Matching Items (11)

147748-Thumbnail Image.png

Twitter Patterns in the Politics of Social Mobilization: #BlackLivesMatter Case Study

Description

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter is a prominent social media platform used as a political medium, contributing to political movements such as #OccupyWallStreet, #MeToo, and #BlackLivesMatter. Using the #BlackLivesMatter movement as an illustrative case to establish patterns in Twitter usage, this thesis aims to answer the question “to what extent is Twitter an accurate representation of “real life” in terms of performative activism and user engagement?” The discussion of Twitter is contextualized by research on Twitter’s use in politics, both as a mobilizing force and potential to divide and mislead. Using intervals of time between 2014 – 2020, Twitter data containing #BlackLivesMatter is collected and analyzed. The discussion of findings centers around the role of performative activism in social mobilization on twitter. The analysis shows patterns in the data that indicates performative activism can skew the real picture of civic engagement, which can impact the way in which public opinion affects future public policy and mobilization.

Contributors

Created

Date Created
  • 2021-05

130851-Thumbnail Image.png

Proofs and Generalizations of the Jordan Curve Theorem

Description

The Jordan curve theorem states that any homeomorphic copy of a circle into R2 divides the plane into two distinct regions. This paper reconstructs one proof of the Jordan curve

The Jordan curve theorem states that any homeomorphic copy of a circle into R2 divides the plane into two distinct regions. This paper reconstructs one proof of the Jordan curve theorem before turning its attention toward generalizations of the theorem and their proofs and counterexamples. We begin with an introduction to elementary topology and the different notions of the connectedness of a space before constructing the first proof of the Jordan curve theorem. We then turn our attention to algebraic topology which we utilize in our discussion of the Jordan curve theorem’s generalizations. We end with a proof of the Jordan-Brouwer theorems, extensions of the Jordan curve theorem to higher dimensions.

Contributors

Agent

Created

Date Created
  • 2020-05

158397-Thumbnail Image.png

Students’ Quantifications, Interpretations, and Negations of Complex Mathematical Statements from Calculus

Description

This study investigates several students’ interpretations and meanings for negations of various mathematical statements with quantifiers, and how their meanings for quantified variables impact their interpretations and denials of these

This study investigates several students’ interpretations and meanings for negations of various mathematical statements with quantifiers, and how their meanings for quantified variables impact their interpretations and denials of these quantified statements. Eight students participated in three separate exploratory teaching interviews and were selected from Transition-to-Proof and advanced mathematics courses beyond Transition-to-Proof. In the first interview, students were asked to interpret mathematical statements from Calculus contexts and provide justifications and refutations for why these statements are true or false in particular situations. In the second interview, students were asked to negate the same set of mathematical statements. Both sets of interviews were analyzed to determine students’ meanings for the quantified variables in the statements, and then these meanings were used to determine how students’ quantifications influenced their interpretations, denials, and evaluations for the quantified statements. In the final interview, students were also be asked to interpret and negation statements from different mathematical contexts. All three interviews were used to determine what meanings comprised students’ interpretations and denials for the given statements. Additionally, students’ interpretations and negations across different statements in the interviews were analyzed and then compared within students and across students to determine if there were differences in student denials across different moments.

Contributors

Agent

Created

Date Created
  • 2020

158200-Thumbnail Image.png

Representing Certain Continued Fraction AF Algebras as C*-algebras of Categories of Paths and non-AF Groupoids

Description

C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to

C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle for higher rank graphs and show that the lack of such an object is necessary for the associated C*-algebra to be AF. Here, I give a class of examples of categories of paths whose associated C*-algebras are Morita equivalent to a large number of periodic continued fraction AF algebras, first described by Effros and Shen in 1980. I then provide two examples which show that the analogue of cycles proposed by Evans and Sims is neither a necessary nor a sufficient condition for the C*-algebra of a category of paths to be AF.

Contributors

Agent

Created

Date Created
  • 2020

157588-Thumbnail Image.png

Weak measure-valued solutions to a nonlinear conservation law modeling a highly re-entrant manufacturing system

Description

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended study which proves that an associated optimal control problem has no optimal $L^1$-solutions that are supported on short time intervals.

The hyperbolic conservation law considered here is a well-established model for a highly re-entrant semiconductor manufacturing system. Prior work established well-posedness for $L^1$-controls and states, and existence of optimal solutions for $L^2$-controls, states, and control objectives. The results on measure-valued solutions presented here reduce to the existing literature in the case of initial state and in-flux being absolutely continuous measures. The surprising well-posedness (in the face of measures containing nonzero pure-point part and discontinuous velocities) is directly related to characteristic features of the model that capture the highly re-entrant nature of the semiconductor manufacturing system.

More specifically, the optimal control problem is to minimize an $L^1$-functional that measures the mismatch between actual and desired accumulated out-flux. The focus is on the transition between equilibria with eventually zero backlog. In the case of a step up to a larger equilibrium, the in-flux not only needs to increase to match the higher desired out-flux, but also needs to increase the mass in the factory and to make up for the backlog caused by an inverse response of the system. The optimality results obtained confirm the heuristic inference that the optimal solution should be an impulsive in-flux, but this is no longer in the space of $L^1$-controls.

The need for impulsive controls motivates the change of the setting from $L^1$-controls and states to controls and states that are Borel measures. The key strategy is to temporarily abandon the Eulerian point of view and first construct Lagrangian solutions. The final section proposes a notion of weak measure-valued solutions and proves existence and uniqueness of such.

In the case of the in-flux containing nonzero pure-point part, the weak solution cannot depend continuously on the time with respect to any norm. However, using semi-norms that are related to the flat norm, a weaker form of continuity of solutions with respect to time is proven. It is conjectured that also a similar weak continuous dependence on initial data holds with respect to a variant of the flat norm.

Contributors

Agent

Created

Date Created
  • 2019

154345-Thumbnail Image.png

Cuntz-Pimsner algebras of twisted tensor products of correspondences

Description

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras. This second result is applied to several important special cases of Cuntz-Pimsner algebras including topological graph algebras, crossed products by the integers and crossed products by completely positive maps. The result has meaningful interpretations in each context. The third result is an extension of the second result from an ordinary tensor product to a special case of Woronowicz's twisted tensor product. This result simultaneously characterizes Cuntz-Pimsner algebras of ordinary and graded tensor products and Cuntz-Pimsner algebras of crossed products by actions and coactions of discrete groups, the latter partially recovering earlier results of Hao and Ng and of Kaliszewski, Quigg and Robertson.

Contributors

Agent

Created

Date Created
  • 2016

150319-Thumbnail Image.png

Non-linear system identification using compressed sensing

Description

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components. The most popular techniques for non-linear system identification entail the use of ANN's (Artificial Neural Networks), which require a large number of measurements of the input and output data at high sampling frequencies. The method developed in this project requires very few samples and the accuracy of reconstruction is extremely high. Furthermore, this method yields the Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast to some ANN approaches that produce only a trained network which might lose fidelity with change of initial conditions or if facing an input that wasn't used during its training. This technique is expected to be of value in system identification of complex dynamic systems encountered in diverse fields such as Biology, Computation, Statistics, Mechanics and Electrical Engineering.

Contributors

Agent

Created

Date Created
  • 2011

150637-Thumbnail Image.png

A chemostat model of bacteriophage-bacteria interaction with infinite distributed delays

Description

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.

Contributors

Agent

Created

Date Created
  • 2012

157578-Thumbnail Image.png

Controllability and Stabilization of Kolmogorov Forward Equations for Robotic Swarms

Description

Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions

Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a focus on macroscopic or Eulerian approaches. In these approaches, the population of robots is represented as a continuum that evolves according to a mean-field model, which is directly designed such that the corresponding robot control policies produce target collective behaviours.

This dissertation presents a control-theoretic analysis of three types of mean-field models proposed in the literature for modelling and control of large-scale multi-agent systems, including robotic swarms. These mean-field models are Kolmogorov forward equations of stochastic processes, and their analysis is motivated by the fact that as the number of agents tends to infinity, the empirical measure associated with the agents converges to the solution of these models. Hence, the problem of transporting a swarm of agents from one distribution to another can be posed as a control problem for the forward equation of the process that determines the time evolution of the swarm density.

First, this thesis considers the case in which the agents' states evolve on a finite state space according to a continuous-time Markov chain (CTMC), and the forward equation is an ordinary differential equation (ODE). Defining the agents' task transition rates as the control parameters, the finite-time controllability, asymptotic controllability, and stabilization of the forward equation are investigated. Second, the controllability and stabilization problem for systems of advection-diffusion-reaction partial differential equations (PDEs) is studied in the case where the control parameters include the agents' velocity as well as transition rates. Third, this thesis considers a controllability and optimal control problem for the forward equation in the more general case where the agent dynamics are given by a nonlinear discrete-time control system. Beyond these theoretical results, this thesis also considers numerical optimal transport for control-affine systems. It is shown that finite-volume approximations of the associated PDEs lead to well-posed transport problems on graphs as long as the control system is controllable everywhere.

Contributors

Agent

Created

Date Created
  • 2019

157198-Thumbnail Image.png

Hybrid Subgroups of Complex Hyperbolic Lattices

Description

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1).

Contributors

Agent

Created

Date Created
  • 2019