Matching Items (58)

133531-Thumbnail Image.png

Algorithmic Prediction of Binding Sites of TNFα/TNFR2 and PD-1/PD-L1

Description

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.

Contributors

Agent

Created

Date Created
2018-05

133089-Thumbnail Image.png

Modulating Cyanovirin-N Lectins to Improve Glycoprotein Recognition

Description

Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model

Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve CVN's glycan-binding affinity by conjugating a boronic acid functional group to the N-terminus via N-terminal specific reductive alkylation by way of a benzaldehyde handle. However, large discrepancies were observed when attempting to confirm a successful conjugation, and further work is necessary to identify the causes and solutions for these issues.

Contributors

Agent

Created

Date Created
2018-12

128716-Thumbnail Image.png

A Designed “Nested” Dimer of Cyanovirin-N Increases Antiviral Activity

Description

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the “nested” covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 μM and 900 μM, assigned to domains B and B’ and domains A and A’ respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner.

Contributors

Created

Date Created
2016-06-06

136336-Thumbnail Image.png

The Optimization of Conditions for Maximum Hydrogen Production in Heliobacterium modesticaldum

Description

Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a

Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a microorganism's metabolism to drive hydrogen production. In this study, the conditions for maximum hydrogen production in Heliobacterium modesticaldum were identified and assessed. The cells were grown under varying conditions and their headspaces were sampled using a gas chromatogram to measure the amount of accumulated hydrogen during each condition. Two cell batches were grown under nitrogen-fixing conditions (-NH4+), while the other two cell batches were grown under non-nitrogen-fixing conditions (+NH4+). The headspaces were then exchanged with either nitrogen (N2) or argon (Ar2). It was found that the condition for which the most hydrogen was produced was when the cells were grown under nitrogen-fixing conditions and the headspace was exchanged with argon. These results suggest that most of Heliobacteria modesticaldum's hydrogen production is due to nitrogenase activity rather than hydrogenase activity. Further research is recommended to quantify the roles of nitrogenase, [NiFe] hydrogenase, and [FeFe] hydrogenase.

Contributors

Agent

Created

Date Created
2015-05

136674-Thumbnail Image.png

CO2 Reduction via Functionalized Protein/Organometallic Complexes

Description

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.

Contributors

Agent

Created

Date Created
2014-12

Modulating the Binding Affinity of Cyanovirin-N

Description

Over the past two decades, a significant amount of research has been conducted investigating cyanovirin-N (CVN), which has been shown to be an effective antiviral agent by inhibiting entry of HIV into the cell. The virucidal activity of CVN is

Over the past two decades, a significant amount of research has been conducted investigating cyanovirin-N (CVN), which has been shown to be an effective antiviral agent by inhibiting entry of HIV into the cell. The virucidal activity of CVN is attributed to the tight binding interactions with the glycosylated surfaces of the envelope protein gp120. In this study we investigated how the incorporation of various single point mutations in the glycan binding site would ultimately affect the overall binding affinity of the protein with the glycan. These mutations were predicted through computational methods. Using a BP-docking program and molecular dynamics (MD) simulation, the free energy change upon the ligand binding to the each protein was determined. Experimental work and Isothermal Titration Calorimetry (ITC) was used to determine the Kd values for each protein mutant. A total of three different CVN mutants, T57S, S52T, and a double mutant T57S-S52T, or simply TS, were investigated on the background of P51G-m4-CVN. After conducting the experimental work, it was concluded that the overall fold and stability of the protein was conserved for each mutant. ITC data showed that T57S displayed the lowest dissociation constant valued in the micromolar range. In fact, T57S had a much lower Kd value in comparison to P51G-m4. In contrast, the double mutant TS, showed poor binding affinity for the glycan. When comparing experimental data with the data provided by MD simulation and BP-docking, the results were fairly correlated for all mutants, except for that of the double mutant, TS. According to information provided by MD simulation and BP docking, the binding of the sugar to TS is a very exergonic reaction, which is indicative of very negative free energy change (ΔG). However, the experimental Kd, which was very high, contradicts this data and is thus indicative of lower binding affinity for the glycan. This contradiction is currently being investigated.

Contributors

Created

Date Created
2015-05

147965-Thumbnail Image.png

Development of a HaloTag® Linker for Applications in Photobiocatalysis

Description

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction using lipases, as a model for novel reactivities proceeding via ketyl radical intermediates and hydrogen-bonding-facilitated redox attenuation. After an initial lipase screening of 9 lipases, one lipase (Candida rugosa) was found to perform the pinacol coupling of p-anisaldehyde under standard conditions (fluorescein and 530nm light, 3% yield). Based on a retrosynthetic analysis for the photocatalyst-incorporated HaloTag® linker, the intermediates haloamine 1 and aldehyde 6 were synthesized. Further experiments are underway or planned to complete linker synthesis and conduct pinacol coupling experiments with a bioconjugated system. This project underscores the promising biocatalytic promiscuity of lipases for performing reactions proceeding through ketyl radical intermediates, as well as the underdeveloped potential of incorporating bioengineering principles like bioconjugation into biocatalysis to overcome kinetic barriers to electron transfer and optimize biocatalytic reactions.

Contributors

Agent

Created

Date Created
2021-05

148379-Thumbnail Image.png

Engineered Hydrogen Production in Heliobacteria using Clostridial Hydrogenase: A Probe for Understanding Cell Physiology

Description

Heliobacteria are an anaerobic phototroph that require carbon sources such as pyruvate, <br/>lactate, or acetate for growth (Sattley, et. al. 2008). They are known for having one of the <br/>simplest phototrophic systems, the central component of which is a Type

Heliobacteria are an anaerobic phototroph that require carbon sources such as pyruvate, <br/>lactate, or acetate for growth (Sattley, et. al. 2008). They are known for having one of the <br/>simplest phototrophic systems, the central component of which is a Type I reaction center (RC) <br/>that pumps protons to generate the electrochemical gradient for making ATP. Heliobacteria <br/>preform cyclic electron flow (CEF) with the RC in the light but can also grow chemotropically in <br/>the dark. Many anaerobes like heliobacteria, such as other members of the class Clostridia, <br/>possess the capability to produce hydrogen via a hydrogenase enzyme in the cell, as protons can <br/>serve as an electron acceptor in anaerobic metabolism. However, the species of heliobacteria <br/>studied here, H. modesticaldum have been seen to produce hydrogen via their nitrogenase <br/>enzyme but not when this enzyme is inactive. This study aimed to investigate if the reason for <br/>their lack of hydrogen production was due to a lack of an active hydrogenase enzyme, possibly <br/>indicating that the genes required for activity were lost by an H. modesticaldum ancestor. This <br/>was done by introducing genes encoding a clostridial [FeFe] hydrogenase from C. thermocellum<br/>via conjugation and measuring hydrogen production in the transformant cells. Transformant cells <br/>produced hydrogen and cells without the genes did not, meaning that the heliobacteria ferredoxin <br/>was capable of donating electrons to the foreign hydrogenase to make hydrogen. Because the <br/>[FeFe] hydrogenase must receive electrons from the cytosolic ferredoxin, it was hypothesized <br/>that hydrogen production in heliobacteria could be used to probe the redox state of the ferredoxin <br/>pool in conditions of varying electron availability. Results of this study showed that hydrogen <br/>production was affected by electron availability variations due to varying pyruvate <br/>concentrations in the media, light vs dark environment, use acetate as a carbon source, and being <br/>provided external electron donors. Hydrogen production, therefore, was predicted to be an <br/>effective indicator of electron availability in the reduced ferredoxin pool.

Contributors

Agent

Created

Date Created
2021-05

149763-Thumbnail Image.png

Mapping the RNA-protein interface in telomerase RNP

Description

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment.

Contributors

Agent

Created

Date Created
2011

151711-Thumbnail Image.png

Directed evolution of gp120 binding mutants of the lectin Cyanovirin-N

Description

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations found on enveloped viruses including Ebola, Influenza, and HIV. wt-CVN has micromolar binding to soluble Manα1-2Manα and also inhibits HIV entry at low nanomolar concentrations. CV-N's high affinity and specificity for Manα1-2Manα makes it an excellent lectin to study for its glycan-specific properties. The long-term aim of this project is to make a variety of mutant CV-Ns to specifically bind other glycan targets. Such a set of lectins may be used as screening reagents to identify biomarkers and other glycan motifs of interest. As proof of concept, a T7 phage display library was constructed using P51G-m4-CVN genes mutated at positions 41, 44, 52, 53, 56, 74, and 76 in binding Domain B. Five CV-N mutants were selected from the library and expressed in BL21(DE3) E. coli. Two of the mutants, SSDGLQQ-P51Gm4-CVN and AAGRLSK-P51Gm4-CVN, were sufficiently stable for characterization and were examined by CD, Tm, ELISA, and glycan array. Both proteins have CD minima at approximately 213 nm, indicating largely β-sheet structure, and have Tm values greater than 40°C. ELISA against gp120 and RNase B demonstrate both proteins' ability to bind high mannose glycans. To more specifically determine the binding specificity of each protein, AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN were sent to the Consortium for Functional Glycomics (CFG) for glycan array analysis. AAGRLSK-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN, have identical specificities for high mannose glycans containing terminal Manα1-2Manα. SSDGLQQ-P51Gm4-CVN binds to terminal GlcNAcα1-4Gal motifs and a subgroup of high mannose glycans bound by P51G-m4-CVN. SSDGLQQ-wt-CVN was produced to restore anti-HIV activity and has a high nanomolar EC50 value compared to wt-CVN's low nanomolar activity. Overall, these experiments show that CV-N Domain B can be mutated and retain specificity identical to wt-CVN or acquire new glycan specificities. This first generation information can be used to produce glycan-specific lectins for a variety of applications.

Contributors

Agent

Created

Date Created
2013