Matching Items (7)

132466-Thumbnail Image.png

Algebraic Structures in Mathematical Analysis

Description

The purpose of this senior thesis is to explore the abstract ideas that give rise to the well-known Fourier series and transforms. More specifically, finite group representations are used to

The purpose of this senior thesis is to explore the abstract ideas that give rise to the well-known Fourier series and transforms. More specifically, finite group representations are used to study the structure of Hilbert spaces to determine under what conditions an element of the space can be expanded as a sum. The Peter-Weyl theorem is the result that shows why integrable functions can be expressed in terms of trigonometric functions. Although some theorems will not be proved, the results that can be derived from them will be briefly discussed. For instance, the Pontryagin Duality theorem states that there is a canonical isomorphism between a group and the second dual of the group, and it can be used to prove $Plancherel$ theorem which essentially says that the Fourier transform is itself a unitary isomorphism.

Contributors

Created

Date Created
  • 2019-05

132473-Thumbnail Image.png

On the Admittance of Frames in Hilbert C*-Modules

Description

The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in

The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in the early 1950's within the context of nonharmonic Fourier analysis by Duffin and Schaeffer. It was then in 2000, when M. Frank and D. R. Larson extended the concept of frames to the setting of Hilbert C*-modules, it was in that same paper where they asked for which C*-algebras does every Hilbert C*-module admit a frame. Since then there have been a few direct answers to this question, one being that every Hilbert A-module over a C*-algebra, A, that has faithful representation into the C*-algebra of compact operators admits a frame. Another direct answer by Hanfeng Li given in 2010, is that any C*-algebra, A, such that every Hilbert C*-module admits a frame is necessarily finite dimensional. In this thesis we give an overview of the general theory of frames for Hilbert C*-modules and results answering the frame admittance property. We begin by giving an overview of the existing classical theory of frames in Hilbert spaces as well as some of the preliminary theory of Hilbert C*-modules such as Morita equivalence and certain tensor product constructions of C*-algebras. We then show how some results of frames can be extended to the case of standard frames in countably generated Hilbert C*-modules over unital C*-algebras, namely the frame decomposition property and existence of the frame transform operator. We conclude by going through some proofs/constructions that answer the question of frame admittance for certain Hilbert C*-modules.

Contributors

Agent

Created

Date Created
  • 2019-05

157588-Thumbnail Image.png

Weak measure-valued solutions to a nonlinear conservation law modeling a highly re-entrant manufacturing system

Description

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended study which proves that an associated optimal control problem has no optimal $L^1$-solutions that are supported on short time intervals.

The hyperbolic conservation law considered here is a well-established model for a highly re-entrant semiconductor manufacturing system. Prior work established well-posedness for $L^1$-controls and states, and existence of optimal solutions for $L^2$-controls, states, and control objectives. The results on measure-valued solutions presented here reduce to the existing literature in the case of initial state and in-flux being absolutely continuous measures. The surprising well-posedness (in the face of measures containing nonzero pure-point part and discontinuous velocities) is directly related to characteristic features of the model that capture the highly re-entrant nature of the semiconductor manufacturing system.

More specifically, the optimal control problem is to minimize an $L^1$-functional that measures the mismatch between actual and desired accumulated out-flux. The focus is on the transition between equilibria with eventually zero backlog. In the case of a step up to a larger equilibrium, the in-flux not only needs to increase to match the higher desired out-flux, but also needs to increase the mass in the factory and to make up for the backlog caused by an inverse response of the system. The optimality results obtained confirm the heuristic inference that the optimal solution should be an impulsive in-flux, but this is no longer in the space of $L^1$-controls.

The need for impulsive controls motivates the change of the setting from $L^1$-controls and states to controls and states that are Borel measures. The key strategy is to temporarily abandon the Eulerian point of view and first construct Lagrangian solutions. The final section proposes a notion of weak measure-valued solutions and proves existence and uniqueness of such.

In the case of the in-flux containing nonzero pure-point part, the weak solution cannot depend continuously on the time with respect to any norm. However, using semi-norms that are related to the flat norm, a weaker form of continuity of solutions with respect to time is proven. It is conjectured that also a similar weak continuous dependence on initial data holds with respect to a variant of the flat norm.

Contributors

Agent

Created

Date Created
  • 2019

154345-Thumbnail Image.png

Cuntz-Pimsner algebras of twisted tensor products of correspondences

Description

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras. This second result is applied to several important special cases of Cuntz-Pimsner algebras including topological graph algebras, crossed products by the integers and crossed products by completely positive maps. The result has meaningful interpretations in each context. The third result is an extension of the second result from an ordinary tensor product to a special case of Woronowicz's twisted tensor product. This result simultaneously characterizes Cuntz-Pimsner algebras of ordinary and graded tensor products and Cuntz-Pimsner algebras of crossed products by actions and coactions of discrete groups, the latter partially recovering earlier results of Hao and Ng and of Kaliszewski, Quigg and Robertson.

Contributors

Agent

Created

Date Created
  • 2016

155124-Thumbnail Image.png

Functorial results for C*-algebras of higher-rank graphs

Description

Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts

Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts a functorial approach to study the relationship between k-graphs and their associated C*-algebras. In particular, two functors are given between appropriate categories of higher-rank graphs and the category of C*-algebras, one for Toeplitz algebras and one for Cuntz-Krieger algebras. Additionally, the Cayley graphs of finitely generated groups are used to define a class of k-graphs, and a functor is then given from a category of finitely generated groups to the category of C*-algebras. Finally, functoriality is investigated for product systems of C*-correspondences associated to k-graphs. Additional results concerning the structural consequences of functoriality, properties of the functors, and combinatorial aspects of k-graphs are also included throughout.

Contributors

Agent

Created

Date Created
  • 2016

149906-Thumbnail Image.png

C*-correspondences and topological dynamical systems associated to generalizations of directed graphs

Description

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen.

Contributors

Agent

Created

Date Created
  • 2011

On K-derived quartics and invariants of local fields

Description

This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$,

This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$, as do all of its derivatives. Such a polynomial

is said to be {\it proper} if

its roots are distinct. An unresolved question in the literature is

whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples

are known of proper $K$-derived quartics for a quadratic number field $K$, although other

than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field

is $\Q(\sqrt{3441})$.) I will describe a search for quadratic fields $K$

over which there exist proper $K$-derived quartics. The search finds examples for

$K=\Q(\sqrt{D})$ with $D=...,-95,-41,-19,21,31,89,...$.\\

For the second topic, by Krasner's lemma there exist a finite number of degree $n$ extensions of $\Q_p$. Jones and Roberts have developed a database recording invariants of $p$-adic extensions for low degree $n$. I will contribute data to this database by computing the Galois slope content, inertia subgroup, and Galois mean slope for a variety of wildly ramified extensions of composite degree using the idea of \emph{global splitting models}.

Contributors

Agent

Created

Date Created
  • 2019