Description

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras.

Reuse Permissions
  • 599.97 KB application/pdf

    Download count: 0

    Details

    Contributors
    Date Created
    • 2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2016
      Note type
      thesis
    • Includes bibliographical references (pages 119-121)
      Note type
      bibliography
    • Field of study: Mathematics

    Citation and reuse

    Statement of Responsibility

    by Adam Morgan

    Machine-readable links