campus, it becomes obvious that students feel rushed from one place to another as they try to participate in class, clubs, and extracurricular activities. One way that students can feel more comfortable and relaxed around campus is to introduce the aspect of gaming. Studies show that “Moderate videogame play has been found to contribute to emotional stability” (Jones, 2014). This demonstrates that the stress of college can be mitigated by introducing the ability to interact with video games. This same concept has been applied in the workplace, where studies have shown that “Gaming principles such as challenges, competition, rewards and personalization keep employees engaged and learning” (Clark, 2020). This means that if we manage to gamify the college experience, students will be more engaged which will increase and stabilize the retention rate of colleges which utilize this type of experience. Gaming allows students to connect with their peers in a casual environment while also allowing them to find resources around campus and find new places to eat and relax. We plan to gamify the college experience by introducing augmented reality in the form of an app. Augmented reality is “. . . a technology that combines virtual information with the real world” (Chen, 2019). College students will be able to utilize the resources and amenities available to them on campus while completing quests that help them within the application. This demonstrates the ability for video games to engage students using artificial tasks but real actions and experiences which help them feel more connected to campus. Our Founders Lab team has developed and tested an AR application that can be used to connect students with their campus and the resources available to them.

Contributors

Agent

Created

Date Created
2021-05

152244-Thumbnail Image.png

Exploring the impact of varying levels of augmented reality to teach probability and sampling with a mobile device

Description

Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes

Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile technology that could potentially provide rich, contextualized learning for understanding concepts related to statistics education. This study examined the effects of AR experiences for learning basic statistical concepts. Using a 3 x 2 research design, this study compared learning gains of 252 undergraduate and graduate students from a pre- and posttest given before and after interacting with one of three types of augmented reality experiences, a high AR experience (interacting with three dimensional images coupled with movement through a physical space), a low AR experience (interacting with three dimensional images without movement), or no AR experience (two dimensional images without movement). Two levels of collaboration (pairs and no pairs) were also included. Additionally, student perceptions toward collaboration opportunities and engagement were compared across the six treatment conditions. Other demographic information collected included the students' previous statistics experience, as well as their comfort level in using mobile devices. The moderating variables included prior knowledge (high, average, and low) as measured by the student's pretest score. Taking into account prior knowledge, students with low prior knowledge assigned to either high or low AR experience had statistically significant higher learning gains than those assigned to a no AR experience. On the other hand, the results showed no statistical significance between students assigned to work individually versus in pairs. Students assigned to both high and low AR experience perceived a statistically significant higher level of engagement than their no AR counterparts. Students with low prior knowledge benefited the most from the high AR condition in learning gains. Overall, the AR application did well for providing a hands-on experience working with statistical data. Further research on AR and its relationship to spatial cognition, situated learning, high order skill development, performance support, and other classroom applications for learning is still needed.

Contributors

Agent

Created

Date Created
2013