Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Experimental and Theoretical Investigation of Tetrel Clathrates for Li-ion Batteries: Electrochemistry, Structure and Applications
  5. Full metadata

Experimental and Theoretical Investigation of Tetrel Clathrates for Li-ion Batteries: Electrochemistry, Structure and Applications

Full metadata

Description

Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for
future energy storage devices. Electrode materials that alloy with Li, such as Si, are one
of the most promising alternatives for Li-ion battery anodes due to their high capacities.
Tetrel (Si, Ge, Sn) clathrates are a class of host-guest crystalline structures in which
Tetrel elements form a cage framework and encapsulate metal guest atoms. These
structures can form with defects such as framework/guest atom substitutions and
vacancies which result in a wide design space for tuning materials properties. The goal of
this work is to establish structure property relationships within the context of Li-ion
battery anode applications. The type I Ba 8 Al y Ge 46-y clathrates are investigated for their
electrochemical reactions with Li and show high capacities indicative of alloying
reactions. DFT calculations show that Li insertion into the framework vacancies is
favorable, but the migration barriers are too high for room temperature diffusion. Then,
guest free type I clathrates are investigated for their Li and Na migration barriers. The
results show that Li migration in the clathrate frameworks have low energy barriers (0.1-
0.4 eV) which suggest the possibility for room temperature diffusion. Then, the guest
free, type II Si clathrate (Na 1 Si 136 ) is synthesized and reversible Li insertion into the type
II Si clathrate structure is demonstrated. Based on the reasonable capacity (230 mAh/g),
low reaction voltage (0.30 V) and low volume expansion (0.21 %), the Si clathrate could
be a promising insertion anode for Li-ion batteries. Next, synchrotron X-ray
measurements and pair distribution function (PDF) analysis are used to investigate the
lithiation pathways of Ba 8 Ge 43 , Ba 8 Al 16 Ge 30 , Ba 8 Ga 15 Sn 31 and Na 0.3 Si 136 . The results
show that the Ba-clathrates undergo amorphous phase transformations which is distinct
from their elemental analogues (Ge, Sn) which feature crystalline lithiation pathways.
Based on the high capacities and solid-solution reaction mechanism, guest-filled
clathrates could be promising precursors to form alloying anodes with novel
electrochemical properties. Finally, several high temperature (300-550 °C)
electrochemical synthesis methods for Na-Si and Na-Ge clathrates are demonstrated in a
cell using a Na β’’-alumina solid electrolyte.

Date Created
2021
Contributors
  • Dopilka, Andrew (Author)
  • Chan, Candace K (Thesis advisor)
  • Zhuang, Houlong (Committee member)
  • Peng, Xihong (Committee member)
  • Sieradzki, Karl (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Materials Science
  • Battery
  • clathrate
  • electrochemistry
  • Lithium
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
545 pages
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.161854
Embargo Release Date
Tue, 08/01/2023 - 10:39
Level of coding
minimal
Cataloging Standards
asu1
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Materials Science and Engineering
System Created
  • 2021-11-16 04:39:13
System Modified
  • 2021-11-30 12:51:28
  •     
  • 1 year 3 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information