Determining Fracture Properties and Robustness of Perovskite Thin Film Energy Devices

Description
Perovskite films are the future of solar cell technology as they are not only low cost to produce and lightweight but also have a 26% conversion efficiency. This is extremely close to the standard silicon solar cell. The key challenge

Perovskite films are the future of solar cell technology as they are not only low cost to produce and lightweight but also have a 26% conversion efficiency. This is extremely close to the standard silicon solar cell. The key challenge limiting the commercialization potential of these films is their fragility and durability to outdoors conditions. This project investigates the mechanical and material properties of these perovskite materials in order to understand their future manufacturing capabilities. Through the use of a spin coater, blade coater, and a double cantilever beam testing set up, the fracture energy (or toughness), Gc, of Perovskite films is determined. Understanding the properties of these films can help manufacturers determine how to best make durable films that can be used in everyday energy generation. Furthermore, this study offers strategies to improve the fracture energy of these films by adding polymers and food-additive starches to the recipe. The findings collected in this project present a technique to study the mechanical properties of perovskite-based solar technology and films and further aid the technology to become commercially viable.
Date Created
2023-12
Agent

Design of Hierarchically Porous Materials Containing Covalent Organic Frameworks

186807-Thumbnail Image.png
Description

My thesis, Design of Hierarchically Porous Materials Containing Covalent Organic Frameworks, focuses on testing the validity of incorporating nanoporous organic materials into macroporous scaffolding to improve the functionality of covalent organic frameworks as materials for filtration applications. The macroporous scaffold

My thesis, Design of Hierarchically Porous Materials Containing Covalent Organic Frameworks, focuses on testing the validity of incorporating nanoporous organic materials into macroporous scaffolding to improve the functionality of covalent organic frameworks as materials for filtration applications. The macroporous scaffold was based off of a material recently described in literature and the bulk of the experimentation was focused on the effects of the necessary processing for the creation of the macroporous material on the structure of the covalent organic frameworks. The property primarily investigated was the Brunauer-Emmett-Teller surface area, as the applicability of the frameworks is largely determined by their nanoporous surface area.

Date Created
2023-05
Agent

Scalable Solar: Perovskite Thin Films Enabled by Food Industry Additive

Description

With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies that can aid in advancing renewable energy efforts. Perovskite materials hold the potential for making high-efficiency,

With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies that can aid in advancing renewable energy efforts. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth abundant materials; however, scalability and manufacturability remain a challenge. In order to transition from small scale processing in inert environments via spin coating to higher throughput processing in ambient conditions via blade coating, the fundamentals of perovskite crystallization must be understood. Classical nucleation theory, the LaMer relation, and nonclassical crystallization considerations are discussed to provide a mechanism by which gellan gum, a nontoxic biopolymer from the food industry, has enabled quality halide perovskite thin films. Specifically, this research aims to study the effects of gellan gum in improving perovskite manufacturability by controlling crystallization through indirect alteration of evaporation and supersaturation rates by modifying fluid dynamics and the free energy associated with nucleation and growth. Simply, gellan gum controls crystallization to enable the fabrication of promising scalable PVSK devices in open air.

Date Created
2023-05
Agent

Treated Waste Plastics: A Solution for Enhancing the Performance of Concrete Construction

Description

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering the oceans. Work has been done to alter and treat polyethylene plastic to be added to cement mixtures. This is done to increase bearing capacity and ductility of concrete in addition to decreasing carbon emissions and plastic waste.

Date Created
2023-05
Agent

Conductance of Silver Modified DNA-Carbon Nanotube Nanomaterials

Description

DNA is useful for electronic applications due to its self-assembly and electronic properties. It can be improved for this purpose through the addition of metal ions. In this experiment, DNA was modified with silver ions and carbon nanotubes were attached

DNA is useful for electronic applications due to its self-assembly and electronic properties. It can be improved for this purpose through the addition of metal ions. In this experiment, DNA was modified with silver ions and carbon nanotubes were attached to both ends. The DNA-CNTs were connected over a 300 nm gap between gold electrodes using cysteamine. The conductance was found to be 1.28*10-4 G0, which is similar to literature values for unmodified DNA. Therefore, modifying DNA with silver ions was not found to significantly improve the conductance. It was also found that smaller applied voltages need to be used because of electrochemistry happening above 1 V.

Date Created
2023-05
Agent

Engineering of Light Based Promoters with PACE and Continuous Culture Hardware

Description

Protein and gene circuit level synthetic bioengineering can require years to develop a single target. Phage assisted continuous evolution (PACE) is a powerful new tool for rapidly engineering new genes and proteins, but the method requires an automated cell culture

Protein and gene circuit level synthetic bioengineering can require years to develop a single target. Phage assisted continuous evolution (PACE) is a powerful new tool for rapidly engineering new genes and proteins, but the method requires an automated cell culture system, making it inaccessible to non industrial research programs. Complex protein functions, like specific binding, require similarly dynamic PACE selection that can be alternatively induced or suppressed, with heat labile chemicals like tetracycline. Selection conditions must be controlled continuously over days, with adjustments made every few minutes. To make PACE experiments accessible to the broader community, we designed dedicated cell culture hardware and integrated optogenetically controlled plasmids. The low cost and open source platform allows a user to conduct PACE with continuous monitoring and precise control of evolution using light.

Date Created
2023-05
Agent

Contract Design and Enforcement in Carbon Management

Description

To mitigate climate change, carbon needs to be removed from the atmosphere and stored for thousands of years. Currently, carbon removal and storage are voluntarily procured, and longevity of storage is inconsistently defined and regulated. Clauses can be added to

To mitigate climate change, carbon needs to be removed from the atmosphere and stored for thousands of years. Currently, carbon removal and storage are voluntarily procured, and longevity of storage is inconsistently defined and regulated. Clauses can be added to procurement contracts to require long-term management and increase the durability of storage. Well-designed and properly enforced contracts can pave the way to future regulation for long-term carbon management.

Date Created
2023-05
Agent

Modeling the Formation and Thermal Evolution of Asteroid Itokawa's Parent Body

Description

Most asteroids originated in larger parent bodies that underwent accretion and heating during the first few million years of the solar system. We investigated the parent body of S-type asteroid 25143 Itokawa by developing a computational model which can approximate

Most asteroids originated in larger parent bodies that underwent accretion and heating during the first few million years of the solar system. We investigated the parent body of S-type asteroid 25143 Itokawa by developing a computational model which can approximate the thermal evolution of an early solar system body. We compared known constraints on Itokawa’s thermal history to simulations of its parent body and constrained its time of formation to between 1.6 and 2.5 million years after the beginning of the solar system, though certain details could allow for even earlier or later formation. These results stress the importance of precise data required of the material properties of asteroids and meteorites to place better constraints on the histories of their parent bodies. Additional mathematical and computational details are discussed, and the full code and data is made available online.

Date Created
2023-05
Agent

Packing Theory and its Implications Upon Real Material Systems

Description

Computational materials is a field that utilizes modeling, simulations, and technology to study how materials behave. This honors thesis is a presentation discussing computational materials, our study of packing theory using the Monte Carlo (MC), and how our research can be related to real materials we use.

Date Created
2023-05
Agent

Sun Stop Solar Founders Lab Project

Description

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar plans to initially begin by developing the foundational technological patent for our perovskite-based single-junction solar cells. Sun Stop Solar plans to initially begin by first having a patent set up, then licensing our patent to a manufacturer, and slowly building towards manufacturing our own solar modules.

Date Created
2023-05
Agent