Description
Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami technology enables

Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami technology enables the fabrication of nearly arbitrary DNA architectures with nanoscale precision, which can serve as excellent building blocks for the construction of tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, a general design and assembly method are described for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. A critical design parameter, interhelical distance (D), was identified, which determined the conformation of monomer tiles and the outcome of tessellation. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability. To demonstrate the generality of the design method, 9 tile geometries and 15 unique tile designs were generated. The designed tiles were assembled into single-crystalline lattices ranging from tens to hundreds of square micrometers with micrometer-scale, nearly defect-free areas readily visualized by atomic force microscopy. Two strategies were applied to further increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and co-assembling tiles of various geometries. The designed 6 complex tilings that includes 5 Archimedean tilings and a 12-fold quasicrystal tiling yielded various tiling patterns that great in size and quality, indicating the robustness of the optimized tessellation system. The described design and assembly approach can also be employed to create square DNA origami units for algorithmic self-assembly. As the square units assembled and expanded, they executed the binary function XOR, which generated the Sierpinski triangular pattern according to the predetermined instructions. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
Reuse Permissions
  • Downloads
    pdf (20.2 MB)

    Details

    Title
    • Rational Design and Application of DNA Origami Tessellation
    Contributors
    Date Created
    2023
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Chemistry

    Machine-readable links