Determination of Propulsion Matrix from Microscale Brownian Motion

171812-Thumbnail Image.png
Description
The propulsion matrix provides a compact description of the locomotion of a single flagella molecular motor in a low Reynolds number environment. The locomotion properties of individual flagellar motors are central to bacterial behavior, including chemotaxis, pathogenesis, and biofilm formation.

The propulsion matrix provides a compact description of the locomotion of a single flagella molecular motor in a low Reynolds number environment. The locomotion properties of individual flagellar motors are central to bacterial behavior, including chemotaxis, pathogenesis, and biofilm formation. However, because conventional hydrodynamic measurement approaches require applied forces, torques, or fluid flows, it is not possible to directly measure the propulsion matrix for an individual microscale helical filament. Here, the limitations inherent to conventional measurement approaches are overcome using a combination of theoretical, experimental, and computational advancements. First, the relationship between the elements of the propulsion matrix with translational and rotational Brownian motion is derived using the fluctuation-dissipation theorem. Next, a volumetric fluorescent imaging using high resolution oblique plane microscopy with sufficient spatio-temporal resolution is conducted to resolve both translation and rotation of individual helical filaments isolated from E.coli's flagellar motor. Finally, a computational framework is developed to track individual helical filaments across six degrees of freedom, extract diffusion coefficients, and quantify the temporal correlation between translation and rotation. This study computed the maximum propulsion efficiency to be around 1.7%. Direct measurement of propulsion efficiency generally agrees with the ensemble and large-scale measurements previously performed using conventional hydrodynamic measurements. The findings suggest that the approach described here can be extended to more complex in-vitro experiments that evaluate microscale molecular motors. For example, evaluating sperm motility without inducing chemotaxis or utilizing a microfluidic setup.
Date Created
2022
Agent

Thermal Transport in Cadmium Sulfide Nanocrystals and Magic-sized Clusters

171541-Thumbnail Image.png
Description
The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However,

The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to magic-sized clusters. Magic-sized clusters have an anomalously high thermal conductivity relative to the extrapolated size-dependence trend line for the colloidal nanocrystals. This anomalously high thermal conductivity could probably result from the monodispersity of magic-sized clusters. To support this conjecture, a method of deliberately eliminating the monodispersity of MSCs by mixing them with colloidal nanocrystals was performed. Experiment results showed that mixtures of nanocrystals and MSCs have a lower thermal conductivity that falls approximately on the extrapolated trendline for colloidal nanocrystal thermal conductivity as a function of size.
Date Created
2022
Agent

Liquid-Phase Thermochemical Reactions For Thermal Energy Transport and Storage

171463-Thumbnail Image.png
Description
District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating

District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating as well as thermal storage. Chapters 2 and 3 present thermodynamic and design analyses for the proposed district heating system. Chapter 4 models the use of liquid-phase thermochemical reactions for on-site solar thermal storage. In brief, the proposed district heating system uses liquid-phase thermochemical reactions to transport thermal energy from a heat source to a heat sink. The separation ensures that the stored thermochemical heat can be stored indefinitely and/or transported long distances. The reactant molecules are then pumped over long distances to the heat sink, where they are combined in an exothermic reaction to provide heat. The product of the exothermic reaction is then pumped back to the heat source for re-use. The key evaluation parameter is the system efficiency. The results demonstrate that with heat recovery, the system efficiency can be up to 77% when the sink temperature equals 25 C. The results also indicate that the appropriate chemical reaction candidates should have large reaction enthalpy and small reaction entropy. Further, the design analyses of two district heating systems, Direct District Heating (DDH) system and Indirect District Heating (IDH) system using the solvated case shows that the critical distance is 106m. When the distance is shorter than 1000,000m, the factors related to the chemical reaction at the user side and factors related to the separation process are important for the DDH system. When the distance is longer than 106m, the factors related to the fluid mechanic become more important. Because the substation of the IDH system degrades the quality of the energy, when the distance is shorter than 106m, the efficiency of the substation is significant. Lastly, I create models for on-site solar thermal storage systems using liquid-phase thermochemical reactions and hot water. The analysis shows that the thermochemical reaction is more competitive for long-duration storage applications. However, the heat recovery added to the thermochemical thermal storage system cannot help improving solar radiation absorption with high inlet temperature of the solar panel.
Date Created
2022
Agent

Compression-Activated Thermally Enhanced Liquid Metal Composites with Tunable Functional Properties

171388-Thumbnail Image.png
Description
Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics

Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and filler particle connectivity in TIMs to achieve thermal percolation while maintaining mechanical compliance. Gallium-based liquid metal (LM) capsules offer a unique set of thermal-mechanical characteristics that make them suitable candidates for high-performance TIM fillers. This dissertation research focuses on resolving the fundamental challenges posed by integration of LM fillers in polymer matrix. First, the rupture mechanics of LM capsules under pressure is identified as a key factor that dictates the thermal connectivity between LM-based fillers. This mechanism of oxide “popping” in LM particle beds independent of the matrix material provides insights in overcoming the particle-particle connectivity challenges. Second, the physical barrier introduced due to the polymer matrix needs to be overcome to achieve thermal percolation. Matrix fluid viscosity impacts thermal transport, with high viscosity uncured matrix inhibiting the thermal bridging of fillers. In addition, incorporation of solid metal co-fillers that react with LM fillers is adopted to facilitate popping of LM oxide in uncured polymer to overcome this matrix barrier. Solid silver metal additives are used to rupture the LM oxide, form inter-metallic alloy (IMC), and act as thermal anchors within the matrix. This results in the formation of numerous thermal percolation paths and hence enhances heat transport within the composite. Further, preserving this microstructure of interconnected multiphase filler system with thermally conductive percolation pathways in a cured polymer matrix is critical to designing high-performing TIM pads. Viscosity of the precursor polymer solution prior to curing plays a major role in the resulting thermal conductivity. A multipronged strategy is developed that synergistically combines reactive solid and liquid fillers, a polymer matrix with low pre-cure viscosity, and mechanical compression during thermal curing. The results of this dissertation aim to provide fundamental insights into the integration of LMs in polymer composites and give design knobs to develop high thermally conducting soft composites.
Date Created
2022
Agent

Condensation Heat Transfer on Actuated Thermally Enhanced Hydrophobic Tubes

168808-Thumbnail Image.png
Description
Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from

Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from mild physical discomfort to more serious conditions such as mold build up in structures and dangerous illnesses in humans. Most common dehumidifiers are based on conventional mechanical refrigeration cycles, where the effects of condensation heat transfer play a critical role in their effectiveness. In these devices, humid ambient air flows over a cold evaporator, which lowers the temperature of the humid ambient air below its dew point temperature and therefore decreases its water content by causing liquid water condensation on the evaporator surface. The rate at which humidity can be extracted from the ambient air is governed in part by how quickly the evaporator can shed the condensed droplets. Recent advances in soft, stretchable, thermally enhanced (through the addition of liquid metals) silicone tubing offer the potential to use these stretchable tubes in place of conventional copper pipe for applications such as dehumidification. Copper is a common material choice for dehumidifier evaporator tubing owing to its ubiquity and its high thermal conductivity, but it has several thermal downsides. Specifically, copper tubes remain static and typically rely on gravity alone to remove water droplets when they reach a sufficient mass. Additionally, copper’s naturally hydrophilic surface promotes film-wise condensation, which is substantially less effective than dropwise condensation. In contrast to copper, thermally enhanced soft stretchable tubes have naturally hydrophobic surfaces that promote the more effective dropwise condensation mode and a soft surface that offers higher nucleation density. However, soft surfaces also increase droplet pinning, which inhibits their departure. This work experimentally explores the effects of periodic axial stretching and retraction of soft tubing internally cooled with water on droplet condensation dynamics on its exterior surface. Results are discussed in terms of overall system thermal performance and real-time condensation imaging. An overall null result is discovered, and recommendations for future experiments are made.
Date Created
2022
Agent

Reducing the Vanadium Dioxide Transition Temperature using Tungsten Doping from Co-sputtering and Furnace Oxidation

168790-Thumbnail Image.png
Description
Vanadium-dioxide-based devices show great switchability in their optical properties due to its dramatic thermochromic phase transition from insulator to metal, but generally have concerns due to its relatively high transition temperature at 68 °C. Doping the vanadium dioxide with tungsten

Vanadium-dioxide-based devices show great switchability in their optical properties due to its dramatic thermochromic phase transition from insulator to metal, but generally have concerns due to its relatively high transition temperature at 68 °C. Doping the vanadium dioxide with tungsten has been shown to reduce its transition temperature at the cost lower optical property differences between its insulating and metallic phases. A recipe is developed through parametric experimentation to fabricate tungsten-doped vanadium dioxide consisting of a novel dual target co-sputtering deposition, a furnace oxidation process, and a post-oxidation annealing process. The transmittance spectra of the resulting films are measured via Fourier-transform infrared spectroscopy at different temperatures to confirm the lowered transition temperature and analyze their thermal-optical hysteresis behavior through the transition temperature range. Afterwards, the optical properties of undoped sputtered vanadium films are modeled and effective medium theory is used to explain the effect of tungsten dopants on the observed transmittance decrease of doped vanadium dioxide. The optical modeling is used to predict the performance of tungsten-doped vanadium dioxide devices, in particular a Fabry-Perot infrared emitter and a nanophotonic infrared transmission filter. Both devices show great promise in their optical properties despite a slight performance decrease from the tungsten doping. These results serve to illustrate the excellent performance of the co-sputtered tungsten-doped vanadium dioxide films.
Date Created
2022
Agent

Fabricating Micro-Tubular Solid Oxide Fuel Cells and Studying the Kinetics of CO and H2 as Fuels

165049-Thumbnail Image.png
Description

One of the most promising technologies for creating power without emissions is Solid Oxide Fuel Cells (SOFC) because it uses oxygen and hydrogen to create electricity with the only byproduct being water. To figure out the optimal design of the

One of the most promising technologies for creating power without emissions is Solid Oxide Fuel Cells (SOFC) because it uses oxygen and hydrogen to create electricity with the only byproduct being water. To figure out the optimal design of the fuel cell, a literature review was conducted to determine the effects of adding both internal and external current collectors as well as the difference length has on the performance. To learn more about the kinetics of the reaction, hydrogen and carbon monoxide disappearance rates were measured to compare the rate at which each species disappears.

Date Created
2022-05
Agent

Application of Ultrasound in Regeneration of Adsorbents

161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
Date Created
2021
Agent

Dynamic Radiative Thermal Management and Optical Force Modulation with Tunable Nanophotonic Structures Based on Thermochromic Vanadium Dioxide

158870-Thumbnail Image.png
Description
This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when the radiating surface temperature is above 345 K and low emissivity when the temperature is less than 341 K. A uniaxial transfer matrix method and Bruggeman effective medium theory are both introduced to model the anisotropic properties of the VO2 to facilitate the design of multilayer VO2-based devices. A new furnace oxidation process is developed for fabricating high quality VO2 and the resulting thin films undergo comprehensive material and optical characterizations. The corresponding measurement platform is developed to measure the temperature-dependent transmittance and reflectance of the fabricated Fabry-Perot samples. The variable heat rejection of the fabricated samples is demonstrated via bell jar and cryothermal vacuum calorimetry measurements. Thermal modeling of a spacecraft equipped with variable emittance radiators is also conducted to elucidate the requirements and the impact for thermochromic variable emittance technology.
The potential of VO2 to be used as an optical force modulating device is also investigated for spacecraft micropropulsion. The preliminary design considers a Fabry-Perot cavity with an anti-reflection coating which switches between an absorptive “off” state (for insulating VO2) and a reflective “on” state (for metallic VO2), thereby modulating the incident solar radiation pressure. The visible and near-infrared optical properties of the fabricated vanadium dioxide are examined to determine if there is a sufficient optical property shift in those regimes for a tunable device.
Date Created
2020
Agent

Fundamentals of Soft, Stretchable Heat Exchanger Design

158822-Thumbnail Image.png
Description
Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far,

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed.
Date Created
2020
Agent