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ABSTRACT

The ubiquity of single camera systems in society has made improving monocu-

lar depth estimation a topic of increasing interest in the broader computer vision

community. Inspired by recent work in sparse-to-dense depth estimation, this thesis

focuses on sparse patterns generated from feature detection based algorithms as op-

posed to regular grid sparse patterns used by previous work. This work focuses on

using these feature-based sparse patterns to generate additional depth information by

interpolating regions between clusters of samples that are in close proximity to each

other. These interpolated sparse depths are used to enforce additional constraints on

the network’s predictions. In addition to the improved depth prediction performance

observed from incorporating the sparse sample information in the network compared

to pure RGB-based methods, the experiments show that actively retraining a network

on a small number of samples that deviate most from the interpolated sparse depths

leads to better depth prediction overall.

This thesis also introduces a new metric, titled Edge, to quantify model perfor-

mance in regions of an image that show the highest change in ground truth depth

values along either the x-axis or the y-axis. Existing metrics in depth estimation like

Root Mean Square Error(RMSE) and Mean Absolute Error(MAE) quantify model

performance across the entire image and don’t focus on specific regions of an image

that are hard to predict. To this end, the proposed Edge metric focuses specifically on

these hard to classify regions. The experiments also show that using the Edge metric

as a small addition to existing loss functions like L1 loss in current state-of-the-art

methods leads to vastly improved performance in these hard to classify regions, while

also improving performance across the board in every other metric.
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Chapter 1

INTRODUCTION

As human beings, we may not fully realize how big a role depth estimation plays

in our lives. Ever since we are born, our ability to gauge the distance of objects from

ourselves enables us to interact with the world around us. This ability plays a key

role in our daily mundane decision-making processes; Do I need to physically move

my legs to walk so that I am able to reach an object? How far should I move my

finger to touch a key on the keyboard? How quickly do I need to react to dodge

an incoming object? All of these tasks, and more, are dependent on our ability to

quickly and accurately gauge the depth of objects in the world around us. This makes

the problem of making machines learn the relative distance of objects around them

extremely important. If we are to develop functioning Artificial Intelligence, depth

estimation is an extremely important prerequisite for the ability to reason about the

world. Therefore, this has been a topic of active research in the computer vision

community.

The widespread impact of deep learning in the computer vision community has been

well documented. Depth estimation is a subfield where its impact can be especially

felt due to the rapid improvements that have been seen over the past few years.

Traditionally, most applications that needed depth information would not consider

using a camera-based system over depth sensors that used structured light or LiDARs;

single camera systems didn’t provide high enough performance, while stereo camera

systems were computationally expensive to calibrate and could only be used in feature-

rich scenes as triangulation would not work otherwise. However, the improvements
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in Graphics Processing Unit(GPU) technology and improved Convolutional Neural

Net(CNN) architectures, coupled with the drawbacks of traditional depth sensors like

LiDARs (much more expensive and have a limited range up to which they can provide

reliable prediction) have made camera-based systems a viable option for accurate and

accessible depth estimation. As single camera systems possess multiple advantages

over their stereo counterparts (cheaper, no calibration required so easier to handle,

ubiquitous in society due to smartphones and other small electronics), single camera

depth estimation is a topic of high importance.

Monocular depth estimation is usually posed as a regression problem; a deep CNN

based architecture takes a single three channel RGB image as input and outputs

an image of the same size with depth predictions for every pixel. To address the

limitations of methods that use only RGB images, recent work(Ma and Karaman 2018)

adds an additional channel that contains easily obtained sparse depth information

with the RGB image to extract additional performance from the network. This sparse

depth information can be acquired either from an additional low-resolution depth

sensor or from a visual odometry algorithm, but the pattern obtained from the former

(regular grid) is very different from the latter(clustered around detected features).

Existing works in this field have focused on regular grid-shaped sparse patterns for

their benchmarks on the popular KITTI(Geiger, Lenz, and Urtasun 2012) and NYU

Depth Dataset V2(Nathan Silberman and Fergus 2012) datasets. But since pure

camera-based systems can only obtain patterns that are clustered around features, and

not uniformly spaced across the image, we focus our work on benchmarking results

with feature-based sparse depth patterns. Therefore, in this thesis, we focus on the

supervised learning of monocular depths using sparse patterns generated from feature

detection algorithms like ORB(Rublee et al. 2011).
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Using feature-based sparse patterns provide a more realistic baseline for pure

camera-based systems while still providing the benefits of incorporating sparse depth

information in a model, compared to models that work purely with RGB images. We

can enforce additional constraints on the model by interpolating depths for regions

between the feature based sparse depths that are in close proximity to each other. As

features obtained from feature detectors like ORB are usually clustered, this thesis

argues that the interpolated depths are modeling distinct object surfaces in the RGB

image. As most points on a surface have roughly identical depths, these interpolated

depths can be used as a proxy for ground truth depths to update the deep neural

net model’s parameters. Finally, an active learning framework is used to selectively

retrain network on pixels in the model’s depth predictions that deviate most from the

interpolated depths, which leads to noticeable better depth predictions overall.

As feature based sparse patterns do not provide uniformly spread out sparse depth

information like regular grid-based sparse patterns, we focus on improving depth

predictions of the most challenging parts of the image, namely boundaries of objects

and regions of transitions between objects. To quantify and improve the performance

of the model on such regions this thesis introduces a new metric called “EDGE”. This

thesis shows that while the current state-of-the-art methods perform well in traditional

metrics like RMSE and MAE, it doesn’t perform well on the challenging regions of

the image. Using the EDGE metric as an additional component to the loss function

not only leads to a huge improvement of the state-of-the-art models in the above

mentioned challenging regions, it also leads to an improvement on nearly all the other

metrics as well.
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1.1 Contributions of This Thesis

• In Chapter 2, we consider the monocular depth estimation problem and explores

the different variants. We then explore existing monocular depth estimation

research and provide an explanation of traditional metrics used to benchmark

performance across datasets.

• In Chapter 3, we propose a sparse depth sampling framework that sets a more

realistic baseline for pure camera-based systems compared to existing work.

• In Chapter 4, we propose an interpolation framework that utilizes feature-based

sparse depth samples that can later be used to enforce additional constraints on

model training.

• In Chapter 5, we propose a new metric to quantify prediction performance on

challenging regions in an RGB image. We also show that this metric can be

used as a component to existing loss functions to show improved results on the

baseline NYU-D V2 dataset.

• In Chapter 6, we explain the experimental setting and present our results for

the proposed frameworks and metrics against existing work. We also show why

previous work isn’t well suited for camera only systems through quantitative

results.

• Finally, Chapter 7 concludes the thesis and provides a brief exploration of future

work.
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Chapter 2

BACKGROUND AND METRIC EXPLANATION

2.1 Related Work

Traditional depth estimation work focused on using only RGB images to predict

depths by relying on probabilistic models and domain knowledge based feature engi-

neering. One such approach(Saxena, Chung, and Ng 2006) tried to learn depths with

a Markov Random Field model by trying to estimate the absolute scale of patches

in an RGB image, while others(Konrad, Wang, and Ishwar 2012; Karsch, Liu, and

Kang 2014; Liu, Salzmann, and He 2014) used non-parametric approaches involving

querying of images with similar photometric content from a database.

However, more recent work has been increasingly focused on using deep learning to

solve the depth estimation problem. Pioneering work that utilized deep learning(Eigen,

Puhrsch, and Fergus 2014) used a stacked convolutional neural net(CNN) architecture

to get better predictions where one CNN network predicted the global coarse scale,

while the other refined network predictions. (Laina et al. 2016) introduced a ResNet(He

et al. 2016) based deep residual network to improve performance obtained from using

a deep CNN architecture with a conditional random field(Liu, Shen, and Lin 2015).

Most existing works(Badrinarayanan, Kendall, and Cipolla 2017; Long, Shelhamer,

and Darrell 2015) make use of some variant of the encoder-decoder architecture.

This is because standard encoder-decoder architectures can produce full-resolution

prediction maps with pixel-wise predictions.

Unfortunately, standard methods can’t compete with existing alternative sensors
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like LiDARs. Therefore, current state-of-the-art work has tried to combine the benefits

of using deep neural net architectures with different sensors that can easily produce

sparse depth predictions, which are then combined to produce overall better depth

predictions. (Ma and Karaman 2018) uses uniform sparse depth input concatenated

as an additional channel with RGB images to vastly outperform previous work. (Chen

et al. 2018) proposed an invertible method of parameterizing uniform sparse depth

inputs to a deep neural net model that achieved results comparable to conventional

depth sensors.

2.2 Dataset

2.2.1 NYU-Depth V2 Dataset

The NYU-Depth V2 Dataset(Nathan Silberman and Fergus 2012) is comprised of

RGB and depth image pairs of 464 unique indoor scenes collected with a Microsoft

Kinect V1 sensor with a range of 10 meters. The official train/validation split of

249/215 scenes is used, with the original labelled test of 654 images for benchmarking

model performance. This is the primary dataset used for benchmarking results in this

thesis.

While the original images are of size 640x480, the dimensions used in this thesis

are 304x228 following the methods of (Laina et al. 2016; Eigen, Puhrsch, and Fergus

2014).
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2.3 Metrics

Let the ground truth depths for an image with N pixels be represented with y and

the depth predictions of a model be represented with ŷ. To check the performance

improvements of one technique compared to another, the depth estimation community

uses a fixed set of easily explainable metrics that quantify performance across the

entire image, with each metric being explained in detail later in this section. Each

of these metrics uses a unique formulation combining y and ŷ to explain a unique

performance aspect of the model in question. The standard list of metrics used are:

• Root Mean Square Error

• Mean Absolute Relative Error

• δ1, δ2, δ3

2.3.1 Root Mean Square Error

√
1

N

∑
[ŷ − y]2 (2.1)

The Root Mean Square Error(RMSE) is an always non-negative metric used to

check the fit of the prediction with the ground truth data where a lower value indicates

a better model fit. A value of 0, which is almost never seen in practice, indicates a

perfect fit with the value you want your model to achieve.

Since RMSE is the square root of the square of the difference between the predicted

value and the ground truth value, this metric is very sensitive to outliers as values

that tend to be close to each other have an extremely small effect on the overall metric
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value. Therefore, this metric is a great way to explain the model’s performance with

outliers and hard to classify regions in the image.

When used as a loss for a model, this metric ensures that a model heavily penalizes

outlier predictions, but it doesn’t ensure closeness of fit as most of the predictions

that are relatively close to each other will tend to have similar values after taking the

square root of the squared difference. RMSE is a good choice for a loss when it is

critical to get good performance on outliers.

2.3.2 Mean Absolute Relative Error

1

N

∑(
|ŷ − y|
y

)
(2.2)

The Mean Absolute Relative Error(REL) is an always non-negative metric used to

check the fit of the prediction to the ground truth data where a lower value indicates

a better model fit. A value of 0, which is almost never seen in practice, indicates a

perfect fit with the value you want your model to achieve.

Since REL is the absolute difference between the predicted value and the ground

truth value divided by the ground truth value, this metric provides the average

performance across all pixels as the metric doesn’t treat outliers differently from

inliers. Therefore, this metric is great way to explain the model’s overall performance

across the image.

When used as a loss for a model, this metric ensures that a model works towards

getting a good fit. This allows model predictions to come closer to the ground truth

value compared to RMSE as small differences are not suppressed further(Willmott and
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Matsuura 2005). REL is a good choice for a loss when it is critical to get predictions

that are extremely close to the ground truth values.

2.3.3 Relative Distance Based Metrics (δ1, δ2, δ3)

δi =
card

({
ŷi : max

{
ŷi
yi
, yi
ŷi

}
< 1.25i

})
card ({yi})

(2.3)

The δi metrics are use to compare the ratio of pixels correctly labelled within

a maximum allowed relative error 125i. A higher value is better. Using the three

δ metrics simultaneously allows to compare model predictions within different scalar

ranges. Therefore, these metrics are helpful to understand if our model predictions

are close to the ground truth values, without putting on emphasis on how close the

values are.
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Chapter 3

FEATURE BASED SPARSE DEPTH SAMPLING

Existing state-of-the-art methods that utilize sparse depths have shown exciting

results far surpassing previous benchmarks on the NYU-Depth V2 and KITTI(Geiger,

Lenz, and Urtasun 2012) datasets. While these results are very promising, one issue

that can be raised is that such methods can’t be effectively used in a camera-only

system as the sparse depths used by these methods tend to be uniformly spread out

throughout the image. Such sparse patterns are definitely possible to be obtained

from a sensor like a LiDAR but it is unrealistic to expect the same from a camera.

This is because the sparse patterns from camera-only systems tend to be clustered

around distinct features like edges in an image, and are seldom uniformly spread

throughout the image as assumed by these works. Therefore, this thesis focuses on

extracting performance from more realistic feature-based sparse patterns that can be

obtained from cameras by leveraging methods similar to those employed in computer

graphics research and concepts from active learning(Cohn, Atlas, and Ladner 1994).

3.1 Feature Detection Background

Feature detection is a low-level image processing operation that is usually the first

step of more complex computer vision algorithms like Visual Odometry algorithms

used for Simultaneous Localization And Mapping(SLAM). Therefore, having a good

feature detector is usually a prerequisite to good performance for algorithms that

10



contain a feature detection module as this module usually guides an algorithm only

towards regions in an image where a feature is detected.

Since the definition of a “feature” is ambiguous, the kind of feature detected by a

detector varies between applications. Traditionally, features detected by camera only

systems that perform sparse depth estimation through SLAM algorithms use feature

detectors that classify edges and descriptive shapes as a feature. Consequently, in this

thesis, we focus on generating sparse depth patterns similar to those generated by

camera SLAM algorithms, where sparse depth information can be obtained from a

scene by locating edges and descriptive features.

To mimic the feature detection operation performed by SLAM algorithms, we

explore two feature detection algorithms:

• Scale Invariant Feature Transform(Lowe et al. 1999)

• Oriented FAST and Rotated BRIEF(Rublee et al. 2011)

3.1.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform(SIFT) is a pioneering feature detection

algorithm to describe local features detected in an image. It is widely used in a

diverse variety of applications, not limited to mapping and navigation, image stitching,

tracking, and object recognition.

SIFT works by providing feature descriptions to any interesting features detected

in an object in an image. These extracted feature descriptions, called descriptors, are

stored in a database so that they can then be used to identify the object in other

images. These descriptors are local and are solely based on the appearance of the
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object. The highly distinctive nature of the detected features make it easy to extract

and reduce chances of mismatch with other features in a database.

Since it is imperative that these features be detected independent of the orientation

of the object in the new image, the detected features tend to be along the edges of

the object as they are high contrast/frequency regions. This allows SIFT to provide

strong feature detection even when objects of interest are occluded or surrounded by

other objects as SIFT descriptors are invariant to uniform scaling and orientation.

3.1.2 Oriented FAST and Rotated BRIEF

While SIFT provides a solid and well tested feature detection offering, the algorithm

as-is isn’t frequently used compared to other alternatives as it was patented upon its

inception in 1992. Therefore, one popular fast and efficient alternative to SIFT that

is widely used in most modern computer vision applications is Oriented FAST and

rotated BRIEF(ORB).

ORB uses a very fast binary descriptor that is rotation invariant and resistant to

noise to deliver comparable performance to SIFT at a speed increase of around two

orders of magnitude in most cases. This allows it to be used a viable alternative to SIFT

for real time algorithms like visual odometry by removing the large computational

burden that comes with SIFT.

3.2 Sparse Sampling Methods Comparison

The depth sampling of sparse depths in existing state-of-the-art work is performed

by assigning a Bernoulli probability of sampling to every pixel in the ground truth
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depth. If we want to sample m points from the ground truth depth, the Bernoulli

sampling probability of each valid depth pixel is p = m
n
, where n is the number of

valid depth pixels in the ground truth depth. This sampling strategy results in a quite

uniform, grid-shaped distribution of sparse samples across the image and the selection

of a number of pixels that is around the expectation m. This sampling strategy can

also be used as a data augmentation technique as different sparse patterns can be

obtained for a unique RGB image as this sparse depth sampling technique is

independent of the RGB image.

While the above-mentioned sampling strategy is flexible with the number of sparse

samples and is robust to targeted noise as the pattern is spread throughout the image,

it isn’t a realistic approximation of camera-only systems that extract depth information

from detected feature points as described above. To that end, the sparse sampling

strategy used in this thesis is feature-based and not probabilistic in nature. This

results in a sparse sampling technique that is dependent on the RGB image.

The sampling strategy is straightforward; if we want to sample m points from the

ground truth depth, an ORB feature detector is run to detect m features in the RGB

image after which the depth information corresponding to the features selected are

sampled. This results in sparse patterns that correspond to the edges of objects and

around other descriptive features. While the previous sampling strategy resulted in a

uniformly spread out, grid-shaped pattern of sparse samples, this method results in

sparse samples that are in isolated clusters. The differences between these sparse depth

patterns become more pronounced as the number of sparse depth points sampled,

m, increases. This can be visualized in the figures of the next subsection where the

probabilistic sparse sampling strategy is compared against the feature-based sampling

strategy for the same number of sparse samples across three random RGB images

13



taken from the NYU-D V2 dataset. The clustered nature of feature-based

sparse sampling becomes increasingly obvious as the number of samples

increases.

3.2.1 Visual Comparison With Increasing Number of Sparse Samples

(a) Image of a messy room (b) 20 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 1: Sparse Sampling comparison for 20 samples in a messy room
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(a) Image of a clean room (b) 20 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 2: Sparse Sampling comparison for 20 samples in a clean room

15



(a) Image of a room with paintings (b) 20 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 3: Sparse Sampling comparison for 20 samples in a room with paintings
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(a) Image of a messy room (b) 50 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 4: Sparse Sampling comparison for 50 samples in a messy room
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(a) Image of a clean room (b) 50 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 5: Sparse Sampling comparison for 50 samples in a clean room
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(a) Image of a room with paintings (b) 50 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 6: Sparse Sampling comparison for 50 samples in a room with paintings
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(a) Image of a messy room (b) 100 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 7: Sparse Sampling comparison for 100 samples in a messy room
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(a) Image of a clean room (b) 100 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 8: Sparse Sampling comparison for 100 samples in a clean room
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(a) Image of a room with paintings (b) 100 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 9: Sparse Sampling comparison for 100 samples in a room with paintings
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(a) Image of a messy room (b) 200 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 10: Sparse Sampling comparison for 200 samples in a messy room
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(a) Image of a clean room (b) 200 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 11: Sparse Sampling comparison for 200 samples in a clean room
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(a) Image of a room with paintings (b) 200 ORB features detected

(c) Probabilistic Sparse Sampling (d) Feature-based Sparse Sampling

Figure 12: Sparse Sampling comparison for 200 samples in a room with paintings
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Chapter 4

SPARSE DEPTH INTERPOLATION AND ACTIVE LEARNING FRAMEWORK

Once the feature-based sparse depth map is obtained, it can be concatenated

as an additional channel along with the three channels of an RGB image into the

encoder-decoder architecture that was used in the state-of-the-art work. While doing

this allows us to set up a baseline performance threshold, it is not interesting enough in

its novelty to be counted as an important contribution to the field of depth estimation.

To this end, this thesis focuses on exploiting the clustered nature of the feature-based

sampled sparse depths. While the clustered nature of sampled sparse depths of

a feature-based approach does not provide the robustness of a probabilistic, grid-

shaped sparse sampling strategy where the uniform distribution of the sampled depths

provides some prior knowledge of every region in an image, it provides us the ability

to utilize estimation techniques to increase the number of sparse depth points for

which we have prior information. This is done by exploiting the proximity of sampled

sparse depth points in the feature-based sampling strategy by interpolating sparse

depth information after using an estimation technique similar to ones used in the

computer graphics community. These interpolated sparse depths not only provide

more information about pixels in distinct regions of an image, they also enable us

to incorporate an active learning framework to further improve performance of the

network by focusing on pixel predictions that deviate the most from the estimated

interpolated depth, thereby acting as a constraint without using leaking ground truth

depth information to the network.
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4.1 Interpolation Methodology

To interpolate sparse depth information of unknown pixels that are enclosed by

distinct clusters of the sampled feature-based sparse depths, we use an estimation

technique for interpolation that is similar to those used in computer graphics for

mesh-based triangulation. This interpolation is done by drawing unique triangles

between uniques sets of sampled sparse depth points that are in the same cluster. To

get the depth information of unknown pixels that lie on the same triangular plane we

solve the equation of the plane that connects the three vertices of the triangle. Finally,

we obtain the estimated depth information for all unknown pixels that lie within the

same cluster by solving the equation of the plane on which the unknown pixel lies

on. Interpolation of the sparse depths to get additional estimated depth information

provides multiple benefits: Firstly, it vastly increases the count of pixels for which we

have some kind of depth information, and this leads to a more robust depth estimation

prediction. Secondly, it enables the application of the active learning paradigm; the

estimated sparse depth information obtained from solving the plane equations can

be used as an additional constraint during neural network training without explicitly

using ground truth depths.

4.1.1 Triangulation Methodology And Visual Interpolation Results

The process of drawing a mesh composed of distinct triangles between unique

sampled sparse depth sets is the key prerequisite to performing the interpolation. Prior

to this, a method to divide the original sampled sparse depths into distinct clusters

must be established. To do this, a hyperparameter called cluster distance is created,
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where cluster distance is the maximum distance a point can be from another point

from the same cluster. Point-wise cluster association is done for every sampled sparse

depth point which results in the formation of distinct clusters. Finally, triangulation

is performed independently for each cluster.

While there are several triangulation algorithms that can be used to draw unique

triangles between three unique sampled sparse depth points in a cluster, in this thesis

we use Delaunay Triangulation(Delaunay et al. 1934) as it maximizes the minimum

angle of all triangles in the triangulation. This property is especially useful for

interpolation as it helps to avoid generating triangles with one or two extremely acute

angles which leads to thin triangles. Therefore, Delaunay Triangulation can break

the planar surface connecting points contained within distinct clusters in the sampled

sparse depth into a mesh composed of well-shaped triangles.

Figure 13: Delaunay Triangulations Obtained From Different Clusters In The Same
Feature-based Sparse Sampling
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After the triangular mesh of the planar surface of a cluster has been obtained,

the estimated depth of unknown points in the cluster is obtained by solving the

plane equation of the triangle on which a point lies. This leads to an extremely

significant increase in the number of pixels for which the model has some

kind of depth information.
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(a) Image of a messy room (b) Ground Truth Depths

(c) Sparse Depths From 100 Features (d) Interpolated Sparse Depths

(e) Sparse Depths From 200 Features (f) Interpolated Sparse Depths

Figure 14: Interpolated Sparse Depths for features detected in a messy room
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(a) Image of a clean room (b) Ground Truth Depths

(c) Sparse Depths From 100 Features (d) Interpolated Sparse Depths

(e) Sparse Depths From 200 Features (f) Interpolated Sparse Depths

Figure 15: Interpolated Sparse Depths for features detected in a clean room
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(a) Image of a room with paintings (b) Ground Truth Depths

(c) Sparse Depths From 100 Features (d) Interpolated Sparse Depths

(e) Sparse Depths From 200 Features (f) Interpolated Sparse Depths

Figure 16: Interpolated Sparse Depths for features detected in a room with paintings
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4.2 Active Learning

Active Learning is a supervised machine learning paradigm where the learning

algorithm is provided samples at each iteration to selectively train on, separate

from the original training data set. This kind of learning can potentially teach a

learning algorithm a concept with a lesser number of examples than the case where

the algorithm has to spend multiple additional epochs to learn the same concept.

This is possible because some unique samples can provide more valuable information

when isolated than when provided in a batch alongside typical data that the model

performs well on.

In our setting, we utilize the interpolated depths generated from the original

sampled sparse feature-based depths along with the active learning paradigm to

selectively train the network on samples that are the hardest to learn. This is done

by creating an additional training loop for the model in addition to the one where

it trains on the entire training data set. In the new training loop, the generated

interpolated sparse depths are utilized as the output that the model must optimize

towards. During every iteration of this training loop, the model is selectively

trained on samples that deviate most from the interpolated sparse depths,

and not the ground truth depths.

Here, the estimated interpolated sparse depths are treated as proxy target pre-

dictions for the actual target predictions that are the ground truth depths. This

assumption is possible because of the feature-based sampling strategy; since the

sampled sparse depths correspond to features detected in the RGB image by the

ORB feature detector, there is an assurance that each independent cluster of features

corresponds to points that lie on roughly the same object surface in the RGB image.
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Therefore, it follows that the new interpolated sparse depths obtained from solving the

plane equations connecting the original sampled sparse depths for each independent

cluster are good approximations for the ground truth depths since the original sampled

sparse depths for a cluster lie on roughly the same object surface.

This adds an additional constraint during model training; not only do overall

model predictions need to be comparable to the ground truth target depths, but the

model must also focus on predictions that were previously outliers. In our setting,

outliers tend to be at the object boundaries separating distinct objects in an RGB

image. This is because all points that lie on an object are roughly at the same depth,

and moving from one object to another leads to a sharp change in depth value. Since

these image regions where there is a transition between objects are minuscule in terms

of number of pixels compared to the rest of the image, our experiments have shown

that existing models focus on improving performance on the other regions of the image

at the cost of performance in these regions of object transitions, therefore they can be

classified as outliers for the model.

Utilizing the active learning paradigm, therefore, allows the model to selectively

train on outliers, with respect to the estimated interpolated depth, during the training

loop in addition to the original training process with the ground truth data. This

acts as additional training data that the model previously did not have access to as

the samples that the model gets to train on during the active learning training loop

will change per iteration depending on the predictions that deviate the most from

the estimated interpolated sparse depths. Our experiments show that utilizing this

paradigm leads to noticeably better model performance across all metrics.
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(a) Without Active Learning

(b) With Active Learning

Figure 17: Comparison of Frameworks With and Without Active Learning Framework
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Chapter 5

THE EDGE METRIC

Motivated by the results obtained from using the active learning paradigm, a major

contribution of this thesis is the formulation of a novel metric, titled the Edge metric,

to track the performance of the model on the regions where there are sudden drastic

changes in depth values, which tend to be the hardest regions to classify in an image.

Such regions tend to be at the boundaries and edges of objects in a scene, as described

in Chapter 4. In addition to the metric effectively being able to track performance on

object transition regions, we show that existing state-of-the-art work can be improved

dramatically by incorporating this new Edge metric as a small component of a model’s

loss function.

5.1 Drawbacks of Existing Metrics

While existing metrics that are used to track performance in depth estimation do

a good job of reporting performance across the entire image as described in 2, they

do not specifically track performance at a region of interest in an image. Therefore,

while they are great at understanding how well a model is performing over the entire

image, they do not give a reader any information about how specific parts of an image

are affecting the overall metric.

For example, while the value of the Root Mean Square Error(RMSE) can give

the reader an indication of the performance of a model on all outliers in an image, it

doesn’t explicitly focus on the performance of the model on the highest contributing

36



outliers. This is where the Edge metric truly shines, as it is explicitly modeled to

track the performance of the model on regions of an image that intuitively should

be the biggest contributors to all the other primary metrics. Therefore, optimizing

towards a better Edge metric score in most cases will also lead to better performance

in other metrics as outliers are usually the biggest contributors to every metric.

5.2 Methodology

We make use of the image gradient values of every pixel in the ground truth depth

of an image, which can be defined as the difference in depth value of a pixel and its

preceding pixel. The process to compute the Edge metric value of an image can be

broken down into the following steps:

• Regions in the ground truth depth image that show non-negligible changes in

the image gradient along either the x-axis or the y-axis are identified.

• These image gradient values are modeled as a normal distribution to compute

the mean and standard deviation.

• Special focus is placed on pixels that exhibit an image gradient value that is

present in the tails of the modeled normal distribution. In this case, only the

image gradient values along either the x-axis or the y-axis whose absolute

value is greater than the mean image gradient value of the image plus twice the

standard deviation of the normal image gradient value distribution of the image

are considered. All the other pixels are ignored.

• Finally, the Mean Absolute Error between the ground truth depth and the

predicted depth is computed, but only at these pixels in the ground truth depth

image that have the highest image gradients.
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5.3 Incorporating With Traditional Loss Functions

The experiments in this thesis show that incorporating the Edge metric as a loss to

existing loss function like L1 loss leads to improved performance of the state-of-the-art

model on the Edge metric and most of the other primary metrics as well. The new

loss is formulated as

θ ∗ l1loss + (1− θ) ∗ edgeloss (5.1)

where l1loss is the L1 loss, edgeloss is the loss from the Edge metric, and θ is the

hyperparameter controlling the contribution of each individual loss.

PyTorch(Paszke et al. 2017) code snippet implementing the forward pass of the

new proposed loss:

def forward ( s e l f , pred , target , theta =0.90) :

valid_mask = ( target >0). detach ( )

d i f f = ta r g e t − pred

d i f f = d i f f [ valid_mask ]

l 1_ lo s s = d i f f . abs ( ) . mean ( )

def image_gradients ( image ) :

image_shape = image . shape

batch_size , depth , height , width = image_shape

dy = image [ : , : , 1 : , : ] − image [ : , : , :−1 , : ]

dx = image [ : , : , : , 1 : ] − image [ : , : , : , :−1]

shape = [ batch_size , depth , 1 , width ]

dy = torch . cat ( [ dy ,

torch . z e r o s ( shape ,
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dtype=torch . f loat ) . cuda ( ) ] ,

dim=2)

dy = torch . reshape (dy , image_shape )

shape = [ batch_size , depth , height , 1 ]

dx = torch . cat ( [ dx ,

torch . z e r o s ( shape ,

dtype=torch . f loat ) . cuda ( ) ] ,

dim=3)

dx = torch . reshape (dx , image_shape )

return dy , dx

def edge_mask (dy , dx ) :

dy_mask_greater = dy > dy .mean ( ) + 2∗dy . std ( )

dy_mask_lesser = dy < dy .mean ( ) − 2∗dy . std ( )

dy_mask = dy_mask_greater | dy_mask_lesser

dx_mask_greater = dx > dx .mean ( ) + 2∗dx . std ( )

dx_mask_lesser = dx < dx .mean ( ) − 2∗dx . std ( )

dx_mask = dx_mask_greater | dx_mask_lesser

mask = dy_mask | dx_mask

return mask

dy_true , dx_true = image_gradients ( t a r g e t )

mask = edge_mask ( dy_true , dx_true )

target_edges = ta rg e t [ mask ]

pred_edges = pred [ mask ]
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edge_abs_diff = ( target_edges − pred_edges ) . abs ( )

s e l f . l o s s = theta ∗ l 1_ lo s s

+ (1− theta )∗ edge_abs_diff . mean ( )

return s e l f . l o s s

(a) Image of a messy room (b) Ground Truth Depths

(c) Image Gradients along x-axis (d) Image Gradients along y-axis

Figure 18: Image Gradients of a messy room
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(a) Image of a clean room (b) Ground Truth Depths

(c) Image Gradients along x-axis (d) Image Gradients along y-axis

Figure 19: Image Gradients of a clean room
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(a) Image of a room with paintings (b) Ground Truth Depths

(c) Image Gradients along x-axis (d) Image Gradients along y-axis

Figure 20: Image Gradients of a room with paintings
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(a) Image Gradients along x-axis (b) Distribution along x-axis

(c) Image Gradients along y-axis (d) Distribution along y-axis

Figure 21: Distribution of Image Gradients of a messy room
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(a) Image Gradients along x-axis (b) Distribution along x-axis

(c) Image Gradients along y-axis (d) Distribution along y-axis

Figure 22: Distribution of Image Gradients of a clean room
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(a) Image Gradients along x-axis (b) Distribution along x-axis

(c) Image Gradients along y-axis (d) Distribution along y-axis

Figure 23: Distribution of Image Gradients of a room with paintings
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(a) Depths of messy room (b) Pixels considered for Edge

(c) Depths of clean room (d) Pixels considered for Edge

(e) Depths of room with paintings (f) Pixels considered for Edge

Figure 24: Pixels considered for Edge metric from Ground Truth Depths
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Chapter 6

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Network Architecture

To validate the efficacy of our proposals, we use a deep learning approach as

the learning algorithm of choice. We use the encoder-decoder Convolutional Neu-

ral Network(CNN) architecture popularized by (Laina et al. 2016) that achieved

state-of-the-art performance in purely RGB based depth estimation. To benchmark

performance, we use the same network as (Ma and Karaman 2018) shown in the

below Figure. The network takes in an input with four channels; three channels for

RGB and one channel for sampled sparse depth. Since our experiments are conducted

specifically on the NYU-D V2 dataset, unlike previous work we use ResNet-50(He

et al. 2016) as the feature extracting layers which act as the encoder.

Figure 25: CNN architecture taken from (Ma and Karaman 2018). Encoding layers
are in blue, decoding layers are in yellow.
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6.2 Hyperparameters

To train our network, we utilize a few key hyperparameters that are tailored for

unique use-cases. We compare results across combinations of these hyperparameters

in the following sections.

• num_samples: Number of sparse depth samples being passed to the network.

Possible options-

– 20

– 50

– 100

– 200

• sparsifier : Sparse sampling strategy used. Possible options-

– uar: probabilistic sampling strategy from (Ma and Karaman 2018)

– feat: New Proposed Feature-based sampling strategy

• criterion: Loss function used. Possible options-

– l1: L1 loss

– active: Active Learning paradigm, adds additional L1 loss for predictions

that deviate from interpolated depths

– edge: New proposed loss defined in equation 5.1

6.3 Training Environment

All experiments were run on two NVIDIA Tesla V100 GPUs with 16GB of memory,

with all code written in Python using the PyTorch(Paszke et al. 2017) framework.
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The weights of the encoding layer were pretrained on the ImageNet(Deng et al. 2009)

dataset.

For model training, we use the same fixed hyperparameters as (Ma and Karaman

2018) for benchmarking; a batch size of 16, 20 training epochs, a learning rate of 0.01

that is reduced by 20% every 5 epochs, and a weight decay of 10−4 for regularization.

As mentioned in Chapter 2, the dataset used is the NYU-D V2 dataset.

6.4 Results

The metrics used for comparing performance are the ones described in Chapter 2

and the Edge metric proposed in Chapter 5.

• Root Mean Square Error(RMSE): Lower value is better

• Mean Absolute Relative Error(REL): Lower value is better

• Mean Absolute Error(MAE): Lower value is better

• δ1, δ2, δ3: Higher value is better

• Edge: Lower value is better

In the following tables, ↓ indicates that a lower value is better for the metric, while

an ↑ indicates a higher value is better.
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6.4.1 feat versus uar

We first check the performance of our proposed feature-based sparse sampling

strategy against the existing state-of-the-art model. As expected, while the proposed

sparse sampling strategy does perform better than the existing 2d laser scan based fu-

sion approach(Liao et al. 2017), it doesn’t outperform the state-of-the-art performance

since sparse maps obtained from this method possess information about the entire

RGB image and aren’t clustered around detected features as discussed in section 3.2.

num_samples sparsifier RMSE(↓) REL(↓) δ1(↑) δ2(↑) δ3(↑)
20 uar 0.351 0.078 0.930 0.984 0.996

feat 0.504 0.135 0.826 0.956 0.989
50 uar 0.300 0.066 0.949 0.988 0.997

feat 0.467 0.121 0.854 0.968 0.991
100 uar 0.273 0.056 0.961 0.991 0.998

feat 0.437 0.114 0.872 0.971 0.992
200 uar 0.245 0.050 0.969 0.993 0.998

feat 0.423 0.110 0.877 0.971 0.992
225 (Liao et al. 2017) 0.442 0.104 0.878 0.964 0.989

Table 1: feat(feature-based sparse sampling) versus uar(probabilistic sparse
sampling)
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6.4.2 feat versus feat with active learning

Next, we quantify the performance improvements obtained from using the active

learning framework described in Section 4.2. We benchmark the frameworks perfor-

mance against the baseline performance of our proposed feature-based sparse sampling

strategy and we see an improvement in all the metrics across all the parameters.

num_samples criterion RMSE(↓) REL(↓) δ1(↑) δ2(↑) δ3(↑)
20 l1 0.504 0.135 0.826 0.956 0.989

active 0.497 0.132 0.832 0.961 0.989
50 l1 0.467 0.121 0.854 0.968 0.991

active 0.454 0.119 0.859 0.969 0.991
100 l1 0.437 0.114 0.872 0.971 0.992

active 0.427 0.111 0.877 0.971 0.992
200 l1 0.423 0.110 0.877 0.971 0.992

active 0.393 0.101 0.893 0.977 0.993

Table 2: Comparing model performance between l1(no active learning) versus
active(with active learning) with fixed feat sparsifier. active outperforms l1 in all

settings.

6.4.3 Effects of Incorporating Proposed Loss

Finally, we check the effects of incorporating our proposed loss function in the

current state-of-the-art model(model with θ = 1.0 in the table). We clearly see a

noticeable improvement in most of the primary metrics even with minor contribution

from loss associated with the edge metric. This improvement becomes more noticeable

as the number of samples increases.
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(a) RMSE (b) REL

(c) δ1 (d) δ2

Figure 26: Metric Comparison for model with active learning versus without. Top
row: lower is better; bottom row: higher is better.
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num_samples θ RMSE(↓) REL(↓) Edge(↓) δ1(↑) δ2(↑) δ3(↑)
20 1.0 0.351 0.078 0.474 0.930 0.985 0.996

0.95 0.359 0.080 0.468 0.926 0.982 0.995
0.90 0.351 0.080 0.457 0.927 0.985 0.996
0.75 0.358 0.087 0.447 0.919 0.984 0.996
0.50 0.368 0.090 0.443 0.915 0.984 0.996
0.25 0.386 0.100 0.445 0.903 0.981 0.995
0.0 0.441 0.120 0.469 0.864 0.973 0.993

50 1.0 0.300 0.066 0.431 0.949 0.989 0.997
0.95 0.294 0.064 0.416 0.952 0.989 0.997
0.90 0.297 0.066 0.420 0.952 0.990 0.997
0.75 0.293 0.066 0.398 0.949 0.989 0.997
0.50 0.310 0.073 0.403 0.942 0.990 0.997
0.25 0.326 0.083 0.399 0.930 0.987 0.997
0.0 0.351 0.091 0.403 0.920 0.985 0.996

100 1.0 0.273 0.057 0.417 0.961 0.992 0.998
0.95 0.272 0.055 0.390 0.960 0.991 0.997
0.90 0.265 0.057 0.390 0.962 0.992 0.998
0.75 0.275 0.061 0.385 0.958 0.991 0.998
0.50 0.265 0.061 0.357 0.956 0.991 0.998
0.25 0.294 0.072 0.372 0.946 0.990 0.997
0.0 0.317 0.082 0.373 0.937 0.988 0.997

200 1.0 0.245 0.050 0.388 0.970 0.994 0.998
0.95 0.232 0.046 0.364 0.971 0.994 0.998
0.90 0.240 0.053 0.370 0.971 0.994 0.999
0.75 0.245 0.053 0.356 0.968 0.994 0.999
0.50 0.249 0.057 0.344 0.965 0.994 0.998
0.25 0.252 0.062 0.333 0.960 0.992 0.997
0.0 0.280 0.068 0.348 0.957 0.992 0.998

Table 3: Comparing model performance for different values of θ with fixed edge
criterion and uar sparsifier. θ = 1.0 corresponds to l1 criterion.
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(a) RMSE (b) REL

(c) δ1 (d) δ2

(e) Edge

Figure 27: Metric Comparison for SoTA model with l1 loss versus SoTA model with
proposed loss (θ = 0.9). Top row: lower is better; middle row: higher is better;

bottom row: lower is better.
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(a) RMSE (b) REL

(c) δ1 (d) δ2

(e) Edge

Figure 28: Metric Comparison for SoTA model with l1 loss versus SoTA model with
proposed loss (θ = 0.95). Top row: lower is better; middle row: higher is better;

bottom row: lower is better.
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To further validate the efficacy of the proposed loss, we use it in our proposed

feature-based sampling strategy and benchmark the results against the results obtained

from using the active learning paradigm with the feat sparsifier. We use θ = 0.9

for our proposed loss as it showed good results while benchmarking with the uar

sparsifier. We see that using a feat sparsifier based model with our proposed loss and

without active learning performs better than a feat sparsifier based model with l1

loss active learning.

num_samples criterion RMSE(↓) REL(↓) Edge(↓) δ1(↑) δ2(↑) δ3(↑)
20 active 0.497 0.132 0.558 0.832 0.961 0.989

edge 0.486 0.130 0.536 0.837 0.964 0.990
50 active 0.454 0.119 0.519 0.859 0.969 0.991

edge 0.444 0.119 0.492 0.863 0.969 0.991
100 active 0.427 0.111 0.488 0.877 0.971 0.992

edge 0.413 0.109 0.469 0.884 0.973 0.993
200 active 0.393 0.101 0.460 0.893 0.977 0.993

edge 0.387 0.101 0.444 0.896 0.977 0.994

Table 4: Comparing model performance between active(model with active learning)
versus edge(with θ = 0.9) with fixed feat sparsifier. edge outperforms active on all

metrics.
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(a) RMSE (b) REL

(c) δ1 (d) δ2

(e) Edge

Figure 29: Metric Comparison for feat sparsifier based active learning model with l1
loss versus model with proposed loss (θ = 0.9) and no active learning. Top row: lower

is better; middle row: higher is better; bottom row: lower is better.

57



6.4.4 Comparing Performance Against Previous Work For Camera-only Systems

Finally, we quantitatively validate our original hypothesis that previous work (Ma

and Karaman 2018) does not set realistic baselines for camera-only systems as the

sparse patterns used are probabilistic in nature, and are therefore independent of

the contents of an image. This is in stark contrast to our method where we use a

feature-based sparse sampling strategy.

To verify our hypothesis across a fixed number of sparse samples we take two

equivalent models, where one model is trained using the probabilistic sparse sampling

strategy proposed by previous work, while the other is trained on sparse samples

generated from feature detectors. We then test this model on the same RGB data

along with sparse samples generated from the feature-based sampling strategy. This is

done to check whether a model trained using the probabilistic sampling strategy can

show the same performance improvements on test data that is similar to camera-only

systems. It can clearly be seen that this isn’t the case, and that our proposed method

vastly outperforms previous work and therefore is a more realistic baseline for research

work that focuses on utilizing information from only cameras. We compare results

on test data that uses a feature-based sparse sampling strategy with and without

interpolation.
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num_samples sparsifier RMSE(↓) REL(↓) Edge(↓) δ1(↑) δ2(↑)
20 uar 0.670 0.196 0.625 0.711 0.932

feat 0.487 0.131 0.536 0.837 0.962
50 uar 0.650 0.196 0.626 0.716 0.929

feat 0.452 0.123 0.501 0.857 0.967
100 uar 0.645 0.189 0.620 0.697 0.917

feat 0.432 0.114 0.490 0.872 0.972
200 uar 0.839 0.219 0.710 0.590 0.799

feat 0.402 0.106 0.463 0.888 0.977

Table 5: Comparing model performance between uar(probabilistic sparse sampling)
versus feat(feature-based sparse sampling) on test data with feature-based sparse

sampling without interpolation. feat outperforms uar on all metrics.

num_samples criterion RMSE(↓) REL(↓) Edge(↓) δ1(↑) δ2(↑)
20 uar 1.567 0.439 1.155 0.443 0.717

edge 0.486 0.130 0.532 0.839 0.962
50 active 1.469 0.450 1.263 0.391 0.674

edge 0.447 0.120 0.497 0.862 0.969
100 active 1.066 0.327 1.015 0.437 0.783

edge 0.419 0.110 0.476 0.880 0.973
200 active 0.949 0.276 00.866 0.463 0.793

edge 0.383 0.100 0.447 0.898 0.978

Table 6: Comparing model performance between uar(probabilistic sparse sampling)
versus feat(feature-based sparse sampling) on test data with feature-based sparse

sampling with interpolation. feat vastly outperforms uar on all metrics.
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We also validate our results in real world scenarios. In the following video we

compare our model versus previous work on the monocular video feed from a single

camera of a stereo camera pair. We use the RGB image from the single camera of a

stereo camera along with the sparse depths generated from feature-based triangulation

from both the cameras of the stereo camera(Hartley and Zisserman 2003). The visual

results further prove our hypothesis as we can clearly see that depth predictions of

our model clearly distinguish individual objects in a scene while the predictions of the

previous work are haphazard.

Figure 30: Video Results of Monocular Camera Feed Comparing Our Work With
Previous Work. Link: https://youtu.be/-b0fYdtLe9M
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Chapter 7

CONCLUSION

7.1 Summary

Research in monocular depth estimation, and computer vision in general, has been

moving along at a breakneck pace. This rapid speed of innovation makes it imperative

that correct baselines and metrics are established right away so that future work can

build on top of realistic baselines to develop specialized algorithms without spending

a lot of time first hypothesizing and producing results for a reasonable baseline. In

this thesis we take steps towards establishing that baseline for a camera-only system

with no additional sparse depth sensors.

• In Chapter 3 we first set up the groundwork for what a realistic camera-only

system’s baseline could look like and establish the differences between such a

system and one that utilizes an additional sparse sensor. We quantitatively show

why our work is a more realistic baseline in Chapter 6.

• In Chapter 4 we propose a framework that exploits the clustered nature of the

feature-based sparse samples generated from a camera-only system to estimate

additional depth information. We also show that these estimated depths can be

used a constraint during model training to place additional focus on outliers.

• In Chapter 5 we propose a new metric to quantify performance on hard-to-

classify regions. We also show in Chapter 6 that utilizing this metric as an

additional component in existing loss functions leads to improvement in both

the metric itself, and in most of the other primary metrics.
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7.2 Future Work

Since monocular depth estimation is such an open ended research problem, there

are multiple avenues that can be explored by building on top of the work presented in

this thesis.

• Explore the effects of using feature selectors other than ORB for feature-based

sparse depth sampling.

• Experiment with the active learning framework to adaptively weight effects of

training on samples depending on the nature of the outlier.

• Explore the effects of refining the threshold values of the Edge metric by utilizing

it like the δ1 parameters instead of using it like the Root Mean Square metric as

a training loss.
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