Evaluating the Ecosystem of the Lower Mekong Basin: Multi-scale Multi-sensor Geospatial Analytics

187739-Thumbnail Image.png
Description
Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to

Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic evaluation of recent environmental changes and current ecosystem status, focusing on terrestrial ecosystem carbon-water trade-off, in the Lower Mekong Basin (LMB) is lacking. This dissertation involves: (1) examining the long-term spatiotemporal patterns of ecosystem conditions in response to gains and losses of the forest; (2) evaluating the current consumptive water use variation across all biome and land use types with remotely sensed evapotranspiration (ET) products; (3) analyzing the trade-off between terrestrial carbon and water stress condition during the photosynthesis process in response to different climatic/ecosystem conditions, and (4) developing a spatial optimization model to effectively determine possible reforestation/afforestation options considering the balance between water conservation and carbon fluxes. These studies were conducted with many recently developed algorithms and satellite imagery. This dissertation makes significant contributions and expands the knowledge of the variation in water consumption and carbon assimilation within the ecosystem when different conditions are present. In addition, the spatial optimization model was applied to the entire region to formulate possible reforestation plans under different water-carbon tradeoff scenarios for the first time. The findings and results of this research can be used to provide constructive suggestions to policymakers, managers, planners, government officials, and any other stakeholders in LMB to formulate policies and guidelines for the environmentally responsible and sustainable development of LMB.
Date Created
2023
Agent

Biogenic Impact of Urban Vegetation on Heat and Carbon Dynamics in the Built Environment

168313-Thumbnail Image.png
Description
The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies

The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality for urban dwellers. Prior studies have identified the role of urban green spaces in the relief of urban heat stress. Yet little effort was devoted to quantify their contribution to local and regional CO2 budget. In fact, urban biogenic CO2 fluxes from photosynthesis and respiration are influenced by the microclimate in the built environment and are sensitive to anthropogenic disturbance. The high complexity of the urban ecosystem leads to an outstanding challenge for numerical urban models to disentangling and quantifying the interplay between heat and carbon dynamics.This dissertation aims to advance the simulation of thermal and carbon dynamics in urban land surface models, and to investigate the role of urban greening practices and urban system design in mitigating heat and CO2 emissions. The biogenic CO2 exchange in cities is parameterized by incorporating plant physiological functions into an advanced single-layer urban canopy model in the built environment. The simulation result replicates the microclimate and CO2 flux patterns measured from an eddy covariance system over a residential neighborhood in Phoenix, Arizona with satisfactory accuracy. Moreover, the model decomposes the total CO2 flux from observation and identifies the significant CO2 efflux from soil respiration. The model is then applied to quantify the impact of urban greening practices on heat and biogenic CO2 exchange over designed scenarios. The result shows the use of urban greenery is effective in mitigating both urban heat and carbon emissions, providing environmental co-benefit in cities. Furthermore, to seek the optimal urban system design in terms of thermal comfort and CO2 reduction, a multi-objective optimization algorithm is applied to the machine learning surrogates of the physical urban land surface model. There are manifest trade-offs among ameliorating diverse urban environmental indicators despite the co-benefit from urban greening. The findings of this dissertation, along with its implications on urban planning and landscaping management, would promote sustainable urban development strategies for achieving optimal environmental quality for policy makers, urban residents, and practitioners.
Date Created
2021
Agent

A Social-Ecological System Approach for Forest Resource Management of the Himchari National Park in Bangladesh

158227-Thumbnail Image.png
Description
Deforestation is a common phenomenon in Bangladesh, leaving the country under a great threat of losing its natural habitat. The increasing rate of natural habitat loss has raised questions regarding the country’s forest resource management practices. These practices were originally

Deforestation is a common phenomenon in Bangladesh, leaving the country under a great threat of losing its natural habitat. The increasing rate of natural habitat loss has raised questions regarding the country’s forest resource management practices. These practices were originally adopted to protect the forest ecosystem and secure the livelihood of the people dependent on forest resources. Despite the support from development partners like the United States Agency for International Development (USAID), the country is still struggling to protect its forest resources from human encroachment. One of the major problems is the lack of inconclusiveness in current approaches. Most initiatives are not evidence-based and are project-based for only a certain period of time. This has failed to ensure sustainable outcomes. This study looks at Bangladesh’s Himchari National Park forest management system to generate evidence regarding deforestation from 1991-2018 and highlight existing gaps. To identify and analyze the gaps, the study uses a social-ecological system (SES) lens. Results reveal deforestation across different time periods, articulates the overall governance structure regarding forest resource management, and provides an overview of the major gaps within the system. The study also offers a set of recommendations for improving the existing management system and policy implications.
Date Created
2020
Agent

Using Watered Landscapes to Manipulate Urban Heat Island Effects: How Much Water Will It Take to Cool Phoenix?

141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

Date Created
2010-01-04
Agent

Tradeoffs Between Water Conservation and Temperature Amelioration In Phoenix and Portland: Implications For Urban Sustainability

141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

Date Created
2013-05-16
Agent

On the Statistical and Scaling Properties of Observed and Simulated Soil Moisture

156960-Thumbnail Image.png
Description
Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction,

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.
Date Created
2018
Agent

Assessing Usable Ground and Surface Water Level Correlation Factors in the Western United States

156929-Thumbnail Image.png
Description
The Western Continental United States has a rapidly changing and complex ecosystem that provides valuable resources to a large portion of the nation. Changes in social and environmental factors have been observed to be significantly correlated to usable ground and

The Western Continental United States has a rapidly changing and complex ecosystem that provides valuable resources to a large portion of the nation. Changes in social and environmental factors have been observed to be significantly correlated to usable ground and surface water levels. The assessment of water level changes and their influences on a semi-national level is needed to support planning and decision making for water resource management at local levels. Although many studies have been done in Ground and Surface Water (GSW) trend analysis, very few have attempted determine correlations with other factors. The number of studies done on correlation factors at a semi-national scale and near decadal temporal scale is even fewer. In this study, freshwater resources in GSW changes from 2004 to 2017 were quantified and used to determine if and how environmental and social variables are related to GSW changes using publicly available remotely sensed and census data. Results indicate that mean annual changes of GSW of the study period are significantly correlated with LULC changes related to deforestation, urbanization, environmental trends, as well as social variables. Further analysis indicates a strong correlation in the rate of change of GSW to LULC changes related to deforestation, environmental trends, as well as social variables. GSW slope trend analysis also reveals a negative trend in California, New Mexico, Arizona, and Nevada. Whereas a positive GSW trend is evident in the northeast part of the study area. GSW trends were found to be somewhat consistent in the states of Utah, Idaho, and Colorado, implying that there was no GSW changes over time in these states.
Date Created
2018
Agent

Monitoring algal abundance and water quality in Arizona reservoirs through field sampling and remote sensing

156753-Thumbnail Image.png
Description
Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better understanding of the seasonal development of algal communities and levels of suspended particulates in the three main terminal reservoirs supplying water to the Phoenix metro area: Bartlett Lake, Lake Pleasant, and Saguaro Lake. Algal abundances, particularly the abundance of filamentous cyanobacteria, increased with warmer temperatures in all three reservoirs and reached the highest comparative abundance in Bartlett Lake. Prymnesiophytes (the class of algae to which the toxin-producing golden algae belong) tended to peak between June and August, with one notable peak occurring in Saguaro Lake in August 2017 during which time a fish-kill was observed. In the cooler months algal abundance was comparatively lower in all three lakes, with a more even distribution of abundance across algae classes. In-situ data from March 2017 to March 2018 were compared with algal communities sampled approximately ten years ago in each reservoir to understand any possible long-term changes. The findings show that the algal communities in the reservoirs are relatively stable, particularly those of the filamentous cyanobacteria, chlorophytes, and prymnesiophytes with some notable exceptions, such as the abundance of diatoms, which increased in Bartlett Lake and Lake Pleasant. When in-situ data were compared with Landsat-derived reflectance data, two-band combinations were found to be the best-estimators of chlorophyll-a concentration (as a proxy for algal biomass) and total suspended sediment concentration. The ratio of the reflectance value of the red band and the blue band produced reasonable estimates for the in-situ parameters in Bartlett Lake. The ratio of the reflectance value of the green band and the blue band produced reasonable estimates for the in-situ parameters in Saguaro Lake. However, even the best performing two-band algorithm did not produce any significant correlation between reflectance and in-situ data in Lake Pleasant. Overall, remotely-sensed observations can significantly improve our understanding of the water quality as measured by algae abundance and particulate loading in Arizona Reservoirs, especially when applied over long timescales.
Date Created
2018
Agent

Understanding the Impact of Urbanization on Surface Urban Heat Islands: A Longitudinal Analysis of the Oasis Effect in Subtropical Desert Cities

128161-Thumbnail Image.png
Description

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas,

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into the USGS 24-category Land Use Categories using object-based image analysis with an overall accuracy of 80% to 95.5%. We estimated the land surface temperature (LST) of all available Landsat data from June to August for years 1990, 2000, and 2010 and computed the urban-rural difference in the average LST and Normalized Difference Vegetation Index (NDVI) for each city. Leveraging non-parametric statistical analysis, we also investigated the impacts of city size and population on the urban-rural difference in the summer daytime LST and NDVI. Urban expansion is observed for all five cities, but the urbanization pattern varies widely from city to city. A negative SUHI effect or an oasis effect exists for all the cities across all three years, and the amplitude of the oasis effect tends to increase as the urban-rural NDVI difference increases. A strong oasis effect is observed for Hotan and Kharga with evidently larger NDVI difference than the other cities. Larger cities tend to have a weaker cooling effect while a negative association is identified between NDVI difference and population. Understanding the daytime oasis effect of desert cities is vital for sustainable urban planning and the design of adaptive management, providing valuable guidelines to foster smart desert cities in an era of climate variability, uncertainty, and change.

Date Created
2017-06-30
Agent

Climate Modeling for Renewable Energy Applications

128305-Thumbnail Image.png
Description

The exploration of environmentally friendly energy resources is one of the major challenges facing society today. The last decade has witnessed rapid developments in renewable energy engineering. Wind and solar power plants with increasing sizes and technological sophistication have been

The exploration of environmentally friendly energy resources is one of the major challenges facing society today. The last decade has witnessed rapid developments in renewable energy engineering. Wind and solar power plants with increasing sizes and technological sophistication have been built. Amid this development, meteorological modeling plays an increasingly important role, not only in selecting the sites of wind and solar power plants but also in assessing the environmental impacts of those plants. The permanent land-use changes as a result of the construction of wind farms can potentially alter local climate (Keith et al. [1], Roy and Traiteur [2]). The reduction of wind speed by the presence of wind turbines could affect the preconstruction estimate of wind power potential (e.g., Adams and Keith [3]). Future anthropogenic greenhouse gas emissions are expected to induce changes in the surface wind and cloudiness, which would affect the power production of wind and solar power plants. To quantify these two-way relations between renewable energy production and regional climate change, mesoscale meteorological modeling remains one of the most efficient approaches for research and applications.

Date Created
2014-12-22
Agent