Matching Items (35)

134151-Thumbnail Image.png

An Ethical Study: Development of An Electronic Wearable Pregnancy Monitor

Description

This paper will review past unethical studies conducted in the last 100 years on humans, including studies such as the WWII Concentration Camp studies on hypothermia and sterilization, Tuskegee Syphilis

This paper will review past unethical studies conducted in the last 100 years on humans, including studies such as the WWII Concentration Camp studies on hypothermia and sterilization, Tuskegee Syphilis Study, and the case of Henrietta Lacks; Analyze why they were deemed unethical, the laws that emerged from these studies, and how it relates to contemporary technology, with a focus on the issues surrounding the development of an electronic wearable pregnancy monitor. The studies will include details of how they were conducted as well as what deemed them unethical and an explanation of why the results are unusable. Following the studies will be an explanation of the laws that were set into place following the studies with a lead into current technologies and how these technologies created a new set of ethics. The Google Mini, the wearable biosensor onesies for infants, and the intensive care unit at Banner Baywood will be described and so will their role in the development of an electronic wearable pregnancy monitor. The mini-meta analysis includes possible features of the monitor as well as a description of what the ethical consent form will look like. To conclude the paper, the importance of analyzing past unethical studies will help create a new ethical device that will make a point to go above and beyond to ensure the physical health of unborn children, in a way that is both ethical and significant.

Contributors

Agent

Created

Date Created
  • 2017-12

136008-Thumbnail Image.png

The Development of a Simplified and Integrated Glucose-Monitoring Biosensor for Diabetics

Description

Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity

Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity of current devices, a novel method of detecting glucose using electrochemical impedance spectroscopy (EIS) technology is explored. To test the ability of EIS methods to detect glucose, the enzyme glucose oxidase (GOx) was fixed to gold electrodes through the means of a specific immobilization process. Once GOx was fixed to the gold electrode surface, a 5 mV sine wave sweeping frequencies from 100 kHz to 1 Hz was induced at a glucose range 0-500 mg/dL mixed with a ferricyanide redox mediator. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for the glucose-GOx binding interaction, and was determined to be 1.17 kHz in purified solutions. Four separate electrodes were constructed and date from each were averaged. The correlation between the impedance response and concentration at the low range of detection (0-100 mg/dL of gluose) was determined to be 3.19 ohm/ln (mg/dL) with an R-squared value of 0.86. Its associated lower limit of detection was found to be 41 mg/dL. The same frequency of 1.17 kHz was then verified in whole blood under the glucose range of 0-100 mg/dL while diluting the blood to observe effect. As the blood concentration increased, the response of the sensor decreased logarithmically. The maximized blood detection volume was determined to be 25% whole blood suggesting dilution, coatings, or filtration is required for future adaptation. The above data confirms that EIS offers a new method of glucose detection as an alternative technology for SMBG and offers improved detection at lower concentrations of glucose. The unique frequency response of individual markers allows for modulation of signals so that several markers could be measured with a single sensor. Future work includes assessment of other diabetes associated biomarkers that can be measured on a single sensor, integration testing and tuning of the biomarkers, impedance-time sensing development, and finally, testing on control subjects.

Contributors

Agent

Created

Date Created
  • 2012-05

137782-Thumbnail Image.png

A rapid and Label-free IL-18 point-of-care biosensor for CVD detection

Description

Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid

Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid and portable CVD point-of-care diagnosis. IL-18 was chosen for this CVD biosensor due to its ability to detect plaque vulnerability of the heart. Custom (hand) made sensors, which utilized a three electrode configuration with a gold disk working electrode, were created to run EIS using both IL-18 and anti-IL-18 molecules in both purified and blood solutions. The EIS results for IL-18 indicated the optimal detection frequency to be 371Hz. Blood interaction on the working electrode increased the dynamic range of impedance values for the biosensor. Future work includes Developing and testing prototypes of the biosensor along with determining if a Nafion based coating on the working electrode will reduce the dynamic range of impedance values caused by blood interference.

Contributors

Agent

Created

Date Created
  • 2013-05

137549-Thumbnail Image.png

Developing an Electrochemical Impedance Spectroscopy-Based Insulin Sensor

Description

Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the

Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the amount of information that diabetics can have to base DM care decisions off of, the development of an insulin biosensor is explored. Such a biosensor incorporates electrochemical impedance spectroscopy (EIS) to ensure an extremely sensitive platform. Additionally, anti-insulin antibody was immobilized onto the surface of a gold disk working electrode to ensure a highly specific sensing platform as well. EIS measurements were completed with a 5mV sine wave that was swept through the frequency spectrum of 100 kHz to 1 Hz on concentrations of insulin ranging from 0 pM to 100 μM. The frequency at which the interaction between insulin and its antibody was optimized was determined by finding out at which frequency the R2 and slope of the impedance-concentration plot were best. This frequency, otherwise known as the optimal binding frequency, was determined to be 459 Hz. Three separate electrodes were developed and the impedance data for each concentration measured at 459 Hz was averaged and plotted against the LOG (pM insulin) to construct the calibration curve. The response was calculated to be 263.64 ohms/LOG(pM insulin) with an R2 value of 0.89. Additionally, the average RSD was determined to be 19.24% and the LLD was calculated to be 8.47 pM, which is well below the physiological normal range. These results highlight the potential success of developing commercial point-of-care insulin biosensors or multi-marker devices operating with integrated insulin detection.

Contributors

Agent

Created

Date Created
  • 2013-05

135738-Thumbnail Image.png

MEMBRANE IMPROVEMENTS FOR WHOLE BLOOD DETECTION OF TRAUMATIC BRAIN INJURY

Description

The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress

The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS), a linear dynamic range of glutamate was detected with a slope of 36.604 z/ohm/[pg/mL], a lower detection limit at 12.417 pg/mL, correlation of 0.97, and an optimal binding frequency of 117.20 Hz. After running through a frequency sweep the binding frequency was determined based on the highest consistent reproducibility and slope. The sensor was found to be specific against literature researched non-targets glucose, albumin, and epinephrine and working in dilutions of whole blood up to a concentration of 25%. With the implementation of Nafion, the sensor had a 250% improvement in signal and 155% improvement in correlation in 90% whole blood, illustrating the promise of a working blood sensor. Future work includes longitudinal studies and utilizing mesoporous carbon as the immobilization platform and incorporating this as part of a continuous, multiplexed blood sensor with glucose oxidase.

Contributors

Agent

Created

Date Created
  • 2016-05

136771-Thumbnail Image.png

Continuous Enzymatic Detection of Traumatic Brain Injury

Description

My main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include:

My main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.

Contributors

Agent

Created

Date Created
  • 2011-12

137315-Thumbnail Image.png

Electrochemical Detection of Estradiol for the Development of a Fertility Sensor

Description

In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk

In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz. At this frequency a logarithmic relationship between concentration and impedance (Z/ohm) was established creating a concentration calibration curve with a slope of 211 ohm/ln(pg mL-1), an R-squared value of 0.986 and a lower limit of detection of 742 fg mL-1. The specificity and cross-reactivity of the antibody with other hormones was tested through interferent and non-target experiments. Signal-to-noise ratio analysis verified that anti-17β-estradiol exhibited minimal chemical reactions with other hormones (SNR< 3) in non-target experiments. Additionally, there were minimal changes in the amount of signal collected during interferent testing, with albumin and follicle stimulating hormone having SNR values greater than 3. These results, along with the unique frequency response of the antibody-target binding reaction, allow for the possibility of using anti-17β-estradiol and β-estradiol for detecting multiple fertility biomarkers on a single sensor.

Contributors

Agent

Created

Date Created
  • 2014-05

137263-Thumbnail Image.png

Multimarker Sensor Development for Intermediate Glycemic Index, A Novel Approach for a Glycated Albumin Sensor

Description

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.

Contributors

Agent

Created

Date Created
  • 2014-05

158819-Thumbnail Image.png

Protein Design and Engineering Using the Fluorescent Non-canonical Amino Acid L-(7-hydroxycoumarin-4-yl)ethylglycine

Description

Proteins are, arguably, the most complicated molecular machines found in nature. From the receptor proteins that decorate the exterior of cell membranes to enzymes that catalyze the slowest of chemical

Proteins are, arguably, the most complicated molecular machines found in nature. From the receptor proteins that decorate the exterior of cell membranes to enzymes that catalyze the slowest of chemical reactions, proteins perform a wide variety of essential biological functions. A reductionist view of proteins as a macromolecular group, however, may hold that they simply interact with other chemical species. Notably, proteins interact with other proteins, other biological macromolecules, small molecules, and ions. This in turn makes proteins uniquely qualified for use technological use as sensors of said chemical species (biosensors). Several methods have been developed to convert proteins into biosensors. Many of these techniques take advantage of fluorescence spectroscopy because it is a fast, non-invasive, non-destructive and highly sensitive method that also allows for spatiotemporal control. This, however, requires that first a fluorophore be added to a target protein. Several methods for achieving this have been developed from large, genetically encoded autofluorescent protein tags, to labeling with small molecule fluorophores using bioorthogonal chemical handles, to genetically encoded fluorescent non-canonical amino acids (fNCAA). In recent years, the fNCAA, L-(7-hydroxycoumarin-4yl)ethylglycine (7-HCAA) has been used in to develop several types of biosensors.
The dissertation I present here specifically addresses the use of the fNCAA L-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) in protein-based biosensors. I demonstrate 7-HCAA’s ability to act as a Förster resonance energy transfer (FRET) acceptor with tryptophan as the FRET donor in a single protein containing multiple tryptophans. I the describe efforts to elucidate—through both spectroscopic and structural characterization—interactions within a 7-HCAA containing protein that governs 7-HCAA fluorescence. Finally, I present a top-down computational design strategy for incorporating 7-HCAA into proteins that takes advantage of previously described interactions. These reports show the applicability of 7-HCAA and the wider class of fNCAAs as a whole for their use of rationally designed biosensors.

Contributors

Agent

Created

Date Created
  • 2020

153292-Thumbnail Image.png

Applications of biogenic silica nanostructures from diatoms

Description

Biogenic silica nanostructures, derived from diatoms, possess highly ordered porous hierarchical nanostructures and afford flexibility in design in large part due to the availability of a great variety of shapes,

Biogenic silica nanostructures, derived from diatoms, possess highly ordered porous hierarchical nanostructures and afford flexibility in design in large part due to the availability of a great variety of shapes, sizes, and symmetries. These advantages have been exploited for study of transport phenomena of ions and molecules towards the goal of developing ultrasensitive and selective filters and biosensors. Diatom frustules give researchers many inspiration and ideas for the design and production of novel nanostructured materials. In this doctoral research will focus on the following three aspects of biogenic silica: 1) Using diatom frustule as protein sensor. 2) Using diatom nanostructures as template to fabricate nano metal materials. 3) Using diatom nanostructures to fabricate hybrid platform.

Nanoscale confinement biogenetic silica template-based electrical biosensor assay offers the user the ability to detect and quantify the biomolecules. Diatoms have been demonstrated as part of a sensor. The sensor works on the principle of electrochemical impedance spectroscopy. When specific protein biomarkers from a test sample bind to corresponding antibodies conjugated to the surface of the gold surface at the base of each nanowell, a perturbation of electrical double layer occurs resulting in a change in the impedance.

Diatoms are also a new source of inspiration for the design and fabrication of nanostructured materials. Template-directed deposition within cylindrical nanopores of a porous membrane represents an attractive and reproducible approach for preparing metal nanopatterns or nanorods of a variety of aspect ratios. The nanopatterns fabricated from diatom have the potential of the metal-enhanced fluorescence to detect dye-conjugated molecules.

Another approach presents a platform integrating biogenic silica nanostructures with micromachined silicon substrates in a micro
ano hybrid device. In this study, one can take advantages of the unique properties of a marine diatom that exhibits nanopores on the order of 40 nm in diameter and a hierarchical structure. This device can be used to several applications, such as nano particles separation and detection. This platform is also a good substrate to study cell growth that one can observe the reaction of cell growing on the nanostructure of frustule.

Contributors

Agent

Created

Date Created
  • 2014