Description

The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in

The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid sparse patterns used by previous work. This work focuses on using these feature-based sparse patterns to generate additional depth information by interpolating regions between clusters of samples that are in close proximity to each other.

8.63 MB application/pdf

Download count: 0

Details

Contributors
Date Created
  • 2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2019
      Note type
      thesis
    • Includes bibliographical references
      Note type
      bibliography
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Anshul Rai

    Machine-readable links