Deciphering the essentiality of the Mycobacterium smegmatis PrrAB two-component system

Description
The need for new tuberculocidal drugs is crucial with drug resistance on the rise as the tuberculosis epidemic rages on. One new potential drug target is the PrrAB two component system (TCS) since it does not exist in humans and

The need for new tuberculocidal drugs is crucial with drug resistance on the rise as the tuberculosis epidemic rages on. One new potential drug target is the PrrAB two component system (TCS) since it does not exist in humans and is essential to viability in Mycobacterium tuberculosis. This project examines Mycobacterium smegmatis, and this nonpathogenic and fast-growing organism possesses two full length PrrAB orthologs, in addition to an orphaned PrrB sensor histidine kinase. While it was determined that PrrAB1 and PrrAB2 are nonessential, the lone PrrB3 is not yet characterized for essentiality. To confirm individual dispensability of PrrAB1 and PrrAB2 and investigate the essentiality of PrrB3 and the full M. smegmatis PrrAB multiplex, we utilized CRISPRi dCas9 to repress the expression (knockdown) of prrAB1 (MSMEG_5662-5663), prrAB2 (MSMEG_0244-0246), and the lone prrB3 (MSMEG_2793) in M. smegmatis independently and simultaneously. Repression of prrAB1 resulted in the greatest growth defect, with a lag of 17 cellular division cycles compared to the control, a strain generated with an empty vector. However, the knockdown of prrAB1 was not lethal to M. smegmatis. The inhibition of all three prrAB orthologs simultaneously, also known as a multiplex knockdown, lagged the control by 13 cellular division cycles. At the 48-hour point, both the single ortholog repression of prrAB1 as well as the whole prrAB system knockdown had a growth defect of 13 replication cycles behind the control. However, the multiplex knockdown stabilized growth at 48 hours, revealing a possible compensatory mechanism in M. smegmatis. Conclusively, we show that the PrrAB TCS is globally inessential for viability in M. smegmatis.
Date Created
2023-12
Agent

Vaccinia Virus’ E3 Protein Inhibits Cellular Recognition of Canonical dsRNA and ZRNA

168280-Thumbnail Image.png
Description
Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with

Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start codon mutation leading to an N-terminal truncation of 37 amino acids. The VACV protein E3 consists of a dsRNA binding domain in its C-terminus which must be intact for pathogenicity in murine models and replication in cultured cells. The N-terminus of E3 contains a Z-form nucleic acid (ZNA) binding domain and is also required for pathogenicity in murine models. Poxviruses produce RNA transcripts that extend beyond the transcribed gene which can form double-stranded RNA (dsRNA). The innate immune system easily recognizes dsRNA through proteins such as protein kinase R (PKR). After comparing a vaccinia virus with a wild-type E3 protein (VACV WT) to one with an E3 N-terminal truncation of 37 amino acids (VACV E3Δ37N), phenotypic differences appeared in several cell lines. In HeLa cells and certain murine embryonic fibroblasts (MEFs), dsRNA recognition pathways such as PKR become activated during VACV E3Δ37N infections, unlike VACV WT. However, MPXV does not activate PKR in HeLa or MEF cells. Additional investigation determined that MPXV produces less dsRNA than VACV. VACV E3Δ37N was made more similar to MPXV by selecting mutants that produce less dsRNA. By producing less dsRNA, VACV E3Δ37N no longer activated PKR in HeLa or MEF cells, thus restoring the wild-type phenotype. Furthermore, in other cell lines such as L929 (also a murine fibroblast) VACV E3Δ37N, but not VACV WT infection leads to activation of DNA-dependent activator of IFN-regulatory factors (DAI) and induction of necroptotic cell death. The same low dsRNA mutants demonstrate that DAI activation and necroptotic induction is independent of classical dsRNA. Finally, investigations of spread in an animal model and replication in cell lines where both the PKR and DAI pathways are intact determined that inhibition of both pathways is required for VACV E3Δ37N to replicate.
Date Created
2021
Agent

Evaluation of Designed Antimicrobial Peptides as Novel Mycobacterium abscessus Therapeutics

164977-Thumbnail Image.png
Description
Mycobacterium abscessus (Mabs) is a multidrug-resistant nontuberculous mycobacterium capable of causing persistent pulmonary infection. It most prominently threatens those with cystic fibrosis (CF), a progressive and genetic disorder characterized by an immunocompromised respiratory tract. Current treatments fail to eradicate Mabs,

Mycobacterium abscessus (Mabs) is a multidrug-resistant nontuberculous mycobacterium capable of causing persistent pulmonary infection. It most prominently threatens those with cystic fibrosis (CF), a progressive and genetic disorder characterized by an immunocompromised respiratory tract. Current treatments fail to eradicate Mabs, meaning novel alternatives are greatly needed. Antimicrobial peptides (AMPs) are short sequences of amino acids that display broad-spectrum antimicrobial activity and play an important role in innate immunity. To maximize their therapeutic potential, key AMP features can be rationally combined through an iterative engineering process to create synthetic, designed AMPs (dAMPs). In this investigation, two dAMPs, RP554 and RP557, reduced Mabs ATCC 19977 viability by 99.99% and were subjected to further testing. In antimicrobial susceptibility testing with Mabs ATCC 19977, RP554 and RP557 demonstrated bactericidal activity at concentrations 16-32 μM. Complete killing of Mabs ATCC 19977 by RP554 and RP557 occurred rapidly in <24 h. RP554 and RP557 also inhibited 20 Mabs clinical isolates obtained from CF patients. Furthermore, RP554 and RP557 retained anti-Mabs activity after pre-exposure to human serum, indicating potential stability in blood. Conversely, the tested dAMPs did not kill Mabs during in vitro experiments in an artificial sputum medium. Novel antimicrobials, such as the RP554 and RP557 dAMPs, offer therapeutic potential for otherwise resistant bacterial pathogens, including Mabs, that afflict both CF and non-CF patients.
Date Created
2022-05
Agent

Time-Lapse Large-Volume Light Scattering Imaging Cytometry

158165-Thumbnail Image.png
Description
Cytometry is a method used to measure and collect the physical and chemical characteristics of a population of cells. In modern medical settings, the trend of precision and personalized medicines has imposed a need for rapid point-of-care diagnostic technologies. A

Cytometry is a method used to measure and collect the physical and chemical characteristics of a population of cells. In modern medical settings, the trend of precision and personalized medicines has imposed a need for rapid point-of-care diagnostic technologies. A rapid cytometric method, which aims at detecting and analyzing cells in direct patient samples, is therefore desirable. This dissertation presents the development of light-scattering-based imaging methods for detecting and analyzing cells and applies the technology in four applications. The first application is tracking phenotypic features of single particles, thereby differentiating bacterial cells from non-living particles in a label-free manner. The second application is a culture-free antimicrobial susceptibility test that rapidly tracks multiple, antimicrobial-induced phenotypic changes of bacterial cells with results obtained within 30 – 90 minutes. The third application is rapid antimicrobial susceptibility testing (AST) of bacterial cell growth directly in-patient urine samples, without a pre-culture step, within 90 min. This technology demonstrated rapid (90 min) detection of Escherichia coli in 24 clinical urine samples with 100% sensitivity and 83% specificity and rapid (90 min) AST in 12 urine samples with 87.5% categorical agreement with two antibiotics, ampicillin and ciprofloxacin. The fourth application is a multi-dimensional imaging cytometry system that integrates multiple light sources from different angles to simultaneously capture time-lapse, forward scattering and side scattering images of blood cells. The system has demonstrated capacity to detect red blood cell agglutination, assess red blood cell lysis, and differentiate red and white blood cells for potential implementation in clinical hematology analyses. These large-volume, light-scattering cytometric technologies can be used and applied in clinical and research settings to study, detect, and analyze cells. These studies developed rapid point-of-care diagnostic and imaging technologies for collectively advancing modern medicine and global health.
Date Created
2020
Agent

Investigating the Role of the Las and Rhl Quorum Sensing Systems in the Pathogenesis of Pseudomonas aeruginosa

131378-Thumbnail Image.png
Description
Pseudomonas aeruginosa is an opportunistic bacterial pathogen commonly associated with increased morbidity and mortality in cystic fibrosis (CF) patients. To adapt to the CF lung environment, P. aeruginosa undergoes multiple genetic changes as it moves from an acute to a

Pseudomonas aeruginosa is an opportunistic bacterial pathogen commonly associated with increased morbidity and mortality in cystic fibrosis (CF) patients. To adapt to the CF lung environment, P. aeruginosa undergoes multiple genetic changes as it moves from an acute to a chronic infection. The resultant phenotypes have been associated with chronic infection and can provide important information to track the patient’s individualized disease progression. This study examines the link between the accumulation of QS genetic mutations and phenotypic expression in P. aeruginosa laboratory strains and clinical isolates. We utilized several plate-based and colorimetric assays to quantify the production of pyocyanin, rhamnolipids, and protease from paired clinical early- and late-stage chronic infection isolates across 16 patients. Exoproduct production of each isolate was compared to the mean production of pooled isolates to classify high producing (QS-sufficient) and low producing (QS-deficient) isolates. We found that over time P. aeruginosa isolates exhibit a reduction in QS-related phenotypes during chronic infections. Future research of the QS regulatory networks will identify whether reversion of genotype will result in corresponding phenotypic changes in QS-deficient chronic infection isolates.
Date Created
2020-05
Agent

Identification of Mycobacterium tuberculosis Fic as an AMPylator that promotes intracellular survival and forms a toxin-antitoxin-like complex with its putative antitoxin

155898-Thumbnail Image.png
Description
Many Fic domain proteins, through catalyzing post translational modifications (PTM) of protein substrates, functionally contribute to bacterial pathogenesis and the regulation of bacterial growth. Furthermore, one form of Fic-mediated regulation is the Fic toxin-antitoxin system, whereby an antitoxin interacts with

Many Fic domain proteins, through catalyzing post translational modifications (PTM) of protein substrates, functionally contribute to bacterial pathogenesis and the regulation of bacterial growth. Furthermore, one form of Fic-mediated regulation is the Fic toxin-antitoxin system, whereby an antitoxin interacts with and inhibits the Fic toxin. This study sought to determine the functional importance of Mycobacterium tuberculosis Fic and its putative antitoxin protein, Rv3642c. Using M. tuberculosis H37Rv genetic deletion mutants, fic and Rv3642c were demonstrated to promote intracellular survival in human THP-1 macrophage-like cells. Unlike other Fic toxins, of Fic toxin-antitoxin systems, Fic did not inhibit bacterial growth in vitro in the absence of Rv3642c. Notably, Fic demonstrated in vitro AMPylation of a THP-1 cell extract protein as shown by immunodetection. Fic also exhibited auto-AMPylation activity. Interestingly, a mutation of the conserved histidine in the Fic domain motif, a residue previously shown to be critical for AMPylation, had no effect on Fic-mediated ATP hydrolysis or AMPylation activity. Rv3642c was demonstrated to form a complex with Fic when co-expressed in Escherichia coli, indicating a toxin-antitoxin interaction. Screening M. tuberculosis protein fractions and culture filtrate with α-Fic and α-Rv3642c rabbit antisera did not detect monomers of Fic or Rv3642c, thus the cellular localization of Fic and the Rv3642c-Fic complex remains unclear. The results of this study provide insight into the function of M. tuberculosis Fic, and suggest that Fic and Rv3642c are important for M. tuberculosis survival in the intracellular macrophage environment. Furthermore, these findings challenge the current dogma that Fic domain catalysis is dependent on the conserved histidine of the Fic motif.
Date Created
2017
Agent

Early Assessment of Phage Communities in Amazon Peatland Soils

135542-Thumbnail Image.png
Description
Little is known about the diversity and role of bacteriophages in carbon (C) rich ecosystems such as peatlands in tropical and temperate regions. In fact, there is no currently published assessment of phage abundance on diversity in a key tropical

Little is known about the diversity and role of bacteriophages in carbon (C) rich ecosystems such as peatlands in tropical and temperate regions. In fact, there is no currently published assessment of phage abundance on diversity in a key tropical ecosystem such as Amazon peatlands. To better understand phage assemblages in terrestrial ecosystems and how bacteriophages influence organic C cycling to final products like CO2 and CH4, phage communities and phage-like particles were recovered, quantified, and viable phage particles were enriched from pore water from contrasting Amazon peatlands. Here we present the first results on assessing Amazon bacteriophages on native heterotrophic bacteria. Several steps to test for methodological suitability were taken. First, the efficiency of iron flocculation method was determined using fluorescent microscopy counts of phage TLS, a TolC-specific and LPS-specific bacteriophage, and Escherichia coli host pre- and post-extraction method. One-hundred percent efficiency and 0.15% infectivity was evidenced. Infectivity effects were determined by calculating plaque forming units pre and post extraction method. After testing these methods, fieldwork in the Amazon peatlands ensued, where phages were enriched from pore water samples. Phages were extracted and concentrated by in tandem filtering rounds to remove organic matter and bacteria, and then iron flocculation to bind the phages and allow for precipitation onto a filter. Phage concentrates were then used for overall counts, with fluorescent microscopy, as well as phage isolation attempts. Phage isolations were performed by first testing for lysis of host cells in liquid media using OD600 absorbance of cultures with and without phage concentrate as well as attempts with the cross-streaking methods. Forty-five heterotrophic bacterial isolates obtained from the same Amazon peatland were challenged with phage concentrates. Once a putative host was found, steps were taken to further propagate and isolate the phage. Several putative phages were enriched from Amazon peatland pore water and require further characterization. TEM imaging was taken of two phages isolated from two plaques. Genomes of selected phages will be sequenced for identification. These results provide the groundwork for further characterizing the role bacteriophage play in C cycling and greenhouse gas production from Amazon peatland soils.
Date Created
2016-05
Agent

Characterization of the structure and interactions of the AcrAB-TolC multi-drug efflux pump in Escherichia coli

Description
The spread of antibiotic resistant bacteria is currently a pressing global health concern, especially considering the prevalence of multi-drug resistance. Efflux pumps, bacterial machinery involved in various active transport functions, are capable of removing a broad range of antibiotics from

The spread of antibiotic resistant bacteria is currently a pressing global health concern, especially considering the prevalence of multi-drug resistance. Efflux pumps, bacterial machinery involved in various active transport functions, are capable of removing a broad range of antibiotics from the periplasmic space and the outer leaflet of the inner membrane, frequently conferring multi-drug resistance. Many aspects of efflux machinery’s structure, functions, and inter-protein interactions are still not fully understood; further characterization of these components of efflux will provide a strong foundation for combating this resistance mechanism. In this project, I further characterize the channel protein TolC as a part of the AcrAB-TolC efflux pump complex in Escherichia coli by first determining the specificity of compensatory mutations in TolC against defective AcrA and AcrB, and then identifying TolC residues that might influence TolC aperture dynamics or stability when altered. Specificity of compensatory mutations was determined using an array of TolC mutants, previously generated from defective AcrA or AcrB, against a different mutant AcrB protein; these new mutant combinations were then analyzed by real-time efflux and antibiotic susceptibility assays. A vancomycin susceptible TolC mutant—a phenotype that has been associated with constitutively open TolC channels—was then used to generate vancomycin-resistant revertants which were evaluated with DNA sequencing, protein quantification by Western blots, and real-time efflux assays to identify residues important for TolC aperture dynamics and protein stability and complex activity. Mutations identified in revertant strains corresponded to residues located in the lower half of the periplasmic domain of TolC; generally, these revertants had poorer efflux than wild-type TolC in the mutant AcrB background, and all revertants had poorer efflux activity than the parental mutant strain.
Date Created
2016-05
Agent

Assessing School of Life Sciences freshmen satisfaction in the Life Sciences Career Paths mentoring program

134912-Thumbnail Image.png
Description
Abstract The BIO 189 Life Sciences Career Paths course is a seminar course that is intended to acclimate incoming freshmen into the School of Life Sciences (SOLS). While there are instructors who organize and present in the class, upper division

Abstract The BIO 189 Life Sciences Career Paths course is a seminar course that is intended to acclimate incoming freshmen into the School of Life Sciences (SOLS). While there are instructors who organize and present in the class, upper division undergraduate students are primarily responsible for facilitating lectures and discussions and mentoring the freshmen. Prior research has demonstrated that the mentor-mentee relationship is a very important predictor of success and retention within all university first-year programs. While past studies focused on the student mentor-mentee relationships, there is limited research that measures student satisfaction within freshmen seminar courses, especially in areas of science, technology, engineering, and mathematics (STEM). The purpose of this project is to survey students about their perception of the BIO 189 course. The effort of the project is on pre-health students, as they initiate their undergraduate careers and attempt to achieve acceptance into professional school four years later. Analysis of Likert scale surveys distributed to 561 freshmen revealed that students with an emphasis on "medicine" in their majors preferred a BIO 189 course geared to pre-health interests whereas students seeking an emphasis on research (ecology and cell biology/genetics) sought a BIO 189 course focused on internship and employment opportunities. Assessment of the mentor-mentee relationship revealed that students (n = 561) preferred one-on-one meetings with mentors outside of class (44%) compared to those who preferred interaction in class (30%). A sizable 61.68% of students (n = 548) were most concerned with attaining favorable GPAs, highlighting strong emphasis on academic performance. Overall, 61% of respondents (n = 561) expressed satisfaction with SOLS resources and involvement opportunities, which was hypothesized. These results give substantial insight into the efficacy of a first-year success seminar-mentoring program for college freshmen in STEM.
Date Created
2016-12
Agent

Effects of Environmental Conditions on Pyocyanin Production in Pseudomonas aeruginosa

134816-Thumbnail Image.png
Description
Pyocyanin is a pigment produced by Pseudomonas aeruginosa that acts as a virulence factor in helping this pathogen to establish chronic infection in the lungs of persons with cystic fibrosis (CF). Then, as lung infections become chronic, P. aeruginosa tends

Pyocyanin is a pigment produced by Pseudomonas aeruginosa that acts as a virulence factor in helping this pathogen to establish chronic infection in the lungs of persons with cystic fibrosis (CF). Then, as lung infections become chronic, P. aeruginosa tends to down-regulate pyocyanin production. The effects of environmental conditions, particularly temperature change, on pyocyanin production in P. aeruginosa has not been widely studied in the past. The goals of this project were twofold: First, we aim to identify how environmental conditions potentially present in the CF lungs affect pyocyanin pigment production in P. aeruginosa. Second, through the examination of effects of environmental changes, we aim to identify methods to modulate phenotypes of P. aeruginosa in order to identify putative biomarkers through metabolic analysis. This paper also identifies a newly derived pyocyanin culturing and extraction procedure that yields increased sensitivity for pyocyanin detection.
Through a liquid-liquid extraction procedure, pyocyanin was quantified in cultures that were incubated at 30°C, 37°C, and 40°C and in the presence of Staphylococcus aureus spent media. In addition, culturing methods for the measurement of pyocyanin under hypoxic conditions were analyzed. I hypothesized that environmental conditions such as temperature, co-infection with S. aureus, and oxygen depletion would influence pyocyanin production. It was found that overall, 30°C incubation produced statistically significant decrease in pyocyanin production compared with incubation at 37°C. These findings will help to determine how phenotypes are affected by conditions in the CF lung. In addition, these conclusions will help direct metabolic analysis and to identify volatile biomarkers of pyocyanin production for future use in breath-based diagnostics of CF lung infections.
Date Created
2016-12
Agent