Anticipating and adapting to increases in water distribution infrastructure failure caused by interdependencies and heat exposure from climate change

157721-Thumbnail Image.png
Description
This dissertation advances the capability of water infrastructure utilities to anticipate and adapt to vulnerabilities in their systems from temperature increase and interdependencies with other infrastructure systems. Impact assessment models of increased heat and interdependencies were developed which incorporate probability,

This dissertation advances the capability of water infrastructure utilities to anticipate and adapt to vulnerabilities in their systems from temperature increase and interdependencies with other infrastructure systems. Impact assessment models of increased heat and interdependencies were developed which incorporate probability, spatial, temporal, and operational information. Key findings from the models are that with increased heat the increased likelihood of water quality non-compliances is particularly concerning, the anticipated increases in different hardware components generate different levels of concern starting with iron pipes, then pumps, and then PVC pipes, the effects of temperature increase on hardware components and on service losses are non-linear due to spatial criticality of components, and that modeling spatial and operational complexity helps to identify potential pathways of failure propagation between infrastructure systems. Exploring different parameters of the models allowed for comparison of institutional strategies. Key findings are that either preventative maintenance or repair strategies can completely offset additional outages from increased temperatures though-- improved repair times reduce overall duration of outages more than preventative maintenance, and that coordinated strategies across utilities could be effective for mitigating vulnerability.
Date Created
2019
Agent

Watershed nitrogen transport, retention, and fate in dryland and urban ecosystems

157650-Thumbnail Image.png
Description

Nitrogen is an essential, often limiting, element for biological growth that can act as a pollutant if present in excess. Nitrogen is primarily transported by water from uplands to streams and eventually to recipient lakes, estuaries, and wetlands, but can

Nitrogen is an essential, often limiting, element for biological growth that can act as a pollutant if present in excess. Nitrogen is primarily transported by water from uplands to streams and eventually to recipient lakes, estuaries, and wetlands, but can be modulated by biological uptake and transformation along these flowpaths. As a result, nitrogen can accumulate in aquatic ecosystems if supply is high or if biological retention is low. Dryland and urban ecosystems offer interesting contrasts in water supply, which limits transport and biological activity in drylands, and nitrogen supply that increases with human activity. In my dissertation, I ask: What is the relative balance among nitrogen retention, removal, and transport processes in dryland watersheds, and what is the fate of exported nitrogen? My dissertation research demonstrates that water is a major control on where and when nitrogen is retained and removed versus exported to downstream ecosystems. I used a mass-balance model based on synoptic surveys to study seasonal and spatial patterns in nitrate loading to a dryland stream network. I found that irrigation diversions transport nitrate from agricultural areas to the stream network year-round, even during dry seasons, and are an important driver of nitrate loading. I further explored how seasonal precipitation influences flood nutrient export in an intermittent desert stream by coupling long-term data of flood-water chemistry with stream discharge and precipitation data. I found that higher precipitation prior to a flood fills water storage sites in the catchment, leading to larger floods. In addition, higher antecedent precipitation stimulates biological nitrogen retention in the uplands, leading to lower nitrogen concentration in floods. Finally, I evaluated the consequences of nitrogen export from watersheds on how urban wetlands attenuate nitrate through denitrification that permanently removes nitrogen, and dissimilatory nitrate reduction to ammonium (DNRA) that retains nitrogen in another biologically reactive form. I found that DNRA becomes proportionally more important with low nitrate concentration, thereby retaining nitrogen as ammonium. Collectively, my dissertation research addresses how dryland and urban ecosystems can be integrated into models of watershed nitrogen cycling.

Date Created
2019
Agent

Integration of remote sensing, field observations and modelling for ecohydrological studies in Sonora, Mexico

153201-Thumbnail Image.png
Description
Ecohydrological responses to rainfall in the North American monsoon (NAM) region lead to complex surface-atmosphere interactions. In early summer, it is expected that soil properties and topography act as primary controls in hydrologic processes. Under the presence of strongly dynamic

Ecohydrological responses to rainfall in the North American monsoon (NAM) region lead to complex surface-atmosphere interactions. In early summer, it is expected that soil properties and topography act as primary controls in hydrologic processes. Under the presence of strongly dynamic ecosystems, catchment hydrology is expected to vary substantially in comparison to other semiarid areas, affecting our understanding of ecohydrological processes and the parameterization of predictive models. A large impediment toward making progress in this field is the lack of spatially extensive observational data. As a result, it is critical to integrate numerical models, remote sensing observations and ground data to understand and predict ecohydrological dynamics in space and time, including soil moisture, evapotranspiration and runoff generation dynamics. In this thesis, a set of novel ecohydrological simulations that integrate remote sensing and ground observations were conducted at three spatial scales in a semiarid river basin in northern Sonora, Mexico. First, single site simulations spanning several summers were carried out in two contrasting mountain ecosystems to predict evapotranspiration partitioning. Second, a catchment-scale simulation was conducted to evaluate the effects of spatially-variable soil thickness and textural properties on water fluxes and states during one monsoon season. Finally, a river basin modeling effort spanning seven years was applied to understand interannual variability in ecohydrological dynamics. Results indicated that ecohydrological simulations with a dynamic representation of vegetation greening tracked well the seasonal evolution of observed evapotranspiration and soil moisture at two measurement locations. A switch in the dominant component of evapotranspiration from soil evaporation to plant transpiration was observed for each ecosystem, depending on the timing and magnitude of vegetation greening. Furthermore, spatially variable soil thickness affects subsurface flow while soil texture controls patterns of surface soil moisture and evapotranspiration during the transition from dry to wet conditions. Finally, the ratio of transformation of precipitation into evapotranspiration (ET/P) and run off (Q/P) changed in space and time as summer monsoon progresses. The results of this research improve the understanding of the ecohydrology of NAM region, which can be useful for developing sustainable watershed management plans in the face of anticipated land cover and climate changes.
Date Created
2014
Agent

Modeling soil moisture dynamics of landscape irrigation in desert cities

152132-Thumbnail Image.png
Description
The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native

The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there are societal and environmental factors that make mesic landscaping, including shade trees and grass lawns, a common choice for residential yards. In either case, there is potential for water savings through irrigation schedules based on fluxes affecting soil moisture in the active plant rooting zone. In this thesis, a point-scale model of soil moisture dynamics was applied to two urban sites in the Phoenix area: one with xeric landscaping, and one with mesic. The model was calibrated to observed soil moisture data from irrigated and non-irrigated sensors, with local daily precipitation and potential evapotranspiration records as model forcing. Simulations were then conducted to investigate effects of irrigation scheduling, plant stress parameters, and precipitation variability on soil moisture dynamics, water balance partitioning, and plant water stress. Results indicated a substantial difference in soil water storage capacity at the two sites, which affected sensitivity to irrigation scenarios. Seasonal variation was critical in avoiding unproductive water losses at the xeric site, and allowed for small water savings at the mesic site by maintaining mild levels of plant stress. The model was also used to determine minimum annual irrigation required to achieve specified levels of plant stress at each site using long-term meteorological records. While the xeric site showed greater potential for water savings, a bimodal schedule consisting of low winter and summer irrigation was identified as a means to conserve water at both sites, with moderate levels of plant water stress. For lower stress levels, potential water savings were found by fixing irrigation depth and seasonally varying the irrigation interval, consistent with municipal recommendations in the Phoenix metropolitan area. These results provide a deeper understanding of the ecohydrologic differences between the two types of landscape treatments, and can assist water and landscape managers in identifying opportunities for water savings in desert urban areas.
Date Created
2013
Agent

Embedded resource accounting with applications to water embedded in energy trade in the western U.S

152089-Thumbnail Image.png
Description
Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water

Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in virtual water for the use of local water supplies. This study provides a review of existing work in the use of virtual water and water footprint methods. Virtual water trade has been shown to be a successful method for addressing water scarcity and decreasing overall water consumption by shifting high water consumptive processes to wetter regions. These results however assume that all water resource supplies are equivalent regardless of physical location and they do not tie directly to economic markets. In this study we introduce a new mathematical framework, Embedded Resource Accounting (ERA), which is a synthesis of several different analytical methods presently used to quantify and describe human interactions with the economy and the natural environment. We define the specifics of the ERA framework in a generic context for the analysis of embedded resource trade in a way that links directly with the economics of that trade. Acknowledging the cyclical nature of water and the abundance of actual water resources on Earth, this study addresses fresh water availability within a given region. That is to say, the quantities of fresh water supplies annually available at acceptable quality for anthropogenic uses. The results of this research provide useful tools for water resource managers and policy makers to inform decision making on, (1) reallocation of local available fresh water resources, and (2) strategic supplementation of those resources with outside fresh water resources via the import of virtual water.
Date Created
2013
Agent

Characterizing generation mix and virtual water for resilience to drought on the western U.S. power grid

152058-Thumbnail Image.png
Description
There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity

There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the most limited water availability. Electricity trading is anticipated to be an important strategy for avoiding further local water stress, especially during drought and in the areas with the most rapidly growing populations. Transfers of electricity imply transfers of "virtual water" - water required for the production of a product. Yet, as a result of sizable demand growth, there may not be excess capacity in the system to support trade as an adaptive response to long lasting drought. As the grid inevitably expands capacity due to higher demand, or adapts to anticipated climate change, capacity additions should be selected and sited to increase system resilience to drought. This paper explores the tradeoff between virtual water and local water/energy infrastructure development for the purpose of enhancing the Western US power grid's resilience to drought. A simple linear model is developed that estimates the economically optimal configuration of the Western US power grid given water constraints. The model indicates that natural gas combined cycle power plants combined with increased interstate trade in power and virtual water provide the greatest opportunity for cost effective and water efficient grid expansion. Such expansion, as well as drought conditions, may shift and increase virtual water trade patterns, as states with ample water resources and a competitive advantage in developing power sources become net exporters, and states with limited water or higher costs become importers.
Date Created
2013
Agent