Description
Three-dimensional (3D) inductors with square, hexagonal and octagonal geometries have been designed and simulated in ANSYS HFSS. The inductors have been designed on Silicon substrate with through-hole via with different width, spacing and thickness. Spice modeling has been done in

Three-dimensional (3D) inductors with square, hexagonal and octagonal geometries have been designed and simulated in ANSYS HFSS. The inductors have been designed on Silicon substrate with through-hole via with different width, spacing and thickness. Spice modeling has been done in Agilent ADS and comparison has been made with results of custom excel based calculator and HFSS simulation results. Single ended quality factor was measured as 12.97 and differential ended quality factor was measured as 15.96 at a maximum operational frequency of 3.65GHz. The single ended and differential inductance was measured as 2.98nH and 2.88nH respectively at this frequency. Based on results a symmetric octagonal inductor design has been recommended to be used for application in RF biosensing. A system design has been proposed based on use of this inductor and principle of inductive sensing using magnetic labeling.
Reuse Permissions
  • Downloads
    pdf (1.7 MB)

    Details

    Title
    • CMOS on-chip 3D inductor design & application in RF bio-sensing
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2012
      Note type
      thesis
    • Includes bibliographical references (p. 56-57)
      Note type
      bibliography
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Hemanshu Abbey

    Machine-readable links