Matching Items (3)
Filtering by

Clear all filters

154344-Thumbnail Image.png
Description
The addition of aminoalkyl-substituted 2,6-bis(imino)pyridine (or pyridine diimine, PDI) ligands to [(COD)RhCl]2 (COD = 1,5-cyclooctadiene) resulted in the formation of rhodium monochloride complexes with the general formula (NPDI)RhCl (NPDI = iPr2NEtPDI or Me2NPrPDI). The investigation of (iPr2NEtPDI)RhCl and (Me2NPrPDI)RhCl by single crystal X-ray diffraction verified the absence of amine arm

The addition of aminoalkyl-substituted 2,6-bis(imino)pyridine (or pyridine diimine, PDI) ligands to [(COD)RhCl]2 (COD = 1,5-cyclooctadiene) resulted in the formation of rhodium monochloride complexes with the general formula (NPDI)RhCl (NPDI = iPr2NEtPDI or Me2NPrPDI). The investigation of (iPr2NEtPDI)RhCl and (Me2NPrPDI)RhCl by single crystal X-ray diffraction verified the absence of amine arm coordination and a pseudo square planar geometry about rhodium. Replacement of the chloride ligand with an outer-sphere anion was achieved by adding AgBF4 directly to (iPr2NEtPDI)RhCl to form [(iPr2NEtPDI)Rh][BF4]. Alternatively, this complex was prepared upon chelate addition following the salt metathesis reaction between AgBF4 and [(COD)RhCl]2. Using the latter method, both [(NPDI)Rh][BF4] complexes were isolated and found to exhibit κ4-N,N,N,N-PDI coordination regardless of arm length or steric bulk. In contrast, the metallation of PPDI chelates featuring alkylphosphine imine substituents (PPDI = Ph2PEtPDI or Ph2PPrPDI) resulted in the formation of cationic complexes featuring κ5-N,N,N,P,P-PDI coordination in all instances, [(PPDI)Rh][X] (X = Cl, BF4). Adjusting the metallation stoichiometry allowed the preparation of [(Ph2PPrPDI)Rh][(COD)RhCl2], which was characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction.
ContributorsLevin, Hagit Ben-Daat (Author) / Trovitch, Ryan J (Thesis advisor) / Gould, Ian R (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2016
154347-Thumbnail Image.png
Description
One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low

One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low molecular weight precursors into complex molecules. A number of inorganic catalysts have been reported that mimic the active sites of energy-relevant enzymes such as hydrogenases and carbon monoxide dehydrogenase. However, these inorganic models fail to achieve the high activity of the enzymes, which function in aqueous systems, as they lack the critical secondary-shell interactions that enable the active site of enzymes to outperform their organometallic counterparts.

To address these challenges, my work utilizes bio-hybrid systems in which artificial proteins are used to modulate the properties of organometallic catalysts. This approach couples the diversity of organometallic function with the robust nature of protein biochemistry, aiming to utilize the protein scaffold to not only enhance rates of reaction, but also to control catalytic cycles and reaction outcomes. To this end, I have used chemical biology techniques to modify natural protein structures and augment the H2 producing ability of a cobalt-catalyst by a factor of five through simple mutagenesis. Concurrently I have designed and characterized a de novo peptide that incorporates various iron sulfur clusters at discrete distances from one another, facilitating electron transfer between the two. Finally, using computational methodologies I have engineered proteins to alter the specificity of a CO2 reduction reaction. The proteins systems developed herein allow for study of protein secondary-shell interactions during catalysis, and enable structure-function relationships to be built. The complete system will be interfaced with a solar fuel cell, accepting electrons from a photosensitized dye and storing energy in chemical bonds, such as H2 or methanol.
ContributorsSommer, Dayn (Author) / Ghirlanda, Giovanna (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2016
157643-Thumbnail Image.png
Description
Redox enzymes represent a big group of proteins and they serve as catalysts for

biological processes that involve electron transfer. These proteins contain a redox center

that determines their functional properties, and hence, altering this center or incorporating

non-biological redox cofactor to proteins has been used as a means to generate redox

proteins with

Redox enzymes represent a big group of proteins and they serve as catalysts for

biological processes that involve electron transfer. These proteins contain a redox center

that determines their functional properties, and hence, altering this center or incorporating

non-biological redox cofactor to proteins has been used as a means to generate redox

proteins with desirable activities for biological and chemical applications. Porphyrins and

Fe-S clusters are among the most common cofactors that biology employs for electron

transfer processes and there have been many studies on potential activities that they offer

in redox reactions.

In this dissertation, redox activity of Fe-S clusters and catalytic activity of porphyrins

have been explored with regard to protein scaffolds. In the first part, modular property of

repeat proteins along with previously established protein design principles have been

used to incorporate multiple Fe-S clusters within the repeat protein scaffold. This study is

the first example of exploiting a single scaffold to assemble a determined number of

clusters. In exploring the catalytic activity of transmetallated porphyrins, a cobalt-porphyrin

binding protein known as cytochrome c was employed in a water oxidation

photoelectrochemical cell. This system can be further coupled to a hydrogen production

electrode to achieve a full water splitting tandem cell. Finally, a cobalt-porphyrin binding

protein known as cytochrome b562 was employed to design a whole cell catalysis system,

and the activity of the surface-displayed protein for hydrogen production was explored

photochemically. This system can further be expanded for directed evolution studies and

high-throughput screening.
ContributorsBahrami Dizicheh, Zahra (Author) / Ghirlanda, Giovanna (Thesis advisor) / Allen, James P. (Committee member) / Seo, Dong Kyun (Committee member) / Arizona State University (Publisher)
Created2019