Matching Items (41)

158834-Thumbnail Image.png

Decentralized Control of Collective Transport by Multi-Robot Systems with Minimal Information

Description

One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by

One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for collective transport in environments where robots can localize themselves (e.g., using GPS) and communicate with one another, have information about the payload's geometric and dynamical properties, and follow predefined robot and/or payload trajectories. However, these approaches cannot be applied in uncertain environments where robots do not have reliable communication and GPS and lack information about the payload. These conditions characterize a variety of applications, including construction, mining, assembly in space and underwater, search-and-rescue, and disaster response.
Toward this end, this thesis presents decentralized control strategies for collective transport by robots that regulate their actions using only their local sensor measurements and minimal prior information. These strategies can be implemented on robots that have limited or absent localization capabilities, do not explicitly exchange information, and are not assigned predefined trajectories. The controllers are developed for collective transport over planar surfaces, but can be extended to three-dimensional environments.

This thesis addresses the above problem for two control objectives. First, decentralized controllers are proposed for velocity control of collective transport, in which the robots must transport a payload at a constant velocity through an unbounded domain that may contain strictly convex obstacles. The robots are provided only with the target transport velocity, and they do not have global localization or prior information about any obstacles in the environment. Second, decentralized controllers are proposed for position control of collective transport, in which the robots must transport a payload to a target position through a bounded or unbounded domain that may contain convex obstacles. The robots are subject to the same constraints as in the velocity control scenario, except that they are assumed to have global localization. Theoretical guarantees for successful execution of the task are derived using techniques from nonlinear control theory, and it is shown through simulations and physical robot experiments that the transport objectives are achieved with the proposed controllers.

Contributors

Agent

Created

Date Created
  • 2020

152406-Thumbnail Image.png

Some applications of vector fitting in the solution of electromagnetic fields and interactions

Description

Vector Fitting (VF) is a recent macromodeling method that has been popularized by its use in many commercial software for extracting equivalent circuit's of simulated networks. Specifically for material measurement

Vector Fitting (VF) is a recent macromodeling method that has been popularized by its use in many commercial software for extracting equivalent circuit's of simulated networks. Specifically for material measurement applications, VF is shown to estimate either the permittivity or permeability of a multi-Debye material accurately, even when measured in the presence of noise and interferences caused by test setup imperfections. A brief history and survey of methods utilizing VF for material measurement will be introduced in this work. It is shown how VF is useful for macromodeling dielectric materials after being measured with standard transmission line and free-space methods. The sources of error in both an admittance tunnel test device and stripline resonant cavity test device are identified and VF is employed for correcting these errors. Full-wave simulations are performed to model the test setup imperfections and the sources of interference they cause are further verified in actual hardware measurements. An accurate macromodel is attained as long as the signal-to-interference-ratio (SIR) in the measurement is sufficiently high such that the Debye relaxations are observable in the data. Finally, VF is applied for macromodeling the time history of the total fields scattering from a perfectly conducting wedge. This effort is an initial test to see if a time domain theory of diffraction exists, and if the diffraction coefficients may be exactly modeled with VF. This section concludes how VF is not only useful for applications in material measurement, but for the solution of modeling fields and interactions in general.

Contributors

Agent

Created

Date Created
  • 2013

154319-Thumbnail Image.png

Localization in wireless sensor networks

Description

In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and

In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and location detection problems are considered.

In location estimation problems, sensor nodes at known locations, called anchors, transmit signals to sensor nodes at unknown locations, called nodes, and use these transmissions to estimate the location of the nodes. Specifically, the location estimation in the presence of fading channels using time of arrival (TOA) measurements with narrowband communication signals is considered. Meanwhile, the Cramer-Rao lower bound (CRLB) for localization error under different assumptions is derived. Also, maximum likelihood estimators (MLEs) under these assumptions are derived.

In large WSNs, distributed location estimation algorithms are more efficient than centralized algorithms. A sequential localization scheme, which is one of distributed location estimation algorithms, is considered. Also, different localization methods, such as TOA, received signal strength (RSS), time difference of arrival (TDOA), direction of arrival (DOA), and large aperture array (LAA) are compared under different signal-to-noise ratio (SNR) conditions. Simulation results show that DOA is the preferred scheme at the low SNR regime and the LAA localization algorithm provides better performance for network discovery at high SNRs. Meanwhile, the CRLB for the localization error using the TOA method is also derived.

A distributed location detection scheme, which allows each anchor to make a decision as to whether a node is active or not is proposed. Once an anchor makes a decision, a bit is transmitted to a fusion center (FC). The fusion center combines all the decisions and uses a design parameter $K$ to make the final decision. Three scenarios are considered in this dissertation. Firstly, location detection at a known location is considered. Secondly, detecting a node in a known region is considered. Thirdly, location detection in the presence of fading is considered. The optimal thresholds are derived and the total probability of false alarm and detection under different scenarios are derived.

Contributors

Agent

Created

Date Created
  • 2016

152311-Thumbnail Image.png

Non-holonomic differential drive mobile robot control & design: critical dynamics and coupling constraints

Description

Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has

Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and control-relevant design issues for differential drive mobile robots is addressed. Two major themes that have been explored are the use of kinematic models for control design and the use of decentralized proportional plus integral (PI) control. While these topics have received much attention, there still remain critical questions which have not been rigorously addressed. In this thesis, answers to the following critical questions are provided: When is 1. a kinematic model sufficient for control design? 2. coupled dynamics essential? 3. a decentralized PI inner loop velocity controller sufficient? 4. centralized multiple-input multiple-output (MIMO) control essential? and how can one design the robot to relax the requirements implied in 1 and 2? In this thesis, the following is shown: 1. The nonlinear kinematic model will suffice for control design when the inner velocity (dynamic) loop is much faster (10X) than the slower outer positioning loop. 2. A dynamic model is essential when the inner velocity (dynamic) loop is less than two times faster than the slower outer positioning loop. 3. A decentralized inner loop PI velocity controller will be sufficient for accomplish- ing high performance control when the required velocity bandwidth is small, rel- ative to the peak dynamic coupling frequency. A rule-of-thumb which depends on the robot aspect ratio is given. 4. A centralized MIMO velocity controller is needed when the required bandwidth is large, relative to the peak dynamic coupling frequency. Here, the analysis in the thesis is sparse making the topic an area for future analytical work. Despite this, it is clearly shown that a centralized MIMO inner loop controller can offer increased performance vis- ́a-vis a decentralized PI controller. 5. Finally, it is shown how the dynamic coupling depends on the robot aspect ratio and how the coupling can be significantly reduced. As such, this can be used to ease the requirements imposed by 2 and 4 above.

Contributors

Agent

Created

Date Created
  • 2013

152400-Thumbnail Image.png

Towards adaptive micro-robotic neural interfaces: autonomous navigation of microelectrodes in the brain for optimal neural recording

Description

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following issues pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical and physiological events in the interface and c) the lack of visual feedback of microelectrode position in brain tissue. A closed loop control algorithm is proposed here for autonomous navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit neural recordings. The algorithm incorporates a quantitative understanding of constitutive mechanical properties of soft viscoelastic tissue like the brain and is guided by models that predict stresses developed in brain tissue during movement of the microelectrode. An optimal movement strategy is developed that achieves precise positioning of microelectrodes in the brain by minimizing the stresses developed in the surrounding tissue during navigation and maximizing the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent experiments validated that it was possible to achieve a consistently high quality SNR throughout the duration of the experiment. At the systems level, new generation of MEMS actuators for movable microelectrode array are characterized and the MEMS device operation parameters are optimized for improved performance and reliability. Further, recommendations for packaging to minimize the form factor of the implant; design of device mounting and implantation techniques of MEMS microelectrode array to enhance the longevity of the implant are also included in a top-down approach to achieve a reliable brain interface.

Contributors

Agent

Created

Date Created
  • 2013

156318-Thumbnail Image.png

Modeling and H-Infinity Loop Shaping Control of a Vertical Takeoff and Landing Drone

Description

VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and

VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation starts from first principles modeling which helps in the controller design and dynamic analysis of the system.

In this project, a VTOL drone with a shape similar to a Convair XFY-1 is studied and the primary focus is stabilizing and controlling the flight path of the drone in
its hover and horizontal flying modes. The model of the plane is obtained using first principles modeling and controllers are designed to stabilize the yaw, pitch and roll rotational motions.

The plane is modeled for its yaw, pitch and roll rotational motions. Subsequently, the rotational dynamics of the system are linearized about the hover flying mode, hover to horizontal flying mode, horizontal flying mode, horizontal to hover flying mode for ease of implementation of linear control design techniques. The controllers are designed based on an H∞ loop shaping procedure and the results are verified on the actual nonlinear model for the stability of the closed loop system about hover flying, hover to horizontal transition flying, horizontal flying, horizontal to hover transition flying. An experiment is conducted to study the dynamics of the motor by recording the PWM input to the electronic speed controller as input and the rotational speed of the motor as output. A theoretical study is also done to study the thrust generated by the propellers for lift, slipstream velocity analysis, torques acting on the system for various thrust profiles.

Contributors

Agent

Created

Date Created
  • 2018

156015-Thumbnail Image.png

Robust distributed parameter estimation in wireless sensor networks

Description

Fully distributed wireless sensor networks (WSNs) without fusion center have advantages such as scalability in network size and energy efficiency in communications. Each sensor shares its data only with neighbors

Fully distributed wireless sensor networks (WSNs) without fusion center have advantages such as scalability in network size and energy efficiency in communications. Each sensor shares its data only with neighbors and then achieves global consensus quantities by in-network processing. This dissertation considers robust distributed parameter estimation methods, seeking global consensus on parameters of adaptive learning algorithms and statistical quantities.

Diffusion adaptation strategy with nonlinear transmission is proposed. The nonlinearity was motivated by the necessity for bounded transmit power, as sensors need to iteratively communicate each other energy-efficiently. Despite the nonlinearity, it is shown that the algorithm performs close to the linear case with the added advantage of power savings. This dissertation also discusses convergence properties of the algorithm in the mean and the mean-square sense.

Often, average is used to measure central tendency of sensed data over a network. When there are outliers in the data, however, average can be highly biased. Alternative choices of robust metrics against outliers are median, mode, and trimmed mean. Quantiles generalize the median, and they also can be used for trimmed mean. Consensus-based distributed quantile estimation algorithm is proposed and applied for finding trimmed-mean, median, maximum or minimum values, and identification of outliers through simulation. It is shown that the estimated quantities are asymptotically unbiased and converges toward the sample quantile in the mean-square sense. Step-size sequences with proper decay rates are also discussed for convergence analysis.

Another measure of central tendency is a mode which represents the most probable value and also be robust to outliers and other contaminations in data. The proposed distributed mode estimation algorithm achieves a global mode by recursively shifting conditional mean of the measurement data until it converges to stationary points of estimated density function. It is also possible to estimate the mode by utilizing grid vector as well as kernel density estimator. The densities are estimated at each grid point, while the points are updated until they converge to a global mode.

Contributors

Agent

Created

Date Created
  • 2017

156507-Thumbnail Image.png

Process Control Applications in Microbial Fuel Cells(MFC)

Description

Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2).

Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like anode potential and pH play important role in the MFC operation and the focus of this dissertation are pH and potential control problems.

Most of the adaptive pH control solutions use signal-based-norms as cost functions, but their strong dependency on excitation signal properties makes them sensitive to noise, disturbances, and modeling errors. System-based-norm( H-infinity) cost functions provide a viable alternative for the adaptation as they are less susceptible to the signal properties. Two variants of adaptive pH control algorithms that use approximate H-infinity frequency loop-shaping (FLS) cost metrics are proposed in this dissertation.

A pH neutralization process with high retention time is studied using lab scale experiments and the experimental setup is used as a basis to develop a first-principles model. The analysis of such a model shows that only the gain of the process varies significantly with operating conditions and with buffering capacity. Consequently, the adaptation of the controller gain (single parameter) is sufficient to compensate for the variation in process gain and the focus of the proposed algorithms is the adaptation of the PI controller gain. Computer simulations and lab-scale experiments are used to study tracking, disturbance rejection and adaptation performance of these algorithms under different excitation conditions. Results show the proposed algorithm produces optimum that is less dependent on the excitation as compared to a commonly used L2 cost function based algorithm and tracks set-points reasonably well under practical conditions. The proposed direct pH control algorithm is integrated with the combined activated sludge anaerobic digestion model (CASADM) of an MFC and it is shown pH control improves its performance.

Analytical grade potentiostats are commonly used in MFC potential control, but, their high cost (>$6000) and large size, make them nonviable for the field usage. This dissertation proposes an alternate low-cost($200) portable potentiostat solution. This potentiostat is tested using a ferricyanide reactor and results show it produces performance close to an analytical grade potentiostat.

Contributors

Agent

Created

Date Created
  • 2018

150108-Thumbnail Image.png

Directional information flow and applications

Description

In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced

In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced new methods to investigate the transfer of information in dynamical systems. Using concepts from Chaos and Markov theory, much of these methods have evolved to capture non-linear relations and information flow between coupled dynamical systems with applications to fields like biomedical signal processing. This thesis deals with the application of information theory to non-linear multivariate time series and develops measures of information flow to identify significant drivers and response (driven) components in networks of coupled sub-systems with variable coupling in strength and direction (uni- or bi-directional) for each connection. Transfer Entropy (TE) is used to quantify pairwise directional information. Four TE-based measures of information flow are proposed, namely TE Outflow (TEO), TE Inflow (TEI), TE Net flow (TEN), and Average TE flow (ATE). First, the reliability of the information flow measures on models, with and without noise, is evaluated. The driver and response sub-systems in these models are identified. Second, these measures are applied to electroencephalographic (EEG) data from two patients with focal epilepsy. The analysis showed dominant directions of information flow between brain sites and identified the epileptogenic focus as the system component typically with the highest value for the proposed measures (for example, ATE). Statistical tests between pre-seizure (preictal) and post-seizure (postictal) information flow also showed a breakage of the driving of the brain by the focus after seizure onset. The above findings shed light on the function of the epileptogenic focus and understanding of ictogenesis. It is expected that they will contribute to the diagnosis of epilepsy, for example by accurate identification of the epileptogenic focus from interictal periods, as well as the development of better seizure detection, prediction and control methods, for example by isolating pathologic areas of excessive information flow through electrical stimulation.

Contributors

Agent

Created

Date Created
  • 2011

157615-Thumbnail Image.png

Modeling, Design, and Control of Multiple Quadrotors

Description

In the last few decades, with the revolution of availability of low-cost microelectronics, which allow fast and complex computations to be performed on board, there has been increasing attention to

In the last few decades, with the revolution of availability of low-cost microelectronics, which allow fast and complex computations to be performed on board, there has been increasing attention to aerial vehicles, especially rotary-wing vehicles. This is because of their ability to vertically takeoff and land (VTOL), which make them appropriate for urban environments where no runways are needed. Quadrotors took considerable attention in research and development due to their symmetric body, which makes them simpler to model and control compared to other configurations.

One contribution of this work is the design of a new open-source based Quadrotor platform for research. This platform is compatible with both HTC Vive Tracking System (HVTS) and OptiTrack Motion Capture System, Robot Operating System (ROS), and MAVLINK communication protocol.

The thesis examined both nonlinear and linear modeling of a 6-DOF rigid-body quadrotor's dynamics along with actuator dynamics. Nonlinear/linear models are used to develop control laws for both low-level and high-level hierarchical control structures. Both HVTS and OptiTrack were used to demonstrate path following for single and multiple quadrotors. Hardware and simulation data are compared. In short, this work establishes a foundation for future work on formation flight of multi-quadrotor.

Contributors

Agent

Created

Date Created
  • 2019