Description
The addition of aminoalkyl-substituted 2,6-bis(imino)pyridine (or pyridine diimine, PDI) ligands to [(COD)RhCl]2 (COD = 1,5-cyclooctadiene) resulted in the formation of rhodium monochloride complexes with the general formula (NPDI)RhCl (NPDI = iPr2NEtPDI or Me2NPrPDI). The investigation of (iPr2NEtPDI)RhCl and (Me2NPrPDI)RhCl by

The addition of aminoalkyl-substituted 2,6-bis(imino)pyridine (or pyridine diimine, PDI) ligands to [(COD)RhCl]2 (COD = 1,5-cyclooctadiene) resulted in the formation of rhodium monochloride complexes with the general formula (NPDI)RhCl (NPDI = iPr2NEtPDI or Me2NPrPDI). The investigation of (iPr2NEtPDI)RhCl and (Me2NPrPDI)RhCl by single crystal X-ray diffraction verified the absence of amine arm coordination and a pseudo square planar geometry about rhodium. Replacement of the chloride ligand with an outer-sphere anion was achieved by adding AgBF4 directly to (iPr2NEtPDI)RhCl to form [(iPr2NEtPDI)Rh][BF4]. Alternatively, this complex was prepared upon chelate addition following the salt metathesis reaction between AgBF4 and [(COD)RhCl]2. Using the latter method, both [(NPDI)Rh][BF4] complexes were isolated and found to exhibit κ4-N,N,N,N-PDI coordination regardless of arm length or steric bulk. In contrast, the metallation of PPDI chelates featuring alkylphosphine imine substituents (PPDI = Ph2PEtPDI or Ph2PPrPDI) resulted in the formation of cationic complexes featuring κ5-N,N,N,P,P-PDI coordination in all instances, [(PPDI)Rh][X] (X = Cl, BF4). Adjusting the metallation stoichiometry allowed the preparation of [(Ph2PPrPDI)Rh][(COD)RhCl2], which was characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction.
Reuse Permissions
  • Downloads
    pdf (1.3 MB)

    Details

    Title
    • Synthesis and reactivity of group 9 complexes featuring redox non-innocent ligands
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2016
      Note type
      thesis
    • Includes bibliographical references (pages 62-69)
      Note type
      bibliography
    • Field of study: Chemistry

    Citation and reuse

    Statement of Responsibility

    by Hagit Ben-Daat Levin

    Machine-readable links