Description

Metalloporphyrins serve important roles in biological processes and in emerging technologies with applications to energy conversion. When electrochemically activated in solution, metalloporphyrins have the ability to catalyze the conversion of

Metalloporphyrins serve important roles in biological processes and in emerging technologies with applications to energy conversion. When electrochemically activated in solution, metalloporphyrins have the ability to catalyze the conversion of protons into hydrogen fuels. In this report, the synthesis and characterization of zinc, nickel, cobalt and copper analogs of 5,10,15,20-tetrakis(pentafluorophenyl) porphyrin (PF20) and 5,10,15,20-tetra-p-tolyporphyrin (TTP) are described. All target compounds are characterized with UV-Vis spectroscopy and MALDI-TOF mass spectrometry. The freebase porphyrins and non-paramagnetic metalloporphyrins are further characterized by proton nuclear magnetic resonance spectroscopy and all proton resonances are assigned. Electrochemical measurements show the reduction potential of the fluorinated phenyl substituted porphyrins is shifted to less negative values as compared to the reduction potential measured using non-fluorinated analogs. These results illustrate the ability to use fluorine as a synthetic tool for altering the electronic properties of metalloporphyrins. Further, these findings serve a critical role in choosing metalloporphyrin electrocatalysts with the appropriate energetic and optical properties for integration to semiconductors with applications to solar-to- fuels technologies.

Included in this item (3)



Machine-readable links