Description
This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to

This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to go from one particular co-ordinate to another. Cruise control, cartesian and posture stabilization problems are discussed as the part of this behavior. Control strategies used for the above three problems are explained in the thesis. Matlab simulations are presented to verify these controllers. Obstacle avoidance behavior ensures that the vehicle doesn't hit object in its path while going towards the goal. Three different techniques for obstacle avoidance which are useful for different kind of obstacles are described in the thesis. Matlab simulations are presented to show and discuss the three techniques. The controls discussed for the cartesian and posture stabilization were implemented on a low cost miniature vehicle to verify the results practically. The vehicle is described in the thesis in detail. The practical results are compared with the simulations. Hardware and matlab codes have been provided as a reference for the reader.
Reuse Permissions
  • Downloads
    pdf (1.3 MB)

    Details

    Title
    • Feedback control and obstacle avoidance for non-holonomic differential drive robots
    Contributors
    Date Created
    2013
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2013
      Note type
      thesis
    • Includes bibliographical references (p. 57-58)
      Note type
      bibliography
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Dhruv Chopra

    Machine-readable links