Description

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement by N-pulse PIVA is studied using particle tracking (i.e. N-pulse PTVA), and it is shown that an enhancement of at least another order of magnitude is achievable. Furthermore, the capability of N-pulse PIVA to measure unsteady acceleration and force is demonstrated in the context of an oscillating cylinder interacting with surrounding fluid. The cylinder motion, the fluid velocity and acceleration, and the fluid force exerted on the cylinder are successfully measured. On the other hand, a key issue of multi-camera registration for the implementation of N-pulse PIVA is addressed with an accuracy of 0.001 pixel. Subsequently, two applications of N-pulse PTVA to complex flows and turbulence are presented. A novel 8-pulse PTVA analysis was developed and validated to accurately resolve particle unsteady drag in post-shock flows. It is found that the particle drag is substantially elevated from the standard drag due to flow unsteadiness, and a new drag correlation incorporating particle Reynolds number and unsteadiness is desired upon removal of the uncertainty arising from non-uniform particle size. Next, the estimation of turbulence statistics utilizes the ensemble average of 4-pulse PTV data within a small domain of an optimally determined size. The estimation of mean velocity, mean velocity gradient and isotropic dissipation rate are presented and discussed by means of synthetic turbulence, as well as a tomographic measurement of turbulent boundary layer. The results indicate the superior capability of the N-pulse PTV based method to extract high-spatial-resolution high-accuracy turbulence statistics.

Reuse Permissions
  • Included in this item (2)



    Details

    Contributors
    Agent
    Date Created
    • 2018
    Collections this item is in

    Citation and reuse

    Statement of Responsibility

    Liuyang Ding

    Machine-readable links