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ABSTRACT

This thesis discusses control and obstacle avoidance for non-holonomic differential

drive mobile vehicles. The two important behaviors for the vehicle can be defined as

go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in

detail.

Go to goal behavior is the ability of the mobile vehicle to go from one particular

co-ordinate to another. Cruise control, cartesian and posture stabilization problems

are discussed as the part of this behavior. Control strategies used for the above three

problems are explained in the thesis. Matlab simulations are presented to verify these

controllers.

Obstacle avoidance behavior ensures that the vehicle doesn’t hit object in its

path while going towards the goal. Three different techniques for obstacle avoidance

which are useful for different kind of obstacles are described in the thesis. Matlab

simulations are presented to show and discuss the three techniques.

The controls discussed for the cartesian and posture stabilization were imple-

mented on a low cost miniature vehicle to verify the results practically. The vehicle

is described in the thesis in detail. The practical results are compared with the

simulations. Hardware and matlab codes have been provided as a reference for the

reader.
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Chapter 1

INTRODUCTION AND OVERVIEW

Automation in mobile vehicles has been researched a lot in last few decades. Auto-

mated mobile vehicles will play a big role in future everyday life. Modern automobiles

are being designed to reduce the burden on the drivers. Various kind of automation

like vehicle tracking systems, rear view alarm, anti-lock braking system, traction con-

trol system have been introduced to make the vehicles easy to operate. Some of

the applications for automated ground vehicles are space missions, transportation,

military operations, home solutions etc.

1.1 Motivation

Control of ground vehicles is in general a more difficult task than the aerial vehi-

cles. A ground vehicle has to deal with varying degree of friction, slopes and obstacles.

Also generally the ground vehicles are non-holonomic in nature and hence their con-

trol is not straightforward.

1.1.1 Background

This thesis is part of the Multi-Robot System(M.R.S) project at the control system

laboratory at Arizona State University. Multi-Robot System has been conceived as

a system consisting of multiple daughter robots having a mother robot controlling

them. This swarm of daughter robots would perform tasks assigned to them by the

mother vehicle in synchronization with each other.

This thesis is focused on giving these robots their most basic functionality that is

the so called ”go to goal and obstacle avoidance” behaviors. The go to goal behavior
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as the name indicates is the ability of the mobile vehicle to go from one particular

co-ordinate to another when instructed to go. The avoid obstacle behavior ensures

that the robot does not bump into things while going toward its goal. The thesis also

briefly discusses path tracking for the mobile robots.

Control strategies for Cartesian stabilization, posture stabilization and obstacle

avoidance are discussed in the thesis. The controls were implemented on a low cost

miniature vehicle to verify the results.

1.1.2 Autonomous Ground Vehicles

With enormous progress in the semiconductor technology has resulted in more

and more sophisticated and intelligent ground vehicles. Equipped with such powerful

processors, the ground vehicles today can perform difficult tasks intelligently in hostile

environments.

An autonomous robot would be one in which computer would do everything. The

robot would be given an instruction to go to some particular destination and then

the computer will take it to the required destination. The computer will decide on

the left and right wheel velocity by itself and steer the robot to go to the required

destination.

In the process of going to the destination the vehicle has to make sure that it does

not hit the obstacles in the way. Thus it may have to travel around obstacles to reach

its destination. A crude block diagram for the control is as shown in the Figure 1.1 .

One of the example for such an intelligent ground vehicle is Mars Exploration

Rover[18]. There are two such rovers designed as twins. The goal was to make

the rovers as a mechanical equivalent of a geologist. These rovers carry panoramic

camera, miniature thermal emission spectrometer, Mossbauer spectrometer, alpha

particle x-ray spectrometer, magnets, microscopic imagers and rock abrasion tool.
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Figure 1.1: Block Diagram

Such an advanced system had been made possible only by the rapid advancement of

the semiconductor technology.

1.2 Literature Survey

1.2.1 Modeling

An accurate model of vehicle behavior is very important for the design of the

controller for the vehicle. There has been considerate research in developing accurate

models for the vehicle. There are two approaches to develop the vehicle model:

kinematic and dynamic.

Kinematic model is the most widely used and simpler of the two model for the

mobile robots[5]. A kinematic model ignores dynamic properties like mass, inertia,

friction etc. It only relies on the non-holonomic constraints of the mobile vehicle. This

model is less accurate than the dynamic model. This thesis uses kinematic modeling

for designing the position controllers. The model is explained in detail in chapter

three.

Dynamic model is much more involved model of the vehicle[6]. It incorporates

dynamic properties such as mass, inertia, friction, wheel slippage etc. It gives a

much more accurate model of the mobile vehicle. It is difficult to work with this
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model since some of the dynamic properties are very hard to measure. [6] explains a

dynamic model for mobile vehicles. In [11] a dynamic model which includes torque

coupling but neglects actuator dynamics is considered. A controller based on the

dynamic model gives a robust controller with respect to the dynamic behavior of the

mobile robot. A simple dynamic model has been used in this thesis for the cruise

control of the vehicle.

1.2.2 Control

Lot of research has been done to design controllers for the non-holonomic mo-

bile robot. Various linear and non linear controllers have been invented for mobile

robots for different kind of tasks.[5] describes nonlinear controllers for the design of

controllers for the three different problems in the control of differential drive mobile

robots; i.e. trajectory tracking, path following and posture stabilization. D’Andrea-

Novel et al. discuss feedback linearization method for tracking problem[13]. Feedback

stabilization for car like vehicles has been discussed in [12] and [15]. Some more non-

linear controllers are discussed in [3][4]. Viera et al. in [7] discusses a method to

use dynamic linear controller for the posture and cartesian stabilization problems.

Chapter four gives a detailed explanation of the feedback control for robot.

1.2.3 Obstacle Avoidance

Obstacle avoidance has been given a lot of attention in literarture in last few

decades. Borenstein and Koren gives a good account of some of the obstacle avoidance

techniques in [9]. Egersted et al details the robot actions in terms of behaviors[8]. In

his lecture series at Georgia Tech University Prof. Egersted describe some obstacle

avoidance techniques[19]. Chapter five describes the control used for the obstacle

avoidance.
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1.3 Contributions

The following contributions are made by this thesis .

1. A simple dynamic model and nonlinear kinematic model was used for modeling

and analysis of the mobile robot.

2. Cruise control, cartesian stabilization and posture stabilization problems are

addressed in the thesis. Matlab simulations are presented to verify the controllers.

3. Three methods of obstacle avoidance are described in the thesis. Simulations are

presented to detail the advantages and disadvantages of these approaches.

4. A low cost miniature vehicle was used to implement the control and obstacle

avoidance techniques. The results are used to verify the controllers.

5. All the documentation for the hardware and software has been provided in the

thesis.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows:

Chapter two describes the hardware used for implementing the control. AAR

robot is described in detail in this chapter. The details about the obstacle sensor

used are also given in this chapter.

Chapter three addresses the modeling for the differential drive non-holonomic

mobile robot. Non-holonomic constraint and differential drive are detailed in this

chapter. Dynamic and kinematic model used for the modeling are explained in detail.

Finally the localization method used is explained.

Chapter four describes the feedback control for cruise control, cartesian and pos-

ture stabilization and path tracking problems. Simulations are presented to verify

the controls used.
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Chapter five discusses the control for obstacle avoidance for the robot. Three

methods are discussed in this chapter. Advantages and shortcomings of the methods

are detailed.

Chapter six summarizes the thesis and presents direction for the future research.

Appendix A contains the arduino and matlab codes used. Appendix B includes

the circuit diagrams of the hardware used.

1.5 Summary And Conclusions

This chapter gave an overview of the thesis. In Section 1.1 motivation and back-

ground of the thesis was discussed. Section 1.2 gives the literature survey. Next the

contribution of the thesis were listed. Section 1.4 explained the organization of the

rest of the thesis.
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Chapter 2

HARDWARE DESCRIPTION

This chapter describes the low cost miniature mobile robot used for in the thesis.

The architecture, memory, peripheral features and other features of the robot are

discussed in the chapter. The sensor used for the obstacle sensing is also described

in the chapter.

Figure 2.1: AAR

2.1 AAR Robot

This project used AAR robot for implementing the various controls[16]. AAR is

a ready to use, low cost differential drive mobile from Global Specialty Inc. AAR has

two brushed dc motors along with its drive and rotary encoders. AAR uses Atmega

328p as the micro-controller. AAR can be programmed according to the application

required. The system diagram is shown in figure 2.2.
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Figure 2.2: System

2.2 Specifications

A specification table is given below. It lists some of the characteristics of the

robot.

Table 2.1: Specifications

S.no Specification Value

1 Motors 2 dc motors(3V)

2 Microcontroller ATmega -328p

3 Programming Platform Arduino

4 Supply Voltage 4.8-6 Volts

5 Supply current 10 to 600 mA

2.3 Microcontroller

The AAR robot has ATmega 328P microcontroller on board. It is high perfor-

mance, low power RISC architecture 8 bit microcontroller from ATMEL corporation.
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2.3.1 RISC Architecture

The controller has a RISC architecture. It has 131 assembly language instructions.

The controllers can perform 20 million instructions per second at 20 MHz operating

frequency. 32X8 general purpose registers and two on chip multiplier give lot of

flexibility to the programmer.

2.3.2 Memory Segment

The controller has 32K bytes of in system self programmable flash memory and

1K bytes of EEPROM. 2K bytes of internal SRAM with in system programming by

on chip boot program is featured by the system. The controller promises 20 years

of code retention at 85 degree Celsius. It has promises 10000 write/erase cycles for

FLASH and 100000 write/erase cycles for EEPROM.

2.3.3 Peripheral Features

With 23 Input/Output line the controller has a good number of lines to support

applications. The controller has two 8 bit timers and one 16 bit timers. The 8

bit timers have separate prescaler and compare mode. The 16 bit timer has sepa-

rate prescaler, compare and capture mode. The controller has a dedicated real time

counter and a 6 P.W.M channels. ATMega 328p includes 8 channel 10 bit ADC. The

controller also boasts of SPI interface, 2 wire serial interface, watchdog timer and on

board analog comparator.

2.3.4 Other Features

The controller has an operating voltage of 1.8 to 5.5 volts . The sink current is

0.2 mA and the working temperature range is -40 to 85 degree celsius.
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2.4 Motors

The AAR robot consists of 2 dc motors working at 3 volts. The motors have gears

attached to them, the gear ratio is 8:100. Other than this no other information is

available on the motors in the AAR documentation.

2.5 Motor Driver IC

The AAR uses L293D IC’s to drive the motors. This IC consists of 2 H-Bridge

channels and can drive. 6 Amps of current per H-bridge and a peak current of 1.2

Amps. The supply range of IC is from 4.5V to 36V. The IC’s circuit is given in the

appendix.

2.6 Motor Encoders

The AAR robot includes two optical motor encoders for the two motors. With

the gear ration taken into account it converts into 20 pulses per revolution of the

robot. With the help of these encoders the robot linear speed, angular speed and

positions are estimated. This is called passive localization or dead reckoning. Passive

localization introduces some error in the estimated position of the robot. Active

localization methods like indoor G.P.S. can be used to increase the accuracy, but it

increased the cost of the vehicle system considerably. This thesis uses odometeric

localization for position calculation. A The motor encoder circuit is shown in the

appendix.

2.7 Obstacle Sensor

To avoid obstacles, it is necessary for the robot to sense the obstacles. There are

many different kind of sensors available in the market. Some examples are IR sensor,
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SONAR sensors, Ultra Sonic sensors etc. SONAR and Ultrasonic sensors are more

precise and costlier than the IR sensors. Most of these sensor give voltage output as

an indication of the distance to the obstacle.

In this thesis Sharp GP2Y0A02YK0F I.R Analog Distance Sensor has been used[17].

The maximum range of this sensor is 150cm while the minimum range is 20 cm. The

details of the sensor are given in the Appendix B.

2.8 Summary And Conclusions

This chapter gave the details about the hardware used. AAR robot from global

inc. has been used for this thesis. AAR has two brushed dc motors along with its drive

and rotary encoders. AAR uses Atmega 328p as the micro-controller. The complete

details are given in the chapter. The obstacle sensor has also been disccused in the

chapter.
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Chapter 3

MODELING

This chapter describes the mathematical model of the robotic vehicle. This model

is used to derive the feedback control method for cruise control, cartesian stabilization,

posture stabilization and obstacle avoidance problems.

In autonomous mobile robots usually two kind of modeling is used - kinematic and

dynamics. Kinematic modeling doesn’t include mass, torque, inertia etc. It treats

the robot as a point object. Dynamic model includes the mass, inertia, slippage etc

of the system as well and hence is more precise. This thesis uses kinematic model for

the position control, whereas some of the dynamics are included in the motor model

which is used for cruise control problem.

3.1 Differential Drive

In a differential drive vehicle both the wheels of the vehicle are controlled indepen-

dent of each other. The vehicle is steered by the relative rotation of the two wheels.

If the two wheels are moving with same speed in same direction, the vehicle will move

straight. If the two wheels are rotating in opposite direction with the same speed the

vehicle should ideally turn about the central point of axis.

Depending upon the relative speed of rotation of the two vehicles the center of

rotation would be along some point on the lone define by the two wheels. The linear

and angular velocity of the vehicle is given by the following equations.

 v

ω

 =

 R

2

R

2
R

L

−R
L


 ωr

ωl

 (3.1)
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where ωr is the angular speed of the right wheel, ωl is the left wheel angular

speed.v is the linear speed of the robot, ω is the angular speed of the robot.R is

radius of the wheels, L is the axle length between the two wheels.

3.2 Non-holonomic Constraints in a Differential Drive Vehicle

A differential drive mobile robot’s local movements are restricted but there is no

restrictions on the global movements[5]. The robot cannot have a speed in a direction

perpendicular to the sagittal axis. But this constraint doesn’t result in a constraint

on the position of the robot. The robot can still be maneuvered into any position.

The situation is shown in the figure 3.1.

Figure 3.1: Non-holonomic Constraint

It can be better understood from the case of the parallel parking. The driver can

not slide the car into the parking space. It has to be maneuvered into the parking

space. The figure 3.1 shows the non-holonomic constraint in a differential drive mobile

robot. Non- holonomic constraint in the case of mobile robots is given by following

equation.

ẋsinθ − ẏcosθ = 0 (3.2)

ẏ

ẋ
= tan θ =

dy

dx
(3.3)
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3.3 Kinematic Model

The kinematic model of the system is a three degree of freedom model. Kinematic

model does not includes vehicle dynamics, like mass, inertia, motor parameters, fric-

tion. The model is given by following equations. The (x, y) coordinate gives the

location of the vehicles center of mass. The cars angle with respect to x axis is theta.

For the purpose of modeling, global coordinate are used.
ẋ

ẏ

θ̇

 =


cosθ 0

sinθ 0

0 1


 v

ω

 (3.4)

Figure 3.2: Kinematic Model

3.4 Dynamics

The dynamics of the vehicle like moment of inertia, torque and friction are included

in the D.C. motor model.The torque T produced in a D.C motor is proportional to

the armature current and the magnetic field. Here we assume the magnetic field is

constant and hence the torque is proportional only to the armature current I. The

back E.M.F Eb is directly proportional to the angular speed ω. The motor is governed

by the following equations. The motor dynamics are shown is shown in Figure 3.3.
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Ea − Eb = La
dI

dt
+ IRa (3.5)

T = ktI (3.6)

T = J
dω

dt
+Bω (3.7)

Eb = kbω (3.8)

where

Ea is the applied voltage,Eb is the back E.M.F. La is the inductance, I is the

current.T is the Torque, J is moment of inertia.B is Friction constant.ω is the angular

speed of the motor.kt is the torque constant of the motor.kb is the speed constant of

the motor.

Figure 3.3: Motor Model

In the laplace domain the same equations are given by.

I(s) =
Ea(s)− Eb(s)
sLa +Ra

(3.9)

T (s) = ktI(s) (3.10)

ω(s) =
T (s)

sJ +B
(3.11)

Eb(s) = kbω(s) (3.12)
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kt = kb = k (3.13)

The governing equations of the motor dynamics can be expressed in the state

space form as follows ω̇

İ

 =

 −B
J

−k
J

−k
L

−Ra

La


 ω

I

 +

 0

1
L

Ea (3.14)

Solving the above equations we arrive at the open loop the transfer function from

the Ea to ω as

ω(s)

Ea(s)
=

k

k2 + (sLa +Ra)(sJ +B)
(3.15)

Table 3.1: Parameters

Parameter Description Nominal Value

kt Torque Constant 0.01 Nm/amp

kb Speed Constant 0.01 V/(rad/sec)

La Armature Inductance 0.1 mH

Ra Armature Resistence 0.1 ohm

J Moment of Inertia 0.1 kgm2

B Air Damping 0.1 Nms

L Distance Between wheels 9.9 cm

R Radius of wheels 1.9 cm

3.5 Complete Model

The complete plant is motor dynamics and vehicle kinematics combined together.

This is shown in the figure 3.4. The motor model output are the left and right angular
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speeds. The matrix M gives a transformation from the motor speeds to linear and

angular speed of the vehicle. The kinematic model gives the location of the vehicle

in the cartesian space.

Figure 3.4: Complete Plant

3.6 Odometric Localization

To implement feedback control, robot’s posture at each instant is required. AAR

robot has incremental encoders that measure the rotations of the wheels. Using this

data and combining it with kinematic equation, the robot’s posture can be derived.

The assumption made for the calculation is that the linear velocity v and angular

velocity ω are constant for the sampling period Ts. Defining that the robot’s posture is

qk at time Tk. Then the posture at time Tk+1 can be derived using forward integration

of the kinematic model.

Using Euler method of integration an approximate formula can be used[20].

xk+1 = xk + vkTscosθk (3.16)

yk+1 = yk + vkTssinθk (3.17)
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θk+1 = θk + ωkTs (3.18)

The Euler method introduces an error in xk+1, yk+1 since it assumes orientation

θk is constant throughout Ts. A more exact reconstruction is[20]

xk+1 = xk +
vk
ωk

(sinθk+1 − sinθ) (3.19)

yk+1 = yk −
vk
ωk

(cosθk+1 − cosθ) (3.20)

θk+1 = θk + ωkTs (3.21)

Equations for xk+1 and yk+1 still exists for wk = 0, they become equal to the Euler

method. In implementation on hardware a conditional statement must be used.

Odometric localization is easy to implement and very inexpensive. At a high

sampling rate the positional accuracy is very high. But external factor not considered

in kinematic equation produce errors. Wheel slippage and rough surfaces are some

of the factors. More expensive methods like G.P.S. or ground beacon system can be

used to overcome these errors.

3.7 Summary And Conclusions

This chapter described the mathematical model of the mobile robot used. Non-

holonomic constraints in a differential drive mobile robot put a constraint on the

vehicle velocity. It has been explained in the chapter. There are two kind of modeling

used for mobile robot: Dynamic and kinematic model. Both were discussed in detail

in this chapter. The complete model for the robot as the combination of motor

dynamic and vehicle kinematics is explained. Odometric localization is used in this

project. This method of localization is inexpensive and easy but prone to errors. The

errors get accumulated over time. The complete method is discussed in the chapter.
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Chapter 4

CONTROL

The control problem of cruise control, cartesian stabilization and posture stabi-

lization have been addressed in this chapter.

Cruise control ensures that the vehicle moves at the commanded speed and the

commanded angle. Posture stabilization problem states that a vehicle must reach

the reference coordinates (xref , yref , θref ) given its initial position (xi, yi, θi). Posture

stabilization problem has received a lot of attention in research. There are several

controllers proposed in the literature for the problem. A. Astolfi gives nonlinear

control for the position stabilization problem[2]. Viera et al [7] discusses dynamic

linear controller for the same. Cartesian stabilization problem is a subset of the

posture stabilization problem and is also discussed in this chapter. Simulations are

presented to verify the controllers used for the mentioned problems.

4.1 Cruise Control

Cruise control ensures that the robot moves at the commanded speed along a

commanded angle with respect to the global co-ordinate axis. The motor model

discussed in the chapter three is used for the control. The model is completely linear

and classical control techniques are sufficient to design the control.

To control the linear velocity v and angular velocity ω of the vehicle we need to

control the individual angular velocities of the wheel ωr and ωl.
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Figure 4.1: Cruise control

4.1.1 Motor Speed Control

The plant transfer function for the motor speed control was discussed in chapter

three. The block diagram for the closed loop control is shown in Figure 4.2.

Figure 4.2: Closed loop block diagram for motor speed control

Pinnerloop =
k.kpwm

k2 + (sLa +Ra)(sJ +B)
=

3300

(s+ 1.02)(s+ 5000)
(4.1)

A proportional integrator controller Kinnerloop of the form given in equation 4.2 is

used to meet the desired specifications.

Kinnerloop =
g(s+ z)

s
[

100

s+ 100
]2 (4.2)

the open loop loop transfer function Ginnerloop is given by

Ginnerloop = PinnerloopKinnerloop (4.3)
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the closed loop loop transfer function Hinnerloop is given by

Hinnerloop =
Ginnerloop

Ginnerloop + 1
(4.4)

three different controllers with different desired specification are shown in the

Table.

Table 4.1: g and z designs with specifications

S.no g z settling time(s) peak overshoot(%)

1 7.5 1 1 0

2 5 5 5
3

10

3 9 5.5 1 5

4.1.2 Simulations

Frequency and time responses for the three controllers listed in table 4.1 are given

below. The control structure is shown in Figure 4.2.

Figure 4.3: Ginnerloop Bode Plot
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Figure 4.4: Hinnerloop Bode Magnitude

Figure 4.5: Output step response
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Figure 4.6: Control Action

4.1.3 Angle Control

In the previous section the control design for the individual angular velocities was

discussed. Now the complete cruise control control will be discussed. The complete

architecture for the cruise control is shown in figure 4.7.

As discussed in the chapter three individual angular velocity references (ωrref , ωlref )

are obtained from the v and ω commands as shown below.

 ωrref

ωlref

 =

 1

R

L

2R
1

R

−L
2R


 vref

ωref

 (4.5)

M−1 =

 1

R

L

2R
1

R

−L
2R

 (4.6)

where ωrref is the commanded angular speed of the right wheel, ωlref is the com-

manded left wheel angular speed. vref is the linear speed of the robot, ωref is the
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Figure 4.7: Cruise control architecture

angular speed of the robot.R is radius of the wheels, L is the axle length between the

two wheels.

It can be seen that the transfer functions from vref → v and ωref → ω is equal to

Hinnerloop. Hence the vref → v and ωref → ω time and frequency responses are same

as the motor speed responses.

 v(s)

ω(s)

 = M−1

 Hinnerloop(s) 0

0 Hinnerloop(s)

M

 vref (s)

ωref (s)

 (4.7)

v(s)

vref (s)
=

ω(s)

ωref (s)
= Hinnerloop(s) (4.8)

where vref is the velocity command, ωref is the angular velocity command.

The second part of the cruise control problem is to make the vehicle follow the

commanded angle θref . As can be seen from the Figure 4.7, the plant for the θ control

problem is given by

Pθ =
Hinnerloop

s
=

24570

(s+ 4995)(s+ 4.957)s
(4.9)
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The simplified block diagram is shown in figure below.

Figure 4.8: Angle Control

A simple proportional controller is used for the control. The controller is of the

form.

kθ = g (4.10)

the open loop loop transfer function Gθ is given by

Gθ = Pθkθ (4.11)

the closed loop loop transfer function Hθ is given by

Hθ =
Gθ

Gθ + 1
(4.12)

4.1.4 Simulations

Bode magnitude and phase plot of Gθ is shown in figure 4.9. Bode magnitude plot

of Hθ is in figure 4.10. Figure 4.11 and 4.12 show step response and controller actions.

All plots are plotted for kθ = g = 0.5,1,2 are given below. The control structure used

is shown in Figure 4.8.
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Figure 4.9: Gθ Bode Plot

Figure 4.10: Hθ Bode Magnitude
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Figure 4.11: θ step response

Figure 4.12: Control Action
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4.2 Kinematic Model Analysis

4.2.1 Controllability

A system is said to be controllable if there exists a control law u(.) which can

transfer the state of the system from any initial state x0 to any final state xf within

a finite amount of time. Otherwise the system is said to be uncontrollable[10].

The kinematic model is given by the following equations.


ẋ

ẏ

θ̇

 =


cosθ 0

sinθ 0

0 1


 v

ω

 (4.13)

This is a non linear system of the form :

ṗ =
m∑
i=1

hi(p)ui pεRn, uεRm, m <= n (4.14)

The sufficient condition of controllablility is given by

rank(h1, h2, [h1, h2]) = rank


cosθ 0 sinθ

sinθ 0 −cosθ

0 1 0

 = n = 3 (4.15)

where

[h1, h2] =
∂h2

∂p
h1− ∂h1

∂p
h2 (4.16)

Thus m = n = 3 and hence the system is controllable and this confirms the

common physical experience that a mobile vehicle can be taken from any point to

any other in the physical space.
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Linearizing the above model about equilibrium, we get the following equations for

a linear system.


ẋ

ẏ

θ̇

 =


1 0

0 0

0 1


 v

ω

 (4.17)

The controllibilty matrix of the linearized plant has a rank less than n . Hence

this system is uncontrollable . Thus in the process of linearization the controllability

of the system is lost.

4.2.2 Brockett’s Theorem

Controllability in a nonlinear system is not a sufficient condition for the existence

of a static smooth state feedback[5]. Brockett’s theorem gives necessary conditions for

smooth feedback stabilizability[1]. For the kinematic model, the following corollary

as given in [2] is pertinent.

Theorem 1if q̇ = g(q)u is a continuously differentiable distribution in neigh-

borhood of q0 with g(q0)u0 = 0 and g(q) being a distribution of constant rank in a

neighborhood of q0.

Then a continuously differentiable control law which make (q0, uo) asymptotically sta-

ble exist if and only if dim(q) = dim(u).

In the case of non-holonomic mobile robots dim(q) =3 and dim(u) = 2. Thus no

smooth control law exists which can stabilize the robot about a posture. This result

requires new control schemes to be used for the non-holonomic mobile robots.These

new schemes include time varying control laws[14] , piece-wise continuous control[5]

or model transformation techniques[2].
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4.3 Cartesian Stabilization

This control ensures that the robot goes to the reference coordinates (xref , yref ).

The kinematic model is non linear and requires non linear control theory for the

control. Astolfi in [2] explains a polar transformation method for the posture stabi-

lization. Same method can be used for the cartesian stabilization problem. A method

to use linear control has been shown by Vieara et al in [7].

4.3.1 Control

The kinematic model as given in equation 4.13 can be transformed by writing it

in the term of angular and linear displacements ṡ = v and θ̇ = ω. Then defining a

new state vector ρ as given by

ρ =

 s

θ

 (4.18)

The state equations can be written as

ρ̇ =

 v

ω

 (4.19)

We use this transformed system to steer the robot to the goal point. This is shown

in the figure 4.13

Figure 4.13: Cartesian Stabilization
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The problem lies in getting the value of Sref. Sref is meaningless and S is difficult

to measure. This problem can be overcome by some manipulations as explained in

[7].

Consider a robot at a coordinate (x, y). The goal is to steer the robot to the

reference coordinate (xref ,yref ). The figure below shows a robot moving in space. ∆d

is the distance between the (xref ,yref ) and (x, y). The control should make sure that

∆d goes to zero so that the robot is steered to the target position.

Figure 4.14: Cartesian Space

∆d =
√

(xref − x)2 + (yref − y)2 (4.20)

A point C is defined in the space. C is the point which is at shortest distance

from target point that lies in the orientation line of the robot. The distance to C is

∆S. β is defined as the angle which binds (xref ,yref ) and (x, y) and is called pointing

angle.

β = atan(yref − y, xref − x) (4.21)

eθ = β − θ (4.22)

∆s = ∆dcos(eθ) (4.23)

If the control is designed in such a way that ∆s and eθ goes to zero then the robot

will steer to the goal point. It is also very important to note that at the point C only,

Sref - S is equal to ∆s.

es = ∆s (4.24)
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eθ = β − θ (4.25)

The control law for the problem is defined as

v = kses (4.26)

ω = kθeθ (4.27)

The whole control mechanism is shown in the figure 4.15. The speed loop shown

in the block diagram below is same as the used in the cruise control. As can be seen

from the block diagram, the system is completely linear from (es, eθ) to (s, θ). The

transformations at the input from (xref , yref ) to (es, eθ) and kinematic transformation

at output are nonlinear in nature. Hence overall the closed loop system is nonlinear

in nature.

Figure 4.15: Detailed Block Diagram

As can be seen from equation 4.21 and 4.22 as (x, y) approaches (xref ,yref ) the

control law become undefined. To avoid the situation as (x, y) approaches (xref ,yref ),

the control law can be defined as

v = ks

√
(xref − x)2 + (yref − y)2 (4.28)

ω = 0 (4.29)
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4.3.2 Local Stability

Local stability of the closed loop system can be proved by the dynamic error

analysis. The error dynamics of the transformed system are given by the following

matrix equation. ės

ėθ

 =

 −1 sin(eθ)es
sin(eθ)cos(eθ)

es
−1


 v

ω

 (4.30)

The control law is given by the equations v

ω

 =

 kses

kθeθ

 (4.31)

The closed loop equation can be found by substituting eq 4.31 into eq 4.30. Lin-

earizing about the equilibrium, the closed loop equations can be written as ės

ėθ

 =

 −ks 0

0 ks − kθ


 es

eθ

 (4.32)

The characteristic polynomial of the matrix has negative real roots if

ks > 0; kθ > ks (4.33)

Hence the closed loop system is locally exponentially stable for ks > 0 and kθ >

ks.

4.3.3 Simulations

The simulations were run in Matlab. The simulation shown below is for (xref ,yref ) =

(100, 100) with initial condition (xo, yo) = (0, 0). The block diagram in Figure 4.15

is used as the control structure. Eq 4.26-4.29 are used as the control law with

ks = [0.1, 0.3, 0.5, 0.7], kθ = 0.4.
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Figure 4.16: xy plot

Figure 4.17: x vs time plot
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Figure 4.18: y vs time plot

Figure 4.19: θ vs time plot

As can be seen from the above plots that the system is only stable if the local

stability conditions is satisfied ; i.e. kθ > ks > 0.

35



4.3.4 Practical Results

The control discussed above was implemented in the AAR robot. The path

traced by the robot was compared with simulation. The result shown below is for

(xref ,yref ) = (100, 100) with initial condition (xo, yo) = (0, 0) with ks = 0.4andkθ =

0.5.

Figure 4.20: practical results

4.4 Posture Stabilization (Parking Problem)

The cartesian stabilization ensured that robot can reach the goal coordinates

xref ,yref . Posture stabilization is required when the robot needs to reach the final

destination with a specified approaching angle (xref ,yref ,θref ). This is like the parking

problem where the car needs to approach the spot at a particular angle.
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4.4.1 Control

The posture stabilization strategy is illustrated in [7]. In this scheme a running

reference generator is used. This is shown in figure 4.21. The references (xt, yt) are

then fed to cartesian control.

Figure 4.21: Running References

The cartesian space is shown in figure 4.22. ∆d is defined as the distance between

target position (xref ,yref ) and the current position (x, y). β is the pointing angle.αd

is defined as angle difference of the approaching angle and the pointing angle . α is

defined as difference between β and θ.

Figure 4.22: Posture Stabilization
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∆d =
√

(xref − x)2 + (xref − x)2 (4.34)

β = atan(yref − y, xref − x) (4.35)

α = β − θ (4.36)

αd = β − θref (4.37)

the running references are then generated as

xt = x+ ∆dcos(2β − θref ) (4.38)

yt = y + ∆dsin(2β − θref ) (4.39)

The new references are used to calculate es and eθ in the same way as in the

Cartesian Stabilization problem. As can be seen from above equation the θref is

equal to 2β − θref .

eθ = atan(yt − y, xt − x)− θ (4.40)

eθ = 2β − θref − θ (4.41)

es = ∆dcos(eθ) (4.42)

The control law is given as

v = kses (4.43)

ω = kθeθ (4.44)

The complete block diagram is in figure below

Figure 4.23: Posture stabilization block diagram
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As can be seen from eq 4.43 and 4.44 as (x, y, θ) approaches (xref , yref , θref ) the

control laws become undefined. To avoid the situation as (x, y) approaches (xref ,yref )

the control law can be defined as.

v = ks

√
(xref − x)2 + (yref − y)2 (4.45)

ω = kθ(θref − θ) (4.46)

4.4.2 Local Stability

To prove the stability of the above scheme, we divide eθ into two errors pointing

error α and approach error αd. where :

eθ = 2β − θref − θ (4.47)

eθ = β − θref + β − θ (4.48)

eθ = α + αd (4.49)

If α and αd go to zero eθ will go to zero. The error dynamics of s,α,αd are given

by: 
ės

α̇d

α̇

 =


−cos(αd)− sin(α) −1

sin(α)cos(α + αd)

es
0

sin(α)cos(α + αd)

es
−1


 v

ω

 (4.50)

Using the control law described by the equations v

ω

 =

 kses

kθα + kθαd

 (4.51)

The closed loop equation can be found by substituting equation 4.51 into equation

4.52. Linearizing about the equilibrium closed loop equations can be written as
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
ės

α̇d

α̇

 =


−ks −kθ −kθ

0 0 ks

0 −kθ (ks − kθ)




es

αd

α

 (4.52)

The characteristic polynomial of the matrix has negative real roots if

ks > 0; kθ > ks (4.53)

4.4.3 Simulations

The simulations were run in Matlab. The simulation shown below is for (xref , yref , θref ) =

(100, 100,
pi

2
) with initial condition (xo, yo, θo) = (0, 0, 0). The block diagram in Fig-

ure 4.23 is used as the control structure. Eq 4.43-4.44 are used as the control law

with ks = [0.1, 0.3, 0.5, 0.7], kθ = 0.4.

Figure 4.24: x vs y plot
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Figure 4.25: x vs time plot

Figure 4.26: y vs x plot
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Figure 4.27: θ vs time plot

As can be seen from the above plots that the system is only stable if the local

stability conditions are satisfied ; i.e. kθ > ks > 0.

4.4.4 Practical Results

The control discussed above was implemented in the AAR robot. The path traced

by the robot was compared with simulation. The result shown in figure 4.28 below

is for (xrefyref , θref ) = (100, 100, 0) and initial condition (xo, yo, θo) = (0, 0, 0) with

ks = 0.4andkθ = 0.5.

4.5 Path Tracking

Path tracking is the process of having the robot produce correct linear and angular

velocities to trace a path. A path is collection of coordinate in the cartesian space

specifying a route.
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Figure 4.28: Orientation control practical result

4.5.1 Control

In this thesis we consider the path tracking problem to be a subset of the cartesian

stabilization problem as in [7]. The cartesian stabilization problem ensures that the

vehicle goes to the target point (xref , yref ). When the vehicle approaches a particular

target point in the path the next target point is commanded. Thus the robot can

track the specified path.

4.5.2 Simulation

The simulation plot shown in figure 4.29 is for tracking a square of 100X100 units.

A look ahead distance of 10 cm is used. ks = 0.2 and kθ = 1 is used.

4.6 Summary And Conclusions

This chapter described control for cruise control, cartesian and posture stabi-

lization problems. Section 4.1 described cruise control method. Matlab simulation

verified the controllers used for cruise control problem. In section 4.2 analysis of

kinematic model was done. 4.2 and 4.3 explained the control used for cartesian and
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Figure 4.29: Path Tracking

posture stabilization problems. Local stability was proved for both controllers. Hard-

ware results for cartesian and posture stabilization problems were also presented. A

brief discussion on path following is done in section 4.5.
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Chapter 5

OBSTACLE AVOIDANCE

This chapter discusses obstacle avoidance. One of the most important task for the

robot is to reach the destination without hitting obstacles. This chapter looks into

the solutions to avoid the obstacle while still going for the goal. This thesis describes

some of the easy solutions with simulations to corroborate them.

5.1 Switching Control

Switching control is the most basic control that can be used to avoid obstacle.

Switching control method has been discussed by Prof Egersted in his lecture series at

Georgia Tech University[19][8]. The cartesian stabilization is used for the go to goal

behavior and the controller is switched whenever we want to avoid the obstacle.

In the cartesian control method, es and eθ are obtained from the error between

the target position and the current position. This is explained in chapter 4. The

control law for the cartesian control method is then defined as

v = kses (5.1)

ω = kθeθ (5.2)

For the go to goal behavior a positive ks and kθ will stabilize the system and a

θ directing towards the goal will result. If kθ is negative then the system will be

unstable about the target point and the robot will move in a direction opposite to

the goal[19].

This idea is used as a method to drive the robot away from the obstacles. The

sensors give us the distance from the obstacles or the obstacle coordinates, if this
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distance is less than a threshold defined by us, the behavior is switched from go to

goal behavior to the avoid obstacle behavior to drive the vehicle away from obstacle.

Figure 5.1 below illustrates the situation.

Figure 5.1: Switching control

In case an obstacle is encountered a new βao is defined which is opposite to the

pointing angle to obstacle. Following βao will take the robot away from the obstacle.

βao = − tan−1(
yo− y
xo− x

) (5.3)

do and eθo are defined as

do =
√

(xo− x)2 + (yo− y)2 (5.4)

eθo = βao − θ (5.5)

The block diagram is shown in figure 5.2. The control law for the obstacle avoid-

ance behavior is defined as

v = kdodo (5.6)
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Figure 5.2: Obstacle avoidance block diagram

ω = kθoeθo (5.7)

where xo and yo are the nearest obstacle coordinates and do is the distance from

the obstacle. It can be better understood by the flow chart below.

Figure 5.3: Switching Control Flow Chart

5.1.1 Simulation

The control was implemented in the matlab . The obstacle extends from y =

30to70atx = 50. Target coordinates are (100,100). The block diagram for the control

is as shown figure 5.2. The control law used for the obstacle avoidance behavior is

equation 5.5-5.6. The path followed by the robot is shown in plot below.
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Figure 5.4: Switching Control x vs y Plot

This control works with small obstacles, but produces oscillations in the path.

This simple control method fails with concave obstacles.

5.2 Blended Control

This method uses a single control law instead of switched control for the go to goal

and avoid obstacle behaviors[19]. As shall be seen this method produces smoother

path for the robot.

5.2.1 Control Law

The new control law is defined as the sum of the go to goal behavior and obstacle

avoidance behavior[19]. The situation is illustrated in the figure 5.5.The two control

laws are added together by multiplying them with a blending function. The blended

function itself is a function of the distance from the obstacle.
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Figure 5.5: Blended Control

We define σ as the blending function. An example of σ is

σ(do) = 1− exp(−γdo) (5.8)

where σ(do) is defined as the blending function. do is the distance from obstacle

and γ is a user defined value.

It can be seen from the formula of σ that it is an exponential decay, whose decay

rate depends upon the value of do(distance from obstacle) and γ.

Figure 5.6: σ vs do plot at γ =0.5
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The control law for the blended obstacle avoidance is define as

v = ksσ(do)
√

(xref − x)2 + (yref − y)2 +−kdo(1− σ(do))
√

(xo − x)2 + (yo − y)2

(5.9)

ω = σ(do)kθeθ +−(1− σ(do))kθeθo (5.10)

5.2.2 Simulation

The control was implemented in the matlab . The obstacle extends from y = 30

to 70 at x = 50. Target coordinates are (100,100). The value of γ used is 0.5. The

control law used is given in equation 5.8-5.9. As can be seen this control produces

smoother path for the vehicle. However the control doesn’t ensures that the vehicle

will go to the goal. The method fails in concave obstacles. For avoiding concave

obstacles the boundary following algorithm is used which is discussed in the next

section.

Figure 5.7: Blended Control x vs y plot
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5.3 Boundary Following Algorithm

Hard switching and blended control do not work very well with concave and maize

type obstacles. Also there is no certainty and there might be oscillations during the

robot’s path. To overcome these shortcomings the boundary following algorithm is

used[19][9].

5.3.1 Algorithm

As the name suggests we want the robot to follow the boundary of the obstacle.

The robot then should move towards the goal when it has a clear shot at the goal.

When the robot encounters an obstacle it should move in a direction perpendicular

to the obstacle coordinate. Thus a new mode is defined which is called boundary

following.

If (do > a)

(go to goal behavior)

else if (a < do < b)

( follow boundary behavior)

else

( avoid obstacle )

To achieve boundary following behavior the robot need to move perpendicular to

the wall. This can be easily accomplished by adding or subtracting pi()/2 from the

βao generated by the avoid obstacle behavior.

βccw = βao + pi()/2 (5.11)

βcw = βao − pi()/2 (5.12)

+pi()/2 shift achieves a counter clockwise rotation whereas a -pi()/2 shift achieves

clockwise rotation. There are no obvious answers to which rotation to make. One
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simple method to make this decision is to check whether the goal is above the obstacle

or below. If the the goal point is above obstacle make a counter clockwise rotation

else make a clock wise rotation. This can be explained in simple language by simple

pseudo code line as below.

if atan2(yref − y, xref − x) > 0

( do a counterclock wise turn )

else

( do a clockwise turn )

The robot can now follow the boundary successfully . But this method has a

fallacy. If the obstacle system has some part below and some above the line of goal,

then the robot ends up moving up and down along the wall. To overcome this fallacy,

a simple change to the above pseudo code is made. The decision whether to go

clockwise or anticlockwise is made only once. We stick to the decision made first

time. Also once in the boundary following mode, it is important to determine when

to leave the mode and go back to go to goal mode. This can be accomplished by

defining two new parameters dt and dτ .

where dτ = distance to target at the time of entering wall following mode

dt = current distance to the target

If dt is less than dτ we move back to the go to goal behaviour, else we continue in

the boundary following mode. The complete flowchart is shown in the Figure 5.8.

5.3.2 Simulation

The control was implemented in the Matlab. Target coordinates are (100,100).

The results are shown in figure 5.9. The algorithm used is given in figure 5.8. As can

be seen in the plot this control can avoid maize and concave type obstacles.
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Figure 5.8: Boundary following algorithm

5.4 Summary And Conclusions

This chapter presented three obstacle avoidance methods. Matlab simulations

were presented to show the results of the three method. Section 5.1 explained the

switched control method. The method only works for small obstacles. This method

fails for concave and other complex obstacles. Blended control law was explained in

section 5.2. This method produced a smoother path for the robot. But still, blended

control also fails for concave and other complex obstacles. Finally boundary following

algorithm was detailed in 5.3. Simulation results were presented to show that this

algorithm can avoid concave obstacles.
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Figure 5.9: Obstacle avoidance using wall following algorithm x vs y plot
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Chapter 6

SUMMARY AND DIRECTION FOR FUTURE RESEARCH

6.1 Summary

This thesis discussed control and obstacle avoidance for non-holonomic differential

drive mobile vehicles. Go to goal and avoid obstacle are the most basic behaviors for

a mobile robot. Both behaviors are discussed in the thesis.

A model of mobile robot consisting of combination of dynamic and kinematic

was presented in chapter two. The complete model is given as a combination of

kinematics and motor dynamics. This model was used to design controls for cruise

control, cartesian and posture stabilization. Matlab simulation were presented to

verify the designed controls for these problems.

In chapter five three obstacle avoidance techniques; i.e. switched control, blended

control, boundary following were discussed. Switched control and blended control

are only suitable for small obstacles. Blended control produces a smoother path.

Both switched and blended control method fails for complex obstacles. For more

complex obstacles boundary following method was described. Simulations for the

three methods were presented in the thesis.

Cartesian and posture stabilization controllers were implemented in AAR robot.

These control worked well in the robot. The odometric errors produce an error in the

final position. Switched control method for obstacle avoidance was also implemented.

This method worked well for small obstacles but fails for bigger and more complex

obstacles.
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6.2 Directions for Future Research

6.2.1 Localization

The localization method used in the thesis is odometric localization. This method

is prone to errors in the position estimation. The error gets accumulated over time.

For future work active localization method like G.P.S. or indoor beacons can be used.

Modern devices can provide accuracy upto few millimeters. Using indoor localization

will increase the cost of the system. But for a highly accurate robot movement active

localization is necessary.

6.2.2 Obstacle Avoidance

For obstacle sensing, the current hardware uses a single I.R. sensor. To imple-

ment boundary following algorithm multiple ultrasound sensors are needed. Multiple

ultrasound sensors will allow the robot to sense the obstacle along all direction. This

information can be used to implement boundary following algorithm. More complex

obstacle avoidance method’s like vector field histogram method shall also be consid-

ered for future work.

6.2.3 Additional vehicles

As discussed in chapter one, this thesis is part of Multi Robot System project.

The next logical step in to develop more vehicles. These vehicles could be for ground

or air operations. These vehicles should be designed so as to work in synchronization

with each other. Thus study of swarm behavior for robots is required for future work.
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APPENDIX A

CODES
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A.1 Cartesian Stabilization Arduino Code

const int Aphase =5 ;
const int Aenable =6;
const int Bphase = 9 ;
const int Benable =10 ;
const int EncoderPinA1 =2;
const int EncoderPinB1 =3;
const float positionloop_sampletime = 100 ;
const float speedloop_sampletime = 100 ;

unsigned long lastmilli_l = 0;
unsigned long lastmilli_r = 0;
unsigned long Lmilli_position = 0;
unsigned long Lmilli_speed = 0;
unsigned long pulsewidth_l = 10000 ;
unsigned long pulsewidth_r = 10000 ;

float d = 0 ;
float x = 0 ;
float y = 0 ;
float xt = 100 ;
float yt= 100 ;
float theta = 0 ;
float thetat = 0 ;
float tickr_r = 0;
float tickl_r = 0;

float vx = 0 ;
float vy = 0 ;
float velocity = 0 ;
float wrobot = 0 ;
float omega = 0 ;

float speed_reqr= 0 ;
float speed_reql= 0 ;
float speed_actr = 0;
float speed_actl= 0;

float PWM_valr = 0;
float PWM_vall = 0;

float xprevious = 0 ;
float yprevious = 0 ;
float thetaprevious = 0 ;
float errorx = 0 ;
float errory = 0 ;
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float errortheta = 0 ;

volatile long countr = 0;
volatile long countl =0;

float Kpl = 50 ;
float Kil = 5 ;
float Kpr = 50 ;
float Kir = 5 ;
float Kpo = .4 ;
float Ktheta = 0.7 ;
float Kitheta = 0.001 ;
float error_r=0;
float last_error_r=0;
float pidTerm_r = 0;
float lastpidTerm_r = 0;
float error_l=0;
float last_error_l=0;
float pidTerm_l = 0;
float lasterrortheta = 0 ;

float lastpidTerm_l = 0;
float lastomega = 0 ;

float L = 9.9 ;
float R = 1.9 ;
float Dr = 0;
float Dl = 0;
float Dc = 0;

void setup() {
// initialize the controller
pinMode(Aenable, OUTPUT);
pinMode(Aphase, OUTPUT);
pinMode(Benable, OUTPUT);
pinMode(Bphase, OUTPUT);
pinMode(EncoderPinA1, INPUT);
pinMode(EncoderPinB1, INPUT);
digitalWrite(EncoderPinA1, HIGH);
digitalWrite(EncoderPinB1, HIGH);
attachInterrupt(0, rencoder, RISING);
attachInterrupt(1, rencoder1, RISING);

digitalWrite(Aphase, LOW);
digitalWrite(Bphase, LOW);
digitalWrite(Benable, LOW);
digitalWrite(Benable, LOW);
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}

void loop() {

if(millis()-Lmilli_position>positionloop_sampletime)

{
Lmilli_position = millis() ;
vx = updatevx( xt, x) ;
vy = updatevy( yt,y) ;

}

if(millis()-Lmilli_speed > speedloop_sampletime)
{
Lmilli_speed = millis() ;

if(atan2(yt,xt)>0)
{
thetat = abs(atan2(vy,vx)) ;
}
else
{ thetat = -1*abs(atan2(vy,vx));
}

d = sqrt((xt-x)*(xt-x) + (yt-y)*(yt-y)) ;

velocity = sqrt(vy*vy + vx*vx) ;
wrobot = update_w(thetat,theta) ;

if(velocity>10)
{ velocity = 10 ;
}
if (d<4)
{
velocity = 0 ;
wrobot = 0 ;
}
speed_reqr = (2*velocity + wrobot*L)/(2*R*2*3.14) ;
speed_reql = (2*velocity - wrobot*L)/(2*R*2*3.14) ;

if(speed_reqr<0)
{speed_reqr = 0 ;
}

if(speed_reql<0)

{speed_reql = 0 ;
}

PWM_vall= updatePidl(PWM_vall, speed_reql, countl);
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PWM_valr= PWM_vall ;

if(PWM_vall<0)
{
digitalWrite(Bphase,LOW);
analogWrite(Benable,PWM_vall);

}
else
{

digitalWrite(Benable,LOW);
analogWrite(Bphase,PWM_vall);

}

PWM_valr= updatePidr(PWM_valr, speed_reqr, countr);

if(PWM_valr<0)
{
digitalWrite(Aphase,LOW);
analogWrite(Aenable,PWM_valr);

}
else
{
digitalWrite(Aenable,LOW);
analogWrite(Aphase,PWM_valr);
}

Dr = 2*3.14*R*countr/20 ;
Dl = 2*3.14*R*countl/20 ;
Dc = (Dr+Dl)/2 ;
theta = thetaprevious + (Dr-Dl)/L ;
x = xprevious + Dc*cos(theta) ;
y = yprevious + Dc*sin(theta) ;
xprevious = x ;
yprevious = y ;
thetaprevious = theta ;
countr = 0 ;
countl = 0;
}

}

float updatevx(float targetvalue_x , float currentvalue_x)
{
errorx = targetvalue_x - currentvalue_x ;
vx = Kpo*errorx ;
return(vx) ;

}

float updatevy(float targetvalue_y , float currentvalue_y)
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{
errory = targetvalue_y - currentvalue_y ;
vy = Kpo*errory ;
return(vy) ;

}

float update_w(float targetvalue_theta , float currentvalue_theta)
{
errortheta = targetvalue_theta - currentvalue_theta ;
omega = lastomega + Ktheta*(errortheta-lasterrortheta) +

Kitheta*lasterrortheta ;
lastomega = omega ;
lasterrortheta = errortheta ;
return(omega) ;

}

float updatePidr(int command1,float targetValue1, float currentValue1) {

tickr_r = targetValue1*0.02*speedloop_sampletime ;
error_r = tickr_r - currentValue1 ;
pidTerm_r =lastpidTerm_r + (Kpr*(error_r - last_error_r)) +

Kir*last_error_r ;
if(pidTerm_r>255)
pidTerm_r = 255 ;
else if(pidTerm_r<0)
pidTerm_r = 0 ;
last_error_r = error_r;
lastpidTerm_r = pidTerm_r ;
return(pidTerm_r*1) ;

}

float updatePidl(float command2, float targetValue2, float currentValue2) {
// compute PWM value
tickl_r = targetValue2*.02*speedloop_sampletime ;
error_l = tickl_r - currentValue2;
pidTerm_l = lastpidTerm_l + Kpl*(error_l-last_error_l) +

Kil*(last_error_l);
if (pidTerm_l>255)
pidTerm_l = 255 ;
else if(pidTerm_l<0)
pidTerm_l = 0 ;
last_error_l = error_l ;
lastpidTerm_l = pidTerm_l ;
return(pidTerm_l*1);

}

void rencoder()
{
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countr = countr + 1;
}

void rencoder1()
{
countl = countl + 1 ;

}

A.2 Posture Stabilization Arduino Code

const int Aphase =5 ;
const int Aenable =6;
const int Bphase = 9 ;
const int Benable =10 ;
const int EncoderPinA1 =2;
const int EncoderPinB1 =3;
const float positionloop_sampletime = 100 ;
const float speedloop_sampletime = 100 ;

unsigned long lastmilli_l = 0;
unsigned long lastmilli_r = 0;
unsigned long Lmilli_position = 0;
unsigned long Lmilli_speed = 0;
unsigned long pulsewidth_l = 10000 ;
unsigned long pulsewidth_r = 10000 ;

float x = 0 ;
float y = 0 ;
float xd = 100;
float yd= 100 ;
float xt = 0;
float yt= 0 ;
float d = 0 ;
float theta = 0 ;
float thetad = 0 ;
float thetat = 0 ;
float tickr_r = 0;
float tickl_r = 0;

float vx = 0 ;
float vy = 0 ;
float velocity = 0 ;
float wrobot = 0 ;
float omega1 = 0 ;
float omega2 = 0 ;
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float beta = 0 ;
float alpha = 0 ;

float speed_reqr= 0 ;
float speed_reql= 0 ;
float speed_actr = 0;
float speed_actl= 0;

float PWM_valr = 0;
float PWM_vall = 0;

float xprevious = 0 ;
float yprevious = 0 ;
float thetaprevious = 0 ;
float errorx = 0 ;
float errory = 0 ;
float errortheta1 = 0 ;
float errortheta2 = 0 ;

volatile long countr = 0;
volatile long countl =0;

float Kpl = 50 ;
float Kil = 5 ;
float Kpr = 50 ;
float Kir = 5 ;
float Kpo = .4 ;
float Ktheta1 = 1;
float Kitheta1 = 0.001 ;
float Ktheta2 = 1;
float Kitheta2 = 0.001 ;
float error_r=0;
float last_error_r=0;
float pidTerm_r = 0;
float lastpidTerm_r = 0;
float error_l=0;
float last_error_l=0;
float pidTerm_l = 0;
float lasterrortheta1 = 0 ;

float lastpidTerm_l = 0;
float lastomega1 = 0 ;

float lasterrortheta2 = 0 ;
float lastomega2 = 0 ;

float L = 10 ;
float R = 2 ;
float Dr = 0;
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float Dl = 0;
float Dc = 0;

void setup() {
// initialize the controller
pinMode(Aenable, OUTPUT);
pinMode(Aphase, OUTPUT);
pinMode(Benable, OUTPUT);
pinMode(Bphase, OUTPUT);
pinMode(EncoderPinA1, INPUT);
pinMode(EncoderPinB1, INPUT);
digitalWrite(EncoderPinA1, HIGH);
digitalWrite(EncoderPinB1, HIGH);
attachInterrupt(0, rencoder, RISING);
attachInterrupt(1, rencoder1, RISING);

digitalWrite(Aphase, LOW);
digitalWrite(Bphase, LOW);
digitalWrite(Benable, LOW);
digitalWrite(Benable, LOW);

}

void loop() {

if(millis()-Lmilli_position>positionloop_sampletime)

{
Lmilli_position = millis() ;
beta = atan2(yd-y,xd-x) ;
alpha = beta - thetad ;
d = sqrt((xd-x)*(xd-x) + (yd-y)*(yd-y)) ;
xt = x + d*cos(alpha) ;
yt = y + d*cos(alpha) ;
vx = updatevx( xt, x) ;
vy = updatevy( yt,y) ;

}

if(millis()-Lmilli_speed > speedloop_sampletime)
{
Lmilli_speed = millis() ;
velocity = sqrt(vx*vx + vy*vy) ;
beta = atan2(yd-y,xd-x) ;
thetat = atan2(vy,vx) ;
wrobot = update_w1(beta,theta) + update_w2(beta,thetad) ;

if(velocity>10)
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{ velocity = 10 ;
}

if(d<4)
{ velocity = 0 ;

wrobot = 0 ;
}

speed_reqr = (2*velocity + wrobot*L)/(2*R*2*3.14) ;
speed_reql = (2*velocity - wrobot*L)/(2*R*2*3.14) ;

PWM_vall= updatePidl(PWM_vall, speed_reql, countl);
PWM_valr= PWM_vall ;

if(PWM_vall<0)
{
digitalWrite(Bphase,LOW);
analogWrite(Benable,PWM_vall);

}
else
{

digitalWrite(Benable,LOW);
analogWrite(Bphase,PWM_vall);

}

PWM_valr= updatePidr(PWM_valr, speed_reqr, countr);

if(PWM_valr<0)
{
digitalWrite(Aphase,LOW);
analogWrite(Aenable,PWM_valr);

}
else
{
digitalWrite(Aenable,LOW);
analogWrite(Aphase,PWM_valr);
}

Dr = 2*3.14*R*countr/20 ;
Dl = 2*3.14*R*countl/20 ;
Dc = (Dr+Dl)/2 ;
theta = thetaprevious + (Dr-Dl)/L ;
x = xprevious + Dc*cos(theta) ;
y = yprevious + Dc*sin(theta) ;
xprevious = x ;
yprevious = y ;
thetaprevious = theta ;
countr = 0 ;
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countl = 0;
}

}

float updatevx(float targetvalue_x , float currentvalue_x)
{
errorx = targetvalue_x - currentvalue_x ;
vx = Kpo*errorx ;
return(vx) ;

}

float updatevy(float targetvalue_y , float currentvalue_y)
{
errory = targetvalue_y - currentvalue_y ;
vy = Kpo*errory ;
return(vy) ;

}

float update_w1(float targetvalue_theta1 , float currentvalue_theta1)
{
errortheta1 = targetvalue_theta1 - currentvalue_theta1 ;
omega1 = lastomega1 + Ktheta1*(errortheta1-lasterrortheta1) +

Kitheta1*lasterrortheta1 ;
lastomega1 = omega1 ;
lasterrortheta1 = errortheta1 ;
return(omega1) ;

}

float update_w2(float targetvalue_theta2 , float currentvalue_theta2)
{
errortheta2 = targetvalue_theta2 - currentvalue_theta2 ;
omega2 = lastomega2 + Ktheta2*(errortheta2-lasterrortheta2) +

Kitheta2*lasterrortheta2 ;
lastomega2 = omega2 ;
lasterrortheta2 = errortheta2 ;
return(omega2) ;

}

float updatePidr(int command1,float targetValue1, float currentValue1) {

tickr_r = targetValue1*0.02*speedloop_sampletime ;
error_r = tickr_r - currentValue1 ;
pidTerm_r =lastpidTerm_r + (Kpr*(error_r - last_error_r)) +

Kir*last_error_r ;
if(pidTerm_r>255)
pidTerm_r = 255 ;
else if(pidTerm_r<0)
pidTerm_r = 0 ;
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last_error_r = error_r;
lastpidTerm_r = pidTerm_r ;
return(pidTerm_r*1) ;

}

float updatePidl(float command2, float targetValue2, float currentValue2) {
// compute PWM value
tickl_r = targetValue2*.02*speedloop_sampletime ;
error_l = tickl_r - currentValue2;
pidTerm_l = lastpidTerm_l + Kpl*(error_l-last_error_l) +

Kil*(last_error_l);
if (pidTerm_l>255)
pidTerm_l = 255 ;
else if(pidTerm_l<0)
pidTerm_l = 0 ;
last_error_l = error_l ;
lastpidTerm_l = pidTerm_l ;
return(pidTerm_l*1);

}

void rencoder()
{
countr = countr + 1;
}

void rencoder1()
{
countl = countl + 1 ;

}

A.3 Obstacle Avoidance Arduino Code

const int Aphase =5 ;
const int Aenable =6;
const int Bphase = 9 ;
const int Benable =10 ;
const int EncoderPinA1 =2;
const int EncoderPinB1 =3;
const float positionloop_sampletime = 100 ;
const float speedloop_sampletime = 100 ;
const int sensor = A3 ;

unsigned long lastmilli_l = 0;
unsigned long lastmilli_r = 0;
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unsigned long Lmilli_position = 0;
unsigned long Lmilli_speed = 0;
unsigned long pulsewidth_l = 10000 ;
unsigned long pulsewidth_r = 10000 ;

float dobt = 0 ;
float d = 0 ;
float x = 0 ;
float y = 0 ;
float xt = 100 ;
float yt= 100 ;
float theta = 0 ;
float thetat = 0 ;
float tickr_r = 0;
float tickl_r = 0;

float vx = 0 ;
float vy = 0 ;
float velocity = 0 ;
float wrobot = 0 ;
float omega = 0 ;

float speed_reqr= 0 ;
float speed_reql= 0 ;
float speed_actr = 0;
float speed_actl= 0;

float PWM_valr = 0;
float PWM_vall = 0;

float xprevious = 0 ;
float yprevious = 0 ;
float thetaprevious = 0 ;
float errorx = 0 ;
float errory = 0 ;
float errortheta = 0 ;

volatile long countr = 0;
volatile long countl =0;

float Kpl = 50 ;
float Kil = 5 ;
float Kpr = 50 ;
float Kir = 5 ;
float Kpo = .3 ;
float Ktheta = 1 ;
float Kitheta = 0.001 ;
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float error_r=0;
float last_error_r=0;
float pidTerm_r = 0;
float lastpidTerm_r = 0;
float error_l=0;
float last_error_l=0;
float pidTerm_l = 0;
float lasterrortheta = 0 ;

float lastpidTerm_l = 0;
float lastomega = 0 ;

float xo = 200 ;
float yo = 200 ;
float dobstacle = 0 ;
float dobstacle1 = 0 ;
float val = 0 ;

float L = 9.9 ;
float R = 1.9 ;
float Dr = 0;
float Dl = 0;
float Dc = 0;

void setup() {
// initialize the controller
pinMode(Aenable, OUTPUT);
pinMode(Aphase, OUTPUT);
pinMode(Benable, OUTPUT);
pinMode(Bphase, OUTPUT);
pinMode(EncoderPinA1, INPUT);
pinMode(EncoderPinB1, INPUT);
digitalWrite(EncoderPinA1, HIGH);
digitalWrite(EncoderPinB1, HIGH);
attachInterrupt(0, rencoder, RISING);
attachInterrupt(1, rencoder1, RISING);

digitalWrite(Aphase, LOW);
digitalWrite(Bphase, LOW);
digitalWrite(Benable, LOW);
digitalWrite(Benable, LOW);

}

void loop() {

if(millis()-Lmilli_position>positionloop_sampletime)

{
Lmilli_position = millis() ;
vx = updatevx( xt, x) ;
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vy = updatevy( yt,y) ;

}

if(millis()-Lmilli_speed > speedloop_sampletime)
{
Lmilli_speed = millis() ;
val = analogRead(sensor);

if (val > 400)
{ dobstacle = 20 ;
xo = x + dobstacle*cos(theta) ;
yo = y + dobstacle*sin(theta) ;
dobt = sqrt((xt-x)*(xt-x) + (yt-x)*(yt-y)) ;

}

d = sqrt((xt-x)*(xt-x) + (yt-y)*(yt-y)) ;

dobstacle1 = sqrt((xo-x)*(xo-x) + (yo-y)*(yo-y)) ;

if (dobstacle1 > 20)
{
if(atan2(yt,xt)>0)
{
thetat = abs(atan2(vy,vx)) ;
}
else
{ thetat = -1*abs(atan2(vy,vx));
}
}
else
{
if (dobt > d +10)
{
thetat = atan2(vy,vx) ;
}
else

{
thetat = -1*atan2(y-yo,x-xo) ;

}
}
velocity = sqrt(vy*vy + vx*vx) ;
wrobot = update_w(thetat,theta) ;

if(velocity>10)
{ velocity = 10 ;
}
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if(d<4)
{ velocity = 0 ;

wrobot = 0 ;
}

speed_reqr = (2*velocity + wrobot*L)/(2*R*2*3.14) ;
speed_reql = (2*velocity - wrobot*L)/(2*R*2*3.14) ;

if(speed_reqr<0)
{speed_reqr = 0 ;
}

if(speed_reql<0)

{speed_reql = 0 ;
}

PWM_vall= updatePidl(PWM_vall, speed_reql, countl);
PWM_valr= PWM_vall ;

if(PWM_vall<0)
{
digitalWrite(Bphase,LOW);
analogWrite(Benable,PWM_vall);

}
else
{

digitalWrite(Benable,LOW);
analogWrite(Bphase,PWM_vall);

}

PWM_valr= updatePidr(PWM_valr, speed_reqr, countr);

if(PWM_valr<0)
{
digitalWrite(Aphase,LOW);
analogWrite(Aenable,PWM_valr);

}
else
{
digitalWrite(Aenable,LOW);
analogWrite(Aphase,PWM_valr);
}

Dr = 2*3.14*R*countr/20 ;
Dl = 2*3.14*R*countl/20 ;
Dc = (Dr+Dl)/2 ;
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theta = thetaprevious + (Dr-Dl)/L ;
x = xprevious + Dc*cos(theta) ;
y = yprevious + Dc*sin(theta) ;
xprevious = x ;
yprevious = y ;
thetaprevious = theta ;
countr = 0 ;
countl = 0;
}

}

float updatevx(float targetvalue_x , float currentvalue_x)
{
errorx = targetvalue_x - currentvalue_x ;
vx = Kpo*errorx ;
return(vx) ;

}

float updatevy(float targetvalue_y , float currentvalue_y)
{
errory = targetvalue_y - currentvalue_y ;
vy = Kpo*errory ;
return(vy) ;

}

float update_w(float targetvalue_theta , float currentvalue_theta)
{
errortheta = targetvalue_theta - currentvalue_theta ;
omega = lastomega + Ktheta*(errortheta-lasterrortheta) +

Kitheta*lasterrortheta ;
lastomega = omega ;
lasterrortheta = errortheta ;
return(omega) ;

}

float updatePidr(int command1,float targetValue1, float currentValue1) {

tickr_r = targetValue1*0.02*speedloop_sampletime ;
error_r = tickr_r - currentValue1 ;
pidTerm_r =lastpidTerm_r + (Kpr*(error_r - last_error_r)) +

Kir*last_error_r ;
if(pidTerm_r>255)
pidTerm_r = 255 ;
else if(pidTerm_r<0)
pidTerm_r = 0 ;
last_error_r = error_r;
lastpidTerm_r = pidTerm_r ;
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return(pidTerm_r*1) ;
}

float updatePidl(float command2, float targetValue2, float currentValue2) {
// compute PWM value
tickl_r = targetValue2*.02*speedloop_sampletime ;
error_l = tickl_r - currentValue2;
pidTerm_l = lastpidTerm_l + Kpl*(error_l-last_error_l) +

Kil*(last_error_l);
if (pidTerm_l>255)
pidTerm_l = 255 ;
else if(pidTerm_l<0)
pidTerm_l = 0 ;
last_error_l = error_l ;
lastpidTerm_l = pidTerm_l ;
return(pidTerm_l*1);

}

void rencoder()
{
countr = countr + 1;
}

void rencoder1()
{
countl = countl + 1 ;

}

A.4 Cartesian Stabilization Matlab Code

clc ;
clear all ;
close all ;
m=0;
k1 = 10;
n= 0 ;
xn = zeros(4,10000) ;
yn = zeros(4,10000);
Tnew = zeros(4,10000) ;
thetan = zeros(4,10000) ;
v = zeros(4,10000) ;
w = zeros(4,10000) ;

for K=0.1:0.2:0.7
m= m+1 ;
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e1 = 0;
l = 0;

e2 = 0;
eo1 = 0;
eo2 = 0;
xf = 0;
yf = 0;
E = [e1 ; e2] ;
U = [0 ; 0] ;
theta1 = 0;
xp = 0;
yp = 0 ;
thetap = 0 ;
setheta = 0;
edisp = 0 ;

xt = 100 ;
yt = 100 ;
kp = .5 ;
ki = 0 ;
DelT = 0.001 ;
c = 5 ;
d = 5 ;
n = 0 ;
lastw = 0;

while(n<100000)
n=n+1;
Tnew(m,n+1) = DelT*n ;

E(1)= xt - xn(m,n) ;
E(2) = yt - yn(m,n) ;

thetar = atan2(E(2),E(1)) ;
d = sqrt(E(1)^2 + E(2)^2);
etheta = thetar - thetan(m,n) ;
edisp = sqrt(E(1)^2 + E(2)^2)*cos(etheta) ;

v(m,n+1) = K*edisp ;
w(m,n+1) = kp*etheta ;

if (d==0)
w(m,n+1)= 0 ;
v(m,n+1) = 0 ;

end

Tnew(m,n+1) = DelT*n ;
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thetan(m,n+1) = w(m,n+1)*DelT + thetap ;
xndot = (v(m,n+1)*cos(thetan(m,n)));
yndot = (v(m,n+1)*sin(thetan(m,n)));

xn(m,n+1) = xndot*DelT + xp ;
yn(m,n+1) = yndot*DelT + yp ;
xp = xn(m,n+1) ;
yp = yn(m,n+1) ;
thetap= thetan(m,n+1) ;

end
end

A.5 Posture Stabilization Matlab Code

clc ;
clear all ;
close all ;
m=0;
k1 = 10;
n=0;
xn = zeros(4,5000) ;
yn = zeros(4,5000);

Tnew = zeros(4,5000) ;
thetan = zeros(4,5000) ;
thetar = zeros(4,5000) ;
v = zeros(4,5000) ;
w = zeros(4,5000) ;

for K= 0.1:0.2:0.7
m= m+1 ;
e1 = 0;
l = 0;

e2 = 0;
eo1 = 0;
eo2 = 0;
xf = 0;
yf = 0;
E = [e1 ; e2] ;
U = [0 ; 0] ;
theta1 = 0;
xp = 0;
yp = 0 ;
edisp = 0 ;
thetap = 0 ;
setheta = 0;
xd = 100 ;
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yd = 100 ;
thetad = pi()/2 ;
kp = .4 ;
kp1 = 1 ;
ki = 0 ;
DelT = 0.001 ;
c = 5 ;
d = 5 ;
n = 0 ;
lastw = 0;
xt = 0 ;
yt = 0 ;

while(n<100000)
n=n+1;

beta = atan2(yd-yn(m,n),xd-xn(m,n));
alpha = beta - thetad ;
gamma = beta - thetan(m,n) ;
d = sqrt((yd-yn(m,n))^2 + (xd-xn(m,n))^2) ;
xt = xn(m,n) + d*cos(beta + alpha);
yt = yn(m,n) + d*sin(beta + alpha) ;

E(1)= xt - xn(m,n) ;
E(2) = yt - yn(m,n) ;

thetar(m,n) = atan2(E(2),E(1)) ;

%thetar(m,n) = 2*beta - thetad ;

etheta = thetar(m,n) - thetan(m,n) ;

edisp = sqrt(E(1)^2 + E(2)^2)*cos(etheta) ;

v(m,n+1) = K*edisp ;

% if (v(m,n) < 0)

% v(m,n) = 0 ;
% end

% if (v(m,n) > 10)

% v(m,n) = 10 ;
% end
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% w = lastw + kp*(etheta-setheta) + ki*setheta ;
% w = kp*gamma + kp1*alpha ;
w(m,n+1) = kp*etheta ;

setheta = etheta ;
lastw = w(m,n+1) ;

if (d==0)
w(m,n+1)= kp*(thetad - thetan(m,n)) ;
v(m,n+1) = 0 ;

end

Tnew(m,n+1) = DelT*n ;

thetan(m,n+1) = w(m,n+1)*DelT + thetap ;

xndot = (v(m,n+1)*cos(thetan(m,n)));
yndot = (v(m,n+1)*sin(thetan(m,n)));

xn(m,n+1) = xndot*DelT + xp ;
yn(m,n+1) = yndot*DelT + yp ;

xp = xn(m,n+1) ;
yp = yn(m,n+1) ;
thetap= thetan(m,n+1) ;

end
end

A.6 Switched Control Matlab Code

clc ;
clear all ;
close all ;
m=0;
k1 = 10;
n=0;
xn = zeros(5000,1) ;
yn = zeros(5000,1);
Tnew = zeros(5000,1) ;
K = 0.1 ;
Ko = 0.1 ;
m= m+1 ;
e1 = 0;
l = 0;
e2 = 0;

80



eo1 = 0;
eo2 = 0;
xf = 0;
yf = 0;
E = [e1 ; e2] ;
U = [0 ; 0] ;
thetan = 0 ;
theta1 = 0;
xp = 0;
yp = 0;
thetap = 0 ;
setheta = 0;
xt = 100;
yt = 100 ;
kp = .7 ;
ki = 0 ;
DelT = 0.1 ;
c = 5 ;
d = 5 ;
d1 = 100 ;
n = 0 ;
lastw = 0;
while(n<40000)

n=n+1;

xo = 50 ;
d1 = 100 ;
for yo=30:0.01:70 ;
d= sqrt((xo-xn(n,1))*(xo-xn(n,1)) + (yo-yn(n,1))*(yo-yn(n,1))) ;

if d<d1
d1=d ;
xf = xo ;
yf = yo ;

end
end

E(1)= xt - xn(n,1) ;
E(2) = yt - yn(n,1) ;
Eo(1) = xf - xn(n,1) ;
Eo(2) = yf -yn(n,1) ;
% K(1) = (vo*(1-exp(abs(E(1))^2*-2)))/abs(E(1)) ;
% K(2) = (vo*(1-exp(abs(E(2))^2*-2)))/abs(E(2)) ;

if d1>10

v = K*sqrt( E(1)^2 + E(2)^2) ;
w = kp*(atan2(E(2),E(1))- thetan) ;

elseif d1<=12
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v = Ko*sqrt( Eo(1)^2 + Eo(2)^2) ;
w = -1*kp*(atan2(Eo(2),Eo(1))- thetan) ;

end

if ( v>0)
v = min(10,v) ;
else
v = 0 ;
end

Tnew(n+1,1) = DelT*n ;

thetan = w*DelT + thetap ;
thetap= thetan ;
xndot = (v*cos(thetan));
yndot = (v*sin(thetan));

xn(n+1,1) = xndot*DelT + xp ;
yn(n+1,1) = yndot*DelT + yp ;
xp = xn(n+1,1) ;
yp = yn(n+1,1) ;

end

A.7 Blending Control Matlab Code

clc ;
clear all ;
close all ;
m=0;
k1 = 10;
n=0;
xn = 0 ;
yn = 0 ;
Tnew = 0 ;
K = 0.1 ;
Ko = 0.5 ;

e1 = 0;
l = 0;

e2 = 0;
eo1 = 0;
eo2 = 0;
xf = 0;
yf = 0;
E = [e1 ; e2] ;
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U = [0 ; 0] ;
thetan = 0 ;
theta1 = 0;
xp = 0;
yp = 0;
thetap = 0 ;
setheta = 0;
xt = 100;
yt = 100 ;
kp = 1 ;
ki = 0 ;
DelT = 0.1 ;
c = 5 ;
d = 5 ;
d1 = 100 ;
n = 0 ;
lastw = 0;
beta = .2 ;

while(n<600)
n=n+1;

xo = 50 ;
d1 = 100 ;
for yo=30:0.01:70 ;
d= sqrt((xo-xn(n))*(xo-xn(n)) + (yo-yn(n))*(yo-yn(n))) ;

if d<d1
d1=d ;
xf = xo ;
yf = yo ;

end
end

E(1) = xt - xn(n) ;
E(2) = yt - yn(n) ;
Eo(1) = xf - xn(n) ;
Eo(2) = yf -yn(n) ;

% K(1) = (vo*(1-exp(abs(E(1))^2*-2)))/abs(E(1)) ;
% K(2) = (vo*(1-exp(abs(E(2))^2*-2)))/abs(E(2)) ;

sigma = 1 - exp(-1*beta*d1) ;

v = 0.1*sigma*sqrt(E(1)^2 + E(2)^2) + -1*0.1*(1-sigma)*(Eo(1)^2 +
Eo(2)^2) ;
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v = min(20,v) ;

w = sigma*1*(atan2(E(2),E(1)) - thetan) +
-1*1*(1-sigma)*(atan2(Eo(2),Eo(1)) - thetan) ;

Tnew(n+1) = DelT*n ;

thetan = w*DelT + thetap ;
thetap= thetan ;
xndot = (v*cos(thetan));
yndot = (v*sin(thetan));

xn(n+1) = xndot*DelT + xp ;
yn(n+1) = yndot*DelT + yp ;
xp = xn(n+1) ;
yp = yn(n+1) ;

A.8 Boundary Following Matlab Code

clc ;
clear all ;
close all ;
m=0;
k1 = 1;
n=0;
xn = 0 ;
yn = 0;
Tnew = 0 ;
xf1 = 0 ;
xf2 = 0 ;
xf3 = 0 ;
yf1 = 0 ;
yf2 = 0 ;
yf3 = 0 ;
cdistance = 0 ;
Mccw = [0 -1 ; 1 0 ] ;
Mcw = [0 1 ; -1 0 ] ;
dto = 200 ;

K= .1 ;
m= m+1 ;
e1 = 0;
l = 0;

e2 = 0;
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eo1 = 0;
eo2 = 0;
xf = 0;
yf = 0;
E = [e1 ; e2] ;
Eo =[eo1 ; eo2] ;
Ko = 0.1 ;

U = [0 ; 0] ;
thetan = 0 ;
theta1 = 0;
xp = 0;
yp = 0 ;
thetap = 0;
setheta = 0;
xt = 100 ;
yt = 100 ;
kp = 7 ;
ki = 0 ;
DelT = 0.1 ;
c = 5 ;
d1 = 0 ;
n = 0 ;
lastw = 0;
Ko = .5 ;

while(n<10000)
n=n+1;

d = 0 ;
d1 = 100 ;
xo = 50 ;
for yo=30:0.01:70 ;
d= sqrt((xo-xn(n))*(xo-xn(n)) + (yo-yn(n))*(yo-yn(n))) ;

if d<d1
d1=d ;
xf1 = xo ;
yf1 = yo ;

end
end

d = 0 ;
d2 = 100 ;
yo = 30 ;
for xo=30:0.01:50 ;
d= sqrt((xo-xn(n))*(xo-xn(n)) + (yo-yn(n))*(yo-yn(n))) ;
if (d<d2)

d2=d ;
xf2 = xo ;
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yf2 = yo ;
end

end

d = 0 ;
d3 = 100 ;

yo = 70 ;
for xo=30:0.01:50 ;
d= sqrt((xo-xn(n))*(xo-xn(n)) + (yo-yn(n))*(yo-yn(n))) ;

if (d<d3)
d3=d ;
xf3 = xo ;
yf3 = yo ;

end
end

d = 0 ;
d4 = 100 ;

xo = 30 ;
for yo=60:0.01:70 ;
d= sqrt((xo-xn(n))*(xo-xn(n)) + (yo-yn(n))*(yo-yn(n))) ;

if (d<d4)
d4=d ;
xf4 = xo ;
yf4 = yo ;

end
end

if d1> d2
D = d2 ;
xf = xf2 ;
yf = yf2 ;
if d2 > d3

D = d3 ;
xf = xf3 ;
yf = yf3 ;

else
D = d2 ;
xf = xf2 ;
yf = yf2 ;

end

else
D = d1 ;
xf = xf1 ;
yf = yf1 ;
if d1 > d3

D = d3 ;
xf = xf3 ;
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yf = yf3 ;
else

D = d1 ;
xf = xf1 ;
yf = yf1 ;

end
end

if d4 < D
D = d4 ;
xf = xf4 ;
yf = yf4 ;

end

E(1) = xt - xn(n) ;
E(2) = yt - yn(n) ;
Eo(1) = xf - xn(n) ;
Eo(2) = yf - yn(n) ;

dt = sqrt(((xt-xn(n))*(xt-xn(n))) + ((yt-yn(n))*(yt-yn(n)))) ;

if (dt < dto)

if D>7

v = K*sqrt( E(1)^2 + E(2)^2) ;

w = kp*(atan2(E(2),E(1))- thetan) ;

end
end

if (D<=7 && D>=4)

v = Ko*sqrt( Eo(1)^2 + Eo(2)^2) ;
% v = .5 ;
if atan2(E(2),E(1)) >= 0
w = kp*( atan2(Eo(2),Eo(1)) + pi()/2 - thetan) ;
else
w = kp*( atan2(Eo(2),Eo(1)) - pi()/2 - thetan) ;
end
dto = sqrt( E(2)^2 + E(1)^2) ;
end

if D<4
v = Ko*sqrt( Eo(1)^2 + Eo(2)^2) ;
w = -1*kp*(atan2(Eo(2),Eo(1)) - thetan) ;
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end

Tnew(n+1) = DelT*n ;
thetap= thetan ;
xp = xn(n) ;
yp = yn(n) ;
thetan = w*DelT + thetap ;
xndot = (v*cos(thetan));
yndot = (v*sin(thetan));

xn(n+1) = xndot*DelT + xp ;
yn(n+1) = yndot*DelT + yp ;

end
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APPENDIX B

CIRCUIT DIAGRAMS
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A.A.R Robot Schematic[17]

Figure B.1: AAR Robot Schematic
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I.R Sensor Distance to Voltage Graph[16]
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