Rational Design and Application of DNA Origami Tessellation

by

Yue Tang

A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

Approved April 2023 by the Graduate Supervisory Committee:

Hao Yan, Chair Jia Guo Nicholas Stephanopoulos

ARIZONA STATE UNIVERSITY

May 2023

ABSTRACT

Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami technology enables the fabrication of nearly arbitrary DNA architectures with nanoscale precision, which can serve as excellent building blocks for the construction of tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, a general design and assembly method are described for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. A critical design parameter, interhelical distance (D), was identified, which determined the conformation of monomer tiles and the outcome of tessellation. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability. To demonstrate the generality of the design method, 9 tile geometries and 15 unique tile designs were generated. The designed tiles were assembled into single-crystalline lattices ranging from tens to hundreds of square micrometers with micrometer-scale, nearly defect-free areas readily visualized by atomic force microscopy. Two strategies were applied to further increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and co-assembling tiles of various geometries. The designed 6 complex tilings that includes 5 Archimedean tilings and a 12-fold quasicrystal tiling yielded various tiling patterns that great in size and quality, indicating

the robustness of the optimized tessellation system. The described design and assembly approach can also be employed to create square DNA origami units for algorithmic selfassembly. As the square units assembled and expanded, they executed the binary function XOR, which generated the Sierpinski triangular pattern according to the predetermined instructions. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my research advisor, Dr. Hao Yan, for his unwavering support, encouragement, and invaluable guidance throughout the course of my Ph.D. journey. His insightful feedback, attention to detail, and dedication to excellence have inspired me to become a better researcher and academic. I am truly fortunate to have had the opportunity to learn from such a distinguished mentor.

I would also like to extend my heartfelt thanks to my dissertation committee members: Dr. Nicholas Stephanopoulos, and Dr. Jia Guo, for their insightful suggestions, and patience in reviewing my work in the past few years. Their expertise helped me to improve contents of this dissertation and shaped my research in this complex field of study.

I would like to acknowledge the contributions to my colleague Dr. Shuoxing Jiang who guided me to the new research area and gave me valuable insights and advice. I am grateful to my collaborators, especially those from the Center for Molecular Design and Biomimetics: Dr. Xiaodong Qi, Dr. Fei Zhang, Dr. Petr Šulc, Dr. Xu Zhou, Hao Liu, Liangxiao Chen and Lu Yu, for their stimulating discussions and suggestions on my research and career. I thank Leeza Abraham, Dr. Swarup Dey, Dr. Minghui Liu, Dr. Michael Matthies, Dr. Erik Poppleton, Dr. Raghu Pradeep, Abhay Prasad, Deeksha Satyabola, Dr. Guangbao Yao, Dr. Yang Xu, and Rong Zheng for their advice and supports through years that made my time both enjoyable and academically fulfilling.

My sincere appreciation goes to my friends and peers, who have been my pillars of strength during challenging times, providing me with the necessary motivation whenever needed. I am particularly grateful for the friendship and support of Dr. Zhaoqing Yan and Jin Li who have shared this journey with me from the beginning.

Last but certainly not least, I owe my deepest gratitude to my family. To my parents, for instilling in me the values of perseverance, and humility, and for their unwavering belief on me. And finally, to my wife and daughter, for their love and support throughout this journey. This achievement would not have been possible without you all.

		Page
LIST OF FI	GURES	viii
CHAPTER		
1	INTRODUCTION: STRUCTURAL DNA NANOTECHNOLOGY	1
	1.1 Introduction of Self-assembly	1
	1.2 Structure of DNA	2
	1.3 DNA as a Building Material	6
	1.4 Intro of DNA Nanotechnology and Tile Self-assembly	9
	1.5 DNA Origami	14
	1.6 Applications of DNA Origami	18
	1.7 DNA Origami Tessellation	21
	1.8 Challenges and Opportunities	22
	1.9 References	24
2	DNA ORIGAMI TWO-DIMENSIONAL TESSELLATION	29
	2.1 Abstract	29
	2.2 Introduction	30
	2.3 Design Workflow	33
	2.4 Detailed Design Workflow	37
	2.5 Interhelical Distance as a Critical Design Parameter	47
	2.6 Regular Tilings	51
	2.7 Isohedral Tilings with Lower Symmetry	53

TABLE OF CONTENTS

Page

	2.8 Discussion	.55
	2.9 Material and Methods	.56
	2.10 References	.57
3	DNA ORIGAMI COMPLEX TILING	61
	3.1 Abstract	.61
	3.2 Introduction	.62
	3.3 Design Workflow	.65
	3.4 Thermodynamic Analysis of Tile Interactions	.66
	3.5 Complex Tilings	.69
	3.6 Discussion	.79
	3.7 Material and Methods	.79
	3.8 Referance	.80
4	ALGORITHMIC SELF-ASSEMBLY OF DNA ORIGAMI	84
	4.1 Abstract	.84
	4.2 Introduction	.85
	4.3 Design with p3548 Square DNA Origami	.86
	4.4 Design with M13mp18 Square DNA Origami	.91
	4.5 Discussion	.95
	4.6 Material and Methods	.96
	4.7 Referance	.97
5	SUMMARY AND OUTLOOK 1	00
	5.1 Main1	00

CHAPTER	Page
5.2 References	104
REFERENCES	105
APPENDIX	
A SUPPLEMENTAL INFORMATION FOR CHAPTER 2	121
B SUPPLEMENTAL INFORMATION FOR CHAPTER 3	290
C SUPPLEMENTAL INFORMATION FOR CHAPTER 4	400
D PERMISSIONS TO USE COPYRIGHTED MATERIALS	444
E CO-AUTHER APPROVAL	514

Figure Page
1.1 The Primary Structure of DNA
1.2 The Structure of Nucleotide
1.3 The Structure of Nitrogenous Bases
1.4 The Double-Helical Structure of B-DNA
1.5 Foundation Structures of Structural DNA Nanotechnology
1.6 Schematic of the Five Different Structural Arrangements of Double-Crossover
Structures
1.7 Multiarm DNA Structural Motifs12
1.8 DNA Origami Structure and Assembly14
1.9 DNA Origami Nanostructures16
1.10 DNA Origami for Nanofabrication18
1.11 DNA Origami for Biosensing
1.12 DNA Origami for Drug Delivery
1.13 2D DNA Origami Tessellation State of the Art21
2.1 Overview and the Design Workflow for DNA Origami Tessellation Patterns33
2.2 Design Workflow of p3120 Equilateral Triangular DNA Origami Tile37
2.3 Schematic Illustrations of the Isosceles Triangular Subunits of Tiles for Regular
Tilings42
2.4 Schematic Illustrations of Regular Polygonal Tiles Composed of Quadrilateral Subunits
2.5 Design Workflow of M13mp18 Cairo Pentagonal DNA Origami Tile44

LIST OF FIGURES

Figure Page
2.6 Schematic Illustrations of The Subunits Composing Low-Symmetry Tiles46
2.7 Refining Design Parameters to Minimize Tile Curvature
2.8 Regular Tilings
2.9 Tessellation Patterns Assembled From Low-Symmetry Tiles
3.1 Overview of DNA Origami Complex Tessellation Patterns
3.2 Design and AFM Characterization of Nanotubes Assembled from p3548 Square DNA
Origami Tiles with Imbalanced Tile-Tile Interactions67
3.3 Design and AFM Characterization of 2D Lattices Assembled from M13mp18 Square
DNA Origami Tiles with Imbalanced Tile-Tile Interactions
3.4 Regular Tilings Assembled from Equilateral Triangular and Regular Hexagonal Tiles
3.5 Elongated Triangular Tiling (3 ³ .4 ²)72
3.6 Snub Square Tiling (3 ² .4.3.4)
3.7 Trihexagonal Tiling (3.6.3.6)74
3.8 Rhombitrihexagonal (3.4.6.4) Tiling76
3.9 3-Isohedral Pentagonal DNA Origami Tiling77
3.10 12-Fold Quasicrystal Tiling78
4.1 Workflow of Algorithmic Self-Assembly of DNA Origami Into Sierpiński Triangular
Pattern
4.2 2D Lattices Assembled from p3548 Square DNA Origami with Different Sticky End
Arrangements
4.3 Sierpiński Triangular Pattern Assembled from p3548 Square DNA Origami Units 89

Figure 4.4 2D Lattices Assembled from M13mp18 Square DNA Origami with Different Sticky

End Arrangements
4.5 Melting Temperature Measurements of Square DNA Origami
6 Design and AFM Characterization of 2D Lattices Assembled from M13mp18 Square
DNA Origami94

Page

CHAPTER 1

INTRODUCTION: STRUCTURAL DNA NANOTECHNOLOGY

1.1 Introduction of self-assembly

Self-assembly refers to the autonomous formation of organized structures from constituent components without human intervention¹⁻³. This process typically transitions a system from a disorganized state to an ordered state and can manifest at various scales, ranging from molecular to planetary levels, with a multitude of interaction types⁴. Selfassembly is pervasive in nature and living systems, as evidenced by the DNA's double helix structure, protein aggregation and folding, and the organization of cells and living organisms, all of which are consequences of molecular self-assembly. During selfassembly, structural units spontaneously organize or aggregate into stable structures exhibiting specific geometric patterns, primarily driven by non-covalent bond interactions¹. These organized structures often possess properties and functions that individual molecules or rudimentary molecular aggregates lack. Consequently, it is crucial to investigate the assembly of weak interactions within and between molecular aggregates at various levels, forming stable and ordered higher-level structures through synergistic effects⁵. Elucidating the relationship between molecular structure and higherlevel molecular aggregate structure, as well as the interdependence of aggregate structure on its properties is essential. This understanding will enable the uncovering of the fundamental principles governing the multi-level construction of substances.

The bottom-up approach is a crucial aspect of nanotechnology, allowing the creation of new structures, materials, and functions at the nanoscale by utilizing single atoms or molecules⁶. Self-assembly technology, an essential method within the bottom-up

approach, has enabled scientists to obtain various self-assembled structures while continuously uncovering their principles and rules¹. Traditional processing techniques (top-down approach) are often inadequate or even unfeasible when attempting to build devices using atoms or nanoscale functional aggregates as building blocks (bottom-up approach). By leveraging the weak interactions between these building blocks to facilitate automatic assembly, it becomes possible to develop new structures or materials with specific functions that cater to diverse needs⁷. This highlights the methodological significance and unique functionality of self-assembly, enabling the production of materials unattainable through conventional chemical synthesis or processing techniques⁸. Nevertheless, self-assembled structures are influenced by various factors, including solvent, assembly environment, and temperature, all of which significantly impact the final assembled product⁹. Due to the complexity of the assembly process, the principles governing self-assembly continue to be investigated and explored.

1.2 Structure of DNA

Nucleic acids, which store and transmit genetic information, encompass both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA (Figure 1.1), as the primary genetic material, contains nearly all the genetic information of organisms. In 1953, advances in X-ray crystal diffraction technology enabled researchers to obtain accurate images reflecting DNA's structural characteristics. Based on this information, James Watson and Francis Crick, working at the Cavendish Laboratory at the University of Cambridge, inferred the double-helix structure of the DNA molecule¹⁰. Over the following three decades, advancements in DNA sequencing and synthesis technologies, coupled with ongoing progress in microscopic techniques, led to the realization that DNA

2

could serve as more than just a carrier of genetic information; it could also be an effective building material for nanoarchitecture. The potential for DNA as a tool for constructing nanostructures stems from its numerous advantageous properties, such as small scale, stable and flexible structure, sequencing, and ease of manipulation¹¹. While RNA, peptide nucleic acid (PNA), and even proteins are frequently utilized in nanotechnology, DNA offers unique properties that set it apart from other biological macromolecules.

Figure 1.1. The primary structure of DNA.

Figure 1.2. The structure of nucleotide.

DNA, an abbreviation for deoxyribonucleic acid, is a polymer consisting of multiple deoxyribonucleotides. Each nucleotide is composed of three components (Figure 1.2): a deoxyribose sugar (pentose sugar), a phosphate group, and a nitrogenous base¹².

Figure 1.3. The structure of nitrogenous bases.

The bases are classified into two categories (Figure 1.3): the purine class, which includes adenine (A) and guanine (G), and the pyrimidine class, comprising cytosine (C) and thymine (T). Nucleotides are linked by phosphodiester bonds, formed through the covalent bonding of the 5'-phosphate group of one nucleotide with the 3'-hydroxyl group of another nucleotide. This bond exhibits directionality. Two single-stranded DNA molecules can combine in a reverse orientation to form a double-stranded structure via hydrogen bonds between base pairs. The base pairing principle dictates that one strand's A (or T) pairs with the other strand's T (or A), connected by two hydrogen bonds, while one strand's C (or G) pairs with the other strand's G (or C), held together by three hydrogen bonds.

Figure 1.4. The double-helical structure of B-DNA¹³.

1.3 DNA as a building material

DNA serves as an exceptional structural building material for constructing nanostructures, primarily due to its nanometer-scale structural geometry¹⁴. In most instances, two complementary DNA single strands combine, twisting to form a right-handed double helix structure known as B-DNA (Figure 1.4). The hydrophilic phosphate and sugar groups form the backbone, while the hydrophobic nitrogen-containing bases pair up with the base planes perpendicular to the helical axis. The helix features a major groove and a minor groove due to the base pairs' specific angle when forming hydrogen bonds. The B-DNA helix has a diameter of 2 nm, encompasses 10 base pairs per helical repeat, and has a helix pitch of 3.4 nm¹².

Secondly, the Watson-Crick base pairing principle allows for the predictable and programmable hybridization of DNA strands. Utilizing accumulated thermodynamic data, researchers can estimate the thermodynamic properties of a given DNA sequence and predict the hybridization energy of adenine-thymine (A-T) and cytosine-guanine (C-G) base pairs. Despite having only four types of bases, their permutations are virtually limitless. The DNA base sequence provides a means to store and encode vast amounts of information. With a DNA molecule N bases long, there are 4^N possible sequences capable of encoding 4^N distinct types of information¹⁵. Furthermore, the nanoscale size of DNA allows for high-density storage and encoding of information.

Thirdly, DNA structures exhibit a combination of rigidity and flexibility. Doublestranded DNA and single-stranded DNA possess distinct mechanical properties: doublestranded DNA is a rigid molecule, while single-stranded DNA is very flexible coiledstranded. The elastic properties of DNA are also sequence-dependent; for instance, polythymine (poly T) is significantly softer than polyadenine (poly A)¹⁶. In fact, alternating between single and double strands and fully utilizing the staggered complementarity and partial complementarity of single strands are crucial design strategies in DNA nanotechnology¹⁷. Many self-assembled DNA structures can be regarded as a fusion of rigid structural components and flexible functional elements¹⁸. This characteristic enables the creation of various stable nanostructures and intricate nanodevices from DNA. Furthermore, advancements in organic chemistry and biology facilitate the synthesis, modification, and replication of any DNA sequence¹⁴. DNA is a biocompatible material that can be combined with other biological materials to construct multi-component nanostructures, making it an exceptional building material for nanostructure construction¹⁹.

Figure 1.5. Foundation structures of structural DNA nanotechnology. (A) Structure of Holliday Junction²⁰. (B) DNA junction structures in Seeman's original proposal¹⁴.

1.4 Intro of DNA nanotechnology and tile self-assembly

The phenomenon of life serves as an inspiration for DNA self-assembly. In 1964, molecular biologist Robin Holliday discovered a unique DNA structural state²¹ (Figure 1.5A). This state involves a cross structure formed by partial strand exchange between the double-stranded DNA of two homologous chromosomes, called the Holliday intermediate (Holliday junction). Natural Holliday intermediates can slide up and down along a pair of homologous DNA strands with the assistance of specific proteins, driven by ATP. This property holds significant implications for the preservation of genetic information and the recombination and variation of genes. In 1982, New York University chemist Nadrian C. Seeman suggested that DNA molecules could serve not only as genetic material but also as ideal nanoscale building blocks for constructing twodimensional or three-dimensional structures²² (Figure 1.5B). Geometric objects and periodic 2D or 3D lattices can be created using branched DNA junctions with complementary sticky-end cohesions. The fundamental building unit of the 2D DNA structure, known as a "DNA tile," is a four-arm-junction complex composed of four single-stranded DNA. Furthermore, the sequences of the four cohesive ends of each tile are specially designed, with 1 and 1' being complementary and 2 and 2' being complementary. A periodic two-dimensional DNA lattice can be constructed through complementary pairing between cohesive ends in different tiles. After over 30 years of exploration and hard work, Professor Seeman and his colleagues have constructed a variety of intricate DNA nanostructures, giving rise to a new field: structural DNA nanotechnology.

9

Figure 1.6. Schematic of the five different structural arrangements of double-crossover structures²³.

Although the "four-arm junction" may appear to exhibit four-way symmetry, it has been proven to possess only two-way symmetry. Building on this, the Seeman group developed double crossover (DX) tiles²³ (Figure 1.6), where each tile contains two intersections created by two double helices positioned side by side, comprising a total of 4 to 5 single strands. Seeman and Fu designed five DXs: DAE, DAO, DPE, DPON, and DPOW. In these abbreviations, D represents double crossover; A signifies the four chains forming the crossover point, with two consecutive chains in an antiparallel direction. Conversely, P indicates two consecutive chains at the crossover in the same direction, which is parallel. The letter O or E denotes whether an odd or even number of half helical turns are present in the double-crossover molecules, while W or N refers to a major (wide-groove) or minor (narrow-groove) separation between the crossovers. As DX tiles contain two relatively stable crossover structural units, their stiffness is twice that of general linear DNA double strands²⁴, enabling DX tiles to construct larger arrays. Li initially used sticky ends to dock DX one-dimensionally and modified it with a hairpin loop²⁵. Electrophoresis results revealed that all products were linear without cyclization. Winfree altered the crossover distances between DNA double helices, causing the two sticky ends of two tiles in the same direction to be translated and displaced²⁶. This modification transformed the self-assembled structure from one-dimensional to two-dimensional.

Figure 1.7. Multiarm DNA structural motifs. (A) 4 by 4 DNA tile²⁷. (B) 3 by 4 DNA tile²⁸. (C) 5 by 4 DNA tile¹⁶. (D) 6 by 4 DNA tile²⁹.

While DX tiles possess a stable structure, they only extend sticky ends in two directions for connection. In contrast, the four-armed junction DNA complex extends in four directions but is less stable. In 2003, Yan Hao integrated the features of these two

tiles and developed the 4 by 4 tile²⁷ (cross tile) (Figure 1.7A), which resembles a fourarm junction with an additional proprietary DNA strand on each arm. In this design, a central DNA strand binds with all four proprietary DNA strands from the four arms, totaling nine strands for the entire tile. Each arm contains a crossover, enhancing the overall structural stability. When sticky ends are extended from each end, a square lattice can form. This tile offers four codable orientations and more potential sticky ends. Chengde Mao designed each arm of the cross tile to have an identical sequence, resulting in complete symmetry. The 4-arm tile was expanded into 3/5/6-arm tiles^{16, 28, 29} (Figure 1.7B-D), yielding a symmetrical tile series called N-point star DNA tiles, where N represents the number of tile arms. Each tile contains 2N+1 DNA strands according to this design. Due to the symmetry, only three types of DNA strands are needed to form each tile. The 3/4/6-point star DNA tiles were employed to assemble micron-scale arrays and construct symmetrical three-dimensional DNA structures with 3/5-pointed star DNA tiles.

Figure 1.8. DNA origami structure and assembly.³⁰

1.5 DNA origami

In 2006, Paul Rothemund introduced DNA origami³⁰ (Figure 1.8), marking a new era in DNA nanotechnology. Prior to this, DNA self-assembly was solely based on DNA tiles. DNA origami involves binding and folding a long DNA single strand into a specific shape, similar to folding a piece of paper. The long single-stranded DNA used is the M13mp18 phage, which is 7249 bases long and currently the most commercially available DNA single strand of this length, with no obvious sequence repeats in its domains. This long single-stranded DNA is also known as scaffold strands. Scaffold strands interact with short chains, called staple strands (or helper strands), which are divided into several segments complementary to specific parts of the long chain. When scaffold and helper strands are placed in solution and refolded, each helper strand acts like a staple, bringing together parts of the scaffold strands and guiding the spatial configuration changes of the entire scaffold strand. By designing the binding position of each staple strand, the final scaffold strand can be folded into a specific shape. Rothemund's DNA origami design produced a solid figure rather than just a frame. Almost all bases in the scaffold strands are complemented by the staple strands, contributing to the stability and predictability of the product. To further ensure structural stability, crossover units fill the structure. The distance between adjacent crossovers is an integer multiple of the half-pitch, minimizing torsional force within the structure³⁰.

Figure 1.9. DNA origami nanostructures. (A) 3D caged DNA origami³¹. (B) 3D solid DNA origami³². (C) Curved DNA origami³³. (D) Wireframe DNA origami³⁴. (E) Dynamically reconfigurable DNA origami³⁵.

Utilizing DNA origami design, Rothemund successfully created a variety of structures, including polygons, seamed patterns, angled patterns, perforated patterns, and segmented patterns³⁰. These DNA origami structures are approximately 100 nm in length

and width, with high product yields and unit sizes easily reaching 5 MDa. The experimental process for DNA origami is remarkably simple and convenient, in contrast to DNA tile assembly, which requires precise concentration ratios of each DNA strand and long-term annealing. The most significant advantage of DNA origami is the substantial increase in complexity and size of the assembled product. In recent years, numerous design strategies have been developed, resulting in a wide array of DNA origami to unprecedented levels. Following the proposal of these 2D DNA origami designs, researchers have also successfully developed 3D caged DNA origami³¹, 3D solid DNA origami³², curved DNA origami³³, wireframe DNA origami³⁴, and dynamically reconfigurable DNA origami³⁵.

1.6 Applications of DNA origami

Figure 1.10. DNA origami for nanofabrication. DNA origami manufacture with (A) biomolecules³⁶, (B) nanoparticle synthesis³⁷, (C) nanolithography³⁸, and (D) artificial enzyme³⁹.

Figure 1.11. DNA origami for biosensing. DNA origami detection of (A) mRNA sequences⁴⁰ and (B) protein⁴¹. (C and D) DNA origami nanopore^{42, 43}.

Figure 1.12. DNA origami for drug delivery. DNA origami carries (A) small molecules⁴⁴, (B) proteins⁴⁵, and (C) nucleic acids for therapy⁴⁶.

DNA origami's biological and structural features enable a wide range of applications⁴⁷, including but not limited to nanofabrication, biosensing, drug delivery, tessellation⁴⁸, and algorithmic operation⁴⁹. DNA origami has been extensively used to create nanoscale constructs, serving as a template for biomolecule assembly³⁶ (Figure 1.10A), nanoparticle synthesis³⁷ (Figure 1.10B), nanolithography³⁸ (Figure 1.10C), and artificial enzyme production³⁹ (Figure 1.10D). In the realm of DNA origami biosensing, the addressability of DNA origami allows for precise placement of sensing elements^{40, 41} (Figure 1.11A, B). In DNA origami nanopore technology, an analyte enters a thin membrane containing a single pore under an applied potential. This process enables

analyte sensing as the ion flow through the nanopore is altered^{42, 43} (Figure 1.11C, D). DNA origami's biocompatibility, addressability, pattern and size complexity, and surface chemistry make it suitable for use as a delivery vehicle(Figure 1.12), carrying small molecules⁴⁴, proteins⁴⁵, and nucleic acids⁴⁶ for therapeutic purposes.

1.7 DNA origami tessellation

Figure 1.13. 2D DNA origami tessellation state of the art. DNA Origami tilings of (A) regular polygons by frames⁵⁰, (B) equilateral triangles⁵¹ and (C) squares⁵².

In DNA origami tessellation, there are two primary strategies for orienting DNA units. The first strategy involves organizing monomer origami within frames. As illustrated in Zhao's work⁵⁰ (Figure 1.13A), a DNA origami-based frame was designed to bind DNA origami units of different geometries, resulting in a limited-size array. The second strategy entails assembling individual origami into arrays using complementary sticky ends (Figure 1.13B, C). By employing this method, three regular polygons have been achieved using triangular⁵¹, square^{37, 52-54}, and hexagonal wireframe DNA origami units⁵⁵. The maximum lattice size attained is approximately 20 μ m². DNA molecules are nanoscale in size and exhibit high operability. More importantly, their signal recognition and transmission capabilities are exceptional. The Watson-Crick base pairing principle ensures that the four types of DNA bases can form only two pairs: A-T and G-C. This characteristic makes DNA origami a suitable tool for algorithmic operations⁵⁶.

1.8 Challenges and Opportunities

The aim of molecular tessellation research is to understand the fundamental principles that govern intricate patterns in nature, from atomic to macroscopic scales, and leverage them to create precise and ordered structures across scales, enabling the emergence of novel functionalities. However, the lack of inherent modularity and customizable specificity in most molecular building blocks has limited the diversity and efficiency of tessellation dictated solely by their intrinsic self-organizing properties, necessitating the development of a versatile scaffolding material that simultaneously endows the target molecule with long-range order and local precision. DNA origami nanostructures are believed to be ideal building blocks for creating molecular scaffolds⁵⁷⁻⁵⁹. The characteristic programmability and addressability of DNA origami nanostructures

have enabled the rational design of nearly arbitrary DNA architectures and the precise arrangement of functional moieties on the tailored DNA templates^{47, 60, 61}. However, limited by the length of the scaffold strand, the size of a DNA origami nanostructure is typically under 100 nm.

Significant efforts have been made in the past decade to scale up DNA origami into molecular patterns through hierarchical assembly⁶²⁻⁶⁵. However, the size and complexity that can be achieved by current DNA origami tessellation systems have been limited. For example, the area of single-crystalline lattices assembled from DNA origami tiles can hardly reach 20 mm² due to the excessive formation of nuclei and defects. Additionally, only the tilings of three regular polygons have been accomplished by DNA origami tessellation^{51, 52, 55}. Direct co-assembly of size-compatible DNA origami tiles of distinct geometries into molecular patterns has been elusive.

To address these limitations, people need to understand what the general principles for the design of 2D DNA origami of arbitrary shapes for 2D tessellations are. Base on it to minimize the curvature, to control the angle and to tune the bond strength in the DNA origami self-assembly.

1.9 References

1. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. *Science* **2002**, *295* (5564), 2418-2421.

2. Philp, D.; Stoddart, J. F., Self-assembly in natural and unnatural systems. *Angewandte Chemie International Edition in English* **1996**, *35* (11), 1154-1196.

3. Ball, P., The self-made tapestry: pattern formation in nature. **1999**.

4. Marth, J. D., A unified vision of the building blocks of life. *Nature cell biology* **2008**, *10* (9), 1015-1015.

5. Zhang, S., Fabrication of novel biomaterials through molecular self-assembly. *Nature biotechnology* **2003**, *21* (10), 1171-1178.

6. Li, J.; Ye, Q.; Cassell, A.; Ng, H. T.; Stevens, R.; Han, J.; Meyyappan, M., Bottom-up approach for carbon nanotube interconnects. *Applied Physics Letters* **2003**, *82* (15), 2491-2493.

7. Thiruvengadathan, R.; Korampally, V.; Ghosh, A.; Chanda, N.; Gangopadhyay, K.; Gangopadhyay, S., Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. *Reports on Progress in Physics* **2013**, *76* (6), 066501.

8. Whitesides, G. M.; Boncheva, M., Beyond molecules: Self-assembly of mesoscopic and macroscopic components. *Proceedings of the National Academy of Sciences* **2002**, *99* (8), 4769-4774.

9. Okesola, B. O.; Smith, D. K., Applying low-molecular weight supramolecular gelators in an environmental setting–self-assembled gels as smart materials for pollutant removal. *Chemical Society Reviews* **2016**, *45* (15), 4226-4251.

10. Watson, J. D.; Crick, F. H., Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. *Nature* **1953**, *171* (4356), 737-738.

11. Lund, K.; Williams, B.; Ke, Y.; Liu, Y.; Yan, H., DNA nanotechnology: a rapidly evolving field. *Current Nanoscience* **2006**, *2* (2), 113-122.

12. Ghosh, A.; Bansal, M., A glossary of DNA structures from A to Z. Acta Crystallographica Section D: Biological Crystallography **2003**, 59 (4), 620-626.

13. Pray, L., Discovery of DNA structure and function: Watson and Crick. *Nature Education* **2008**, *1* (1), 100.

14. Lin, C.; Liu, Y.; Rinker, S.; Yan, H., DNA tile based self-assembly: building

complex nanoarchitectures. ChemPhysChem 2006, 7 (8), 1641-1647.

15. Smith, A., Nucleic acids to amino acids: DNA specifies protein. *Nature Education* **2008**, *1* (1), 126.

16. Zhang, C.; Su, M.; He, Y.; Zhao, X.; Fang, P. A.; Ribbe, A. E.; Jiang, W.; Mao, C., Conformational flexibility facilitates self-assembly of complex DNA nanostructures. *Proc Natl Acad Sci U S A* **2008**, *105* (31), 10665-9.

17. Seeman, N. C., An overview of structural DNA nanotechnology. *Mol Biotechnol* **2007**, *37* (3), 246-57.

18. Seeman, N. C., Nanomaterials based on DNA. *Annu Rev Biochem* 2010, 79, 65-87.

19. Bujold, K. E.; Lacroix, A.; Sleiman, H. F., DNA nanostructures at the interface with biology. *Chem* **2018**, *4* (3), 495-521.

20. Mao, C., The emergence of complexity: lessons from DNA. *PLoS Biol* **2004**, *2* (12), e431.

21. Holliday, R., A mechanism for gene conversion in fungi. *Genetics Research* **1964**, *5* (2), 282-304.

Seeman, N. C., Nucleic acid junctions and lattices. *J Theor Biol* 1982, 99 (2), 23747.

23. Fu, T. J.; Seeman, N. C., DNA double-crossover molecules. *Biochemistry* **1993**, *32* (13), 3211-20.

24. Sa-Ardyen, P.; Vologodskii, A. V.; Seeman, N. C., The flexibility of DNA double crossover molecules. *Biophys J* **2003**, *84* (6), 3829-37.

25. Li, X.; Yang, X.; Qi, J.; Seeman, N. C., Antiparallel DNA double crossover molecules as components for nanoconstruction. *Journal of the American Chemical Society* **1996**, *118* (26), 6131-6140.

26. Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C., Design and self-assembly of two-dimensional DNA crystals. *Nature* **1998**, *394* (6693), 539-44.

27. Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., DNA-templated self-assembly of protein arrays and highly conductive nanowires. *Science* **2003**, *301* (5641), 1882-4.

28. He, Y.; Chen, Y.; Liu, H.; Ribbe, A. E.; Mao, C., Self-assembly of hexagonal DNA two-dimensional (2D) arrays. *J Am Chem Soc* **2005**, *127* (35), 12202-3.
29. He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C., Highly connected two-dimensional crystals of DNA six-point-stars. *J Am Chem Soc* **2006**, *128* (50), 15978-9.

30. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

31. Ke, Y.; Sharma, J.; Liu, M.; Jahn, K.; Liu, Y.; Yan, H., Scaffolded DNA origami of a DNA tetrahedron molecular container. *Nano Lett* **2009**, *9* (6), 2445-7.

32. Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M., Self-assembly of DNA into nanoscale three-dimensional shapes. *Nature* **2009**, *459* (7245), 414-418.

33. Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H., DNA origami with complex curvatures in three-dimensional space. *Science* **2011**, *332* (6027), 342-6.

34. Zhang, F.; Jiang, S.; Wu, S.; Li, Y.; Mao, C.; Liu, Y.; Yan, H., Complex wireframe DNA origami nanostructures with multi-arm junction vertices. *Nat Nanotechnol* **2015**, *10* (9), 779-84.

35. Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H., Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. *Science* **2015**, *347* (6229), 1446-1452.

36. Nickels, P. C.; Wünsch, B.; Holzmeister, P.; Bae, W.; Kneer, L. M.; Grohmann, D.; Tinnefeld, P.; Liedl, T., Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp. *Science* **2016**, *354* (6310), 305-307.

37. Liu, W.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O., Self-organized architectures from assorted DNA-framed nanoparticles. *Nature chemistry* **2016**, *8* (9), 867-873.

38. Jungmann, R.; Avendano, M. S.; Woehrstein, J. B.; Dai, M.; Shih, W. M.; Yin, P., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. *Nat Methods* **2014**, *11* (3), 313-8.

39. Fu, J.; Liu, M.; Liu, Y.; Woodbury, N. W.; Yan, H., Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. *J Am Chem Soc* **2012**, *134* (12), 5516-9.

40. Ke, Y.; Lindsay, S.; Chang, Y.; Liu, Y.; Yan, H., Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. *Science* **2008**, *319* (5860), 180-3.

41. Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M., Nanomechanical DNA origami'single-molecule beacons' directly imaged by atomic force microscopy. *Nature communications* **2011**, *2* (1), 449.

42. Bell, N. A.; Engst, C. R.; Ablay, M.; Divitini, G.; Ducati, C.; Liedl, T.; Keyser, U. F., DNA origami nanopores. *Nano letters* **2012**, *12* (1), 512-517.

43. Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C., Synthetic lipid membrane channels formed by designed DNA nanostructures. *Science* **2012**, *338* (6109), 932-6.

44. Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z. G.; Zou, G.; Liang, X.; Yan, H.; Ding, B., DNA origami as a carrier for circumvention of drug resistance. *J Am Chem Soc* **2012**, *134* (32), 13396-403.

45. Douglas, S. M.; Bachelet, I.; Church, G. M., A logic-gated nanorobot for targeted transport of molecular payloads. *Science* **2012**, *335* (6070), 831-834.

46. Schuller, V. J.; Heidegger, S.; Sandholzer, N.; Nickels, P. C.; Suhartha, N. A.; Endres, S.; Bourquin, C.; Liedl, T., Cellular immunostimulation by CpG-sequence-coated DNA origami structures. *ACS Nano* **2011**, *5* (12), 9696-702.

47. Wang, P.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y., The beauty and utility of DNA origami. *Chem* **2017**, *2* (3), 359-382.

48. Tikhomirov, G.; Petersen, P.; Qian, L., Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. *Nature* **2017**, *552* (7683), 67-71.

49. Fan, S.; Cheng, J.; Liu, Y.; Wang, D.; Luo, T.; Dai, B.; Zhang, C.; Cui, D.; Ke, Y.; Song, J., Proximity-Induced Pattern Operations in Reconfigurable DNA Origami Domino Array. *Journal of the American Chemical Society* **2020**, *142* (34), 14566-14573.

50. Zhao, Z.; Liu, Y.; Yan, H., Organizing DNA origami tiles into larger structures using preformed scaffold frames. *Nano Lett* **2011**, *11* (7), 2997-3002.

51. Tikhomirov, G.; Petersen, P.; Qian, L., Triangular DNA Origami Tilings. *J Am Chem Soc* 2018.

52. Aghebat Rafat, A.; Sagredo, S.; Thalhammer, M.; Simmel, F. C., Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based proteinbinding cavities. *Nature chemistry* **2020**, *12* (9), 852-859.

53. Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C., Crystalline two-dimensional DNAorigami arrays. *Angew Chem Int Ed Engl* **2011**, *50* (1), 264-7. 54. Tikhomirov, G.; Petersen, P.; Qian, L., Programmable disorder in random DNA tilings. *Nat Nanotechnol* **2017**, *12* (3), 251-259.

55. Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y., Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. *J Am Chem Soc* **2016**, *138* (24), 7733-40.

56. Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J., DNA origami design of dolphin-shaped structures with flexible tails. *ACS Nano* **2008**, *2* (6), 1213-8.

57. Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H., Challenges and opportunities for structural DNA nanotechnology. *Nat Nanotechnol* **2011**, *6* (12), 763-72.

58. Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., Structural DNA nanotechnology: state of the art and future perspective. *J Am Chem Soc* **2014**, *136* (32), 11198-211.

59. Seeman, N. C.; Sleiman, H. F., DNA nanotechnology. *Nature Reviews Materials* **2017**, *3* (1), 1-23.

60. Hong, F.; Zhang, F.; Liu, Y.; Yan, H., DNA Origami: Scaffolds for Creating Higher Order Structures. *Chem Rev* **2017**, *117* (20), 12584-12640.

61. Dey, S.; Fan, C.; Gothelf, K. V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M. A.; Saccà, B.; Simmel, F. C., DNA origami. *Nature Reviews Methods Primers* **2021**, *1* (1), 13.

62. Aghebat Rafat, A.; Pirzer, T.; Scheible, M. B.; Kostina, A.; Simmel, F. C., Surface-Assisted Large-Scale Ordering of DNA Origami Tiles. *Angewandte Chemie International Edition* **2014**, *53* (29), 7665-7668.

63. Woo, S.; Rothemund, P. W., Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. *Nat Commun* **2014**, *5*, 4889.

64. Suzuki, Y.; Endo, M.; Sugiyama, H., Lipid-bilayer-assisted two-dimensional selfassembly of DNA origami nanostructures. *Nature communications* **2015**, *6* (1), 8052.

65. Suzuki, Y.; Sugiyama, H.; Endo, M., Complexing DNA origami frameworks through sequential self-assembly based on directed docking. *Angewandte Chemie International Edition* **2018**, *57* (24), 7061-7065.

CHAPTER 2

DNA ORIGAMI TWO-DIMENSIONAL TESSELLATION

Adapted with permission from Yue Tang, Hao Liu, Qi Wang, Xiaodong Qi, Lu Yu, Petr Šulc, Fei Zhang, Hao Yan, Shuoxing Jiang. **DNA Origami Tessellations** (manuscript under review).

2.1 Abstract

Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami technology enables the fabrication of nearly arbitrary DNA architectures with nanoscale precision, which can serve as excellent building blocks for the construction of tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies. Here, a general design and assembly method were described for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. A critical design parameter, interhelical distance (D), was identified, which determined the conformation of monomer tiles and the outcome of tessellation. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability. The generality of the design method was demonstrated by 9 tile geometries, 15 unique tile designs. The designed tiles were assembled into single-crystalline lattices ranging from tens to hundreds of square micrometers with micrometer-scale, nearly defect-free areas readily visualized by atomic

force microscopy. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.

2.2 Introduction

Tessellation is a mathematical concept that involves the arrangement of geometric shapes to completely cover a plane without gaps or overlaps¹. It appears in various natural and artificial structural forms, spanning scales from the atomic to the macroscopic. The study of tessellation not only helps elucidate the fundamental principles underlying the intricate patterns observed in these systems, but also enlightens the development of functional materials with desired properties. In particular, the tessellation of nanoscale building blocks, including colloidal nanoparticles^{2, 3}, organic compounds⁴⁻⁶, and biomolecules⁷⁻⁹ via bottom-up self-assembly provides a versatile means of engineering two-dimensional materials whose properties can be tailored by altering the long-range order or the local arrangement of constituent units, which has been the common focus of nanomaterials, supramolecular chemistry, and molecular science. Exotic properties can emerge from the ordered arrangements of functional modules that interact with and modulate electromagnetic waves^{10, 11}, electric¹² or magnetic fields^{13, 14}, and cells^{9, 15}, holding promise for applications in photonic crystals, plasmonic metamaterials, electronics, and bioactive materials. However, the lack of inherent modularity and customizable specificity in the majority of nanoobjects has limited the diversity and efficiency of tessellation dictated solely by their intrinsic selforganizing properties, necessitating the development of a versatile scaffolding material that simultaneously endows the target nanoobject with long-range order and local

precision. Programmable DNA self-assembly is advantageous in the fabrication of molecular scaffolds, as it features rational geometric design, nanoscale precision, and user-defined specificity encoded by Watson-Crick base pairing¹⁶⁻¹⁸. More importantly, the order and precision prescribed in the DNA scaffolds can be transferred to molecules or materials lacking self-organizing capability¹⁹⁻²², significantly broadening the scope of material manufacturing.

Among various design strategies, the DNA origami technique²³, which involves folding a long single-stranded DNA (scaffold) by hundreds of short synthetic oligonucleotides (staples) into designed shapes, is exceptionally versatile in manufacturing delicate nanostructures. The characteristic programmability and addressability of DNA origami nanostructures have enabled the rational design of nearly arbitrary DNA architectures and the precise arrangement of functional moieties on the tailored DNA templates²⁴⁻²⁶. However, limited by the length of the scaffold strand, the size of a DNA origami nanostructure is typically under 100 nm. Great efforts have been made in the past decade to scale up DNA origami into molecular patterns via hierarchical assembly, either in solution^{19, 27-31} or on a supported surface³²⁻³⁵. Several nontrivial design guidelines were identified, including curvature correction by matching rules^{27, 29, 31}, the preference of collective weak bonds^{19, 29, 30}, and the balance of structural flexibility and rigidity. These works also demonstrated the profound potential of DNA molecular patterns in metamaterial engineering¹⁹ and single-molecule biophysical assays³¹.

Further increasing the size and complexity of the molecular patterns assembled from DNA origami tiles has been challenging. In order to balance out the intrinsic curvature of monomer tiles, the majority of current DNA origami tessellation systems rely on curvature-correcting matching rules that periodically alter the orientation of tiles via rotation^{27, 29-31}. In contrast, those without curvature correction tend to form nanotubes or defect-prone polycrystalline lattices. Secondly, the area of single-crystalline lattices assembled from DNA origami tiles can hardly reach 20 μ m² due to the excessive formation of nuclei and defects. Moreover, only the tilings of three regular polygons - equilateral triangles³⁰, squares^{27-29, 31} and regular hexagons¹⁹ - have been accomplished by DNA origami tessellation. It is as-yet unknown how to apply current tiling methods to low-symmetry tiles.

To address these limitations, here, we present a general approach for creating DNA origami tiles that self-assemble into tessellation patterns with increased size and complexity (Figure 2.1a). We ascribed the limited tessellation capability of DNA origami tiles to the curvature induced by suboptimal design parameters and identified interhelical distance (**D**) as a critical parameter determining the conformation of DNA origami tiles. A statistical analysis of the tile multimerization products revealed the optimal **D** range of 2.70 ± 0.05 nm. Finely tuned **D** facilitated accurate geometric design of DNA origami tiles, enabling the assembly of 15 tile designs of 9 different geometries into 9 unique tessellation patterns covering Platonic and Laves tilings. Crystalline lattices were obtained for all designs with micrometer-scale, nearly defect-free areas readily visualized by atomic force microscopy (AFM). Remarkably, without implementing any curvature correction mechanism, two regular polygonal designs produced single-crystalline lattices over 120 μ m². As demonstrated by 6 Laves tiling patterns, the system stayed robust as tile symmetry reduced or as unique tile species increased, further increasing the complexity that could be achieved by DNA origami tessellation. This study exploited

finely tuned design parameters to generalize and optimize the construction of DNA origami tessellation patterns that could serve as a larger template for metamaterial engineering, nanolithography, and nanoelectronics.

2.3 Design workflow

desired quadrilateral subunits by rotating one-half of the subunit around its apex. (vi) Two copies of the square subunits and three copies of the kite-shaped subunits can be fitted together into the complete Cairo pentagonal tile. (vii) The design is finalized by generating the scaffold strand (gray), core (blue), and edge (orange) staple strands, assigning sequences, and defining matching rules. (e) A DNA origami tessellation pattern corresponding to the one in (c) is visualized by atomic force microscopy (AFM). The sample pattern is superimposed on the AFM image. Scale bar: 100 nm. (f) A zoomed-out AFM image showing the micrometer-scale order of the DNA origami tessellation pattern. The area corresponding to (e) is marked by a white box. Scale bar: 500 nm.

The workflow for designing regular tiling patterns involves five steps (Figure 2.1b, a more detailed workflow is provided in Figure 2.2). For example, in the case of equilateral triangular tiling, the repeating unit, an equilateral triangular tile, can be split into three identical isosceles triangular subunits sharing the centroid of the triangle (Figure 2.1b, i). The subunit can be represented by an even number of evenly-spaced, parallel line segments perpendicularly aligned at the base of the isosceles triangle (Figure 2.1b, ii). Since each line segment is a simplified model of a DNA duplex, their lengths are defined in an arithmetic progression manner in order to approximate the contour of the subunit and further rounded to integral numbers of base pairs. Next, line segments are converted to double-helical domains based on the structural features of B-DNA (Figure 2.1b, iii). Each nucleotide is abstracted into a point in Euclidean space with (x, y, z)-coordinates calculated. Three copies of the subunit are fitted together to create the prototypic tile (Figure 2.1b, iv), where the coordinates are used to calculate the lengths of singlestranded linkers for nucleotides to be connected in the subsequent steps. The tile design is finalized in Tiamat³⁶, a graphical user interface program for designing DNA nanostructures and sequences (Figure 2.1b, v). In this step, isolated double-helical domains are integrated into an intact DNA origami tile by adding single-stranded linkers,

crossover linkages, and nick points based on established DNA origami design principles. Matching rules are encoded by adding single-stranded overhangs (termed sticky ends) to selected staple strands on the edges of the tile. Edge staple strands that are not selected for presenting sticky ends are deleted, leaving the scaffold unpaired. This workflow generally applies to the design of regular polygonal tiles. One can customize the vertex angle, the number and lengths of constituent DNA double helices in the isosceles triangular subunit to obtain a range of regular polygonal tiles suitable for finite assemblies and tilings.

Generalizing the workflow to tile designs that lack rotational symmetry requires a different splitting strategy and an additional reconfiguration step. Taking Cairo pentagonal tiling (Figure 2.1c), a pattern that has not been achieved through DNA origami tessellation, as an example, we present a workflow for the modular design of DNA origami tiles with reduced symmetry (Figure 2.1d and Figure 2.5). Instead of splitting the geometry of interest into isosceles triangular subunits, an alternative strategy is taken to split the Cairo pentagon into two types of quadrilateral subunits (Figure 2.1d, i): one square and the other kite-shaped. Each subunit is derived from an isosceles triangular subunit, similar to those of regular polygons (Figure 2.1d, ii). The isosceles triangular subunits are sequentially converted into line segments (Figure 2.1d, iii) and DNA double-helical domains (Figure 2.1d, iv) following a similar procedure for designing regular polygonal tiles. Next, the subunits in the form of double helices are reconfigured from isosceles triangular into quadrilateral by rotating half of the helices about the apex of the original isosceles triangle (Figure 2.1d, v). The complete tile can be assembled from two copies of the square subunits and three copies of the kite-shaped

subunits (Figure 2.1d, vi) and finalized using Tiamat (Figure 2.1d, vii). To verify the tiling efficiency of the designed tile, the chemically synthesized staples and bacteriophage-derived scaffold are mixed in a buffer containing magnesium ions and subjected to a one-pot annealing process. As visualized by AFM, the designed DNA origami tessellation pattern exhibits nanometer-scale precision (Figure 2.1e) and micrometer-scale order (Figure 2.1f). The design method does not rely on the rotational symmetry of regular polygons and therefore is theoretically applicable to arbitrary convex polygonal tiles for tessellation.

2.4 Detailed design workflow

Figure 2.2. Design workflow of p3120 equilateral triangular DNA origami tile. (a) The tile of interest consists of three copies of a repeating subunit equivalent to an isosceles triangle with a 120° vertex angle (α). (b) Based on its dimension and geometry, the subunit is converted to an even number of regularly-spaced line segments perpendicularly aligned at the edge opposite to α . Each line segment is a simplified representation of a DNA double helix. Inset: Two parameters, interhelical distance (D) and helical extension (E), are defined to describe the distance between neighboring DNA helices and their difference in length, respectively. (c) Line segments are converted to double-stranded DNA in the Euclidean space based on the structural features of B-form DNA. The (0, 0, 0) point is assigned to the vertex of the subunit. Each nucleotide is abstracted into a point with (x, y, z)-coordinates calculated. The strands for creating the scaffold are gray-colored, while their complementary strands for creating staples are bluecolored. The distances between the two terminal nucleotides of the gray strands in the $(2i)^{th}$ and $(2i+1)^{th}$ duplexes (i = 1, 2, 3, ..., 8) are calculated based on their (x, y, z)coordinates to obtain the minimal lengths of single-stranded linkages (termed scaffold loops) connecting them. Inset: Illustration of an example scaffold loop connecting the terminal nucleotides (marked by red circles) of the gray strands in the second and third duplexes. (d) Three copies of the subunit are reoriented to constitute an equilateral triangle. Inset: Neighboring subunits are bridged by two types of single-stranded linkages. The scaffold bridge connects the two terminal nucleotides (marked by magenta circles) of the gray strands in the 1st and the 18th duplexes of two neighboring subunits, which allows the scaffold strand to travel from one subunit to another. The staple bridge connects the terminal nucleotides (marked by navy circles) of the blue strands in the 2nd through the 17th helices of two neighboring subunits. (e) With all design parameters calculated, the tile design is created using Tiamat³⁶, a design software tool for DNA

nanostructures, and finalized by generating the scaffold strand (gray), core (blue) and edge (orange) staple strands, assigning sequences to scaffold and staples, and defining the matching rule.

We take p3120 equilateral triangular tile as a representative example to introduce the detailed design workflow of regular polygonal tiles and the definition of design parameters. Though a similar workflow was reported previously, changes are made to improve the general applicability and tessellation outcome. Considering the 3-fold rotational symmetry, the design of a complete equilateral triangular tile can be simplified to the design of its repeating subunit, an isosceles triangle with a 120° vertex angle ($\alpha = 120^{\circ}$, Figure 2.2a). The subunit is first converted to an even number of regularly-spaced line segments perpendicularly aligned at the base of the isosceles triangle (Figure 2.2b). Each line segment is a simplified representation of a DNA double helics. In this case, there are 18 of them in the subunit (H = 18). The compactness of DNA double helices is described by the interhelical distance (D = 2.70 nm), which is the distance between the central axes of neighboring helices. The difference in length between neighboring double helices is described by the helical extension (E), ideally, which is associated with D through the tangent function.

$$\tan\frac{\alpha}{2} = \frac{D}{E}$$

E can be further decomposed to the rise per base pair along the helical axis (*r*) multiplied by the average number of additional base pairs per helix (n_{bp}). Assuming **r** is 0.34 nm for B-form DNA, n_{bp} can be calculated from *D*.

$$n_{bp} = rac{E}{r} = rac{D}{r \cdot tan rac{lpha}{2}} \approx 4.585 \ bp$$

We number the line segments from 1 to 18 and assign 36 bp to the shortest one. The number of base pairs in the jth helix can be calculated as follows and further rounded to an integral number.

If j is from 1 to 9,

Number of base pairs =
$$36 + (j-1)n_{bp}$$

If j is from 10 to 18,

Number of base pairs =
$$36 + (\mathbf{H} - j)\mathbf{n}_{bp}$$

For this design, the number of base pairs in the 1st through the 9th double helices are 36, 41, 45, 50, 54, 59, 64, 68, and 73, respectively. The number of base pairs in the 10th through the 18th double helices are in reverse order (i.e., 73, 68, ..., 41, 36). One can also assign the number of base pairs in the longest double helix and calculate the lengths of the rest similarly. The height (h) of the subunit can be calculated from the longest double helix (73 bp). A small gap is added to prevent DNA helices from being crowded at the center of the tile.

$$h = (73 - 1) \times 0.34 + gap$$
$$gap = \frac{D}{tan\frac{\alpha}{2}}$$

Next, the (0, 0, 0) point is assigned to the vertex of the subunit, and the line segments are converted to DNA double helices in the Euclidean space based on the structural features of B-form DNA (Figure 2.2c) using parameters including *r* (0.34 nm/bp), the diameter of DNA double helix (2 nm), and the double-helical twist density (10.44 bp/turn). A 15° correction is introduced to unify the phases of neighboring helices. Each nucleotide is abstracted into a point with (x, y, z)-coordinates calculated. There are two types of nucleotides, one for creating the scaffold strand and the other for creating the staples.

For the former, the (x, y, z)-coordinates of the ith nucleotide in the jth helix are as follows.

$$x = -h + 0.34(i - 1)$$

If j is odd,

$$y = \frac{D-2}{2} + \left(\frac{H}{2} - j\right)D + \left(1 - \cos\left(\frac{360^{\circ}(i-1)}{10.44} + 15^{\circ}\right)\right)$$
$$z = -\sin\left(\frac{360^{\circ}(i-1)}{10.44} + 15^{\circ}\right)$$

If j is even,

$$y = -\frac{D-2}{2} + \left(\frac{H}{2} - j + 1\right)D - \left(1 - \cos\left(\frac{360^{\circ}(i-1)}{10.44} - 15^{\circ}\right)\right)$$
$$z = \sin\left(\frac{360^{\circ}(i-1)}{10.44} - 15^{\circ}\right)$$

For the staple strand, the (x, y, z)-coordinates of the ith nucleotide in the jth helix are as follows.

$$x = -h + 0.34(i - 1)$$

If j is odd,

$$y = \frac{D-2}{2} + \left(\frac{H}{2} - j\right)D + \left(1 - \cos\left(\frac{360^{\circ}(i-1)}{10.44} + 150^{\circ} + 15^{\circ}\right)\right)$$
$$z = -\sin\left(\frac{360^{\circ}(i-1)}{10.44} + 150^{\circ} + 15^{\circ}\right)$$

If j is even,

$$y = -\frac{D-2}{2} + \left(\frac{H}{2} - j + 1\right)D - \left(1 - \cos\left(\frac{360^{\circ}(i-1)}{10.44} - 150^{\circ} - 15^{\circ}\right)\right)$$
$$z = \sin\left(\frac{360^{\circ}(i-1)}{10.44} - 150^{\circ} - 15^{\circ}\right)$$

Three copies of the subunit are made, and a rotation matrix is used to rotate nucleotides in the xy-plane to assemble an equilateral triangle (Figure 2.2d).

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

Single-stranded linkages are needed to integrate isolated DNA double helices into a complex structure. The distance between any two nucleotides to be connected can be calculated from their (x, y, z)-coordinates. For example, to connect a nucleotide at (x_1 , y_1 , z_1) to another nucleotide at (x_2 , y_2 , z_2), the linker length can be calculated as follows.

linker length =
$$\frac{\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}}{0.4} - 1$$

As illustrated in Figure 2.2c, the $(2j)^{th}$ helix is connected to the $(2j+1)^{th}$ helix (j = 1, 2, 3, ..., 8) via a scaffold loop, which allows the scaffold strand to route back when reaching the boundary of the subunit. For this design, the lengths of scaffold loops are 7, 7, 7, 6, 8, 9, and 9 nt, respectively.

As illustrated in Figure 2.2d, the 1st helix of a subunit is connected to the H^{th} helix of its neighbor via a scaffold bridge, allowing the scaffold strand to travel from one subunit to another. The length of the scaffold bridge is 4 nt in this design. Moreover, the (j+1)th helix of a subunit is connected to the (H-j)th helix of its neighbor (j = 1, 2, 3,..., 8) via a staple bridge. The lengths of staple bridges from the vertex to the center of the tile are 5, 5, 4, 2, 1, 0, 2, and 2 nt, respectively.

Figure 2.3. Schematic illustrations of the isosceles triangular subunits of tiles for regular tilings. (a) p3120 equilateral triangular tile, (b) p3548 equilateral triangular tile, (c) M13mp18 equilateral triangular tile, (d) p3548 square tile, (e) M13mp18 square tile, (f) p3548 regular hexagonal tile, (g) M13mp18 regular hexagonal tile, (h) p2820 equilateral triangular tile, and (i) M13mp18 half hexagonal tile. From top to bottom: schematic of the subunit composing a tile, a simplified illustration of DNA double helices composing the subunit (each line segment is a simplified representation of a DNA double helix), and a simplified illustration of the tile composed of double helices. Tile designs are colored differently based on their geometries. All tiles and subunits are drawn to scale. Scale bar: 50 nm.

With all design parameters calculated, the tile is created using Tiamat³⁶, a graphical user interface program for the design of DNA nanostructures and sequences, and finalized by generating the scaffold and staples, assigning sequences, and defining the matching rule (Figure 2.2e). The design workflow applies to equilateral triangular ($\alpha = 120^{\circ}$), square ($\alpha = 90^{\circ}$), and regular hexagonal ($\alpha = 60^{\circ}$) tiles. One can change the values of α , *H*, and the length of the shortest /longest double helix to access a wide variety of DNA origami tile designs for regular tilings (Figure 2.3).

Figure 2.4. Schematic illustrations of regular polygonal tiles composed of **quadrilateral subunits.** (a) equilateral triangular, (b) square, and (c) regular hexagonal tiles. All tiles and subunits are drawn to scale. Scale bar: 50 nm.

Typically, tiles for regular tilings, including equilateral triangular, square, and regular hexagonal tiles (Figure 2.4), are decomposed into isosceles triangular subunits to simplify the design workflow. However, the isosceles triangular subunits for different tile geometries are not compatible with each other, making it difficult to generalize the design workflow to low-symmetry tiles. To address this limitation, we introduce an additional step in which the isosceles triangular subunits are transformed into quadrilateral ones by rotating half of the subunit about the apex of the isosceles triangle. The resultant quadrilateral subunit occupies one corner of a regular polygon, whose internal angle pointing to the center of the tile is the same as the vertex angle of its isosceles triangular counterpart. More importantly, quadrilateral subunits for different tile geometries can be combined for the design of low-symmetry tiles.

Figure 2.5. Design workflow of M13mp18 Cairo pentagonal DNA origami tile. (a) There are two ways to split the Cairo pentagon into subunits, at the vertices or at the edges. The former leads to five triangular subunits, while the latter leads to five quadrilateral subunits. Typically, the central point shared by all subunits is the center of the Cairo pentagon's incircle. Therefore, the second splitting strategy involves fewer unique subunits and is preferred for the design of low-symmetry tiles, including the Cairo pentagon and others. (b) The design of the Cairo pentagonal tile can be simplified to the design of two unique subunits, one is square (purple) and the other is kite-shaped (green), which are named 90° or 60° based on the degree of their vertex angle (i.e., the internal angle pointing to the center of the tile). (c) Both subunits are derived from isosceles triangular subunits analogous to those composing regular polygonal tiles. The isosceles triangular subunits are sequentially converted to line segments and DNA double helices following the procedure for designing regular polygonal tiles. Differently, the subunits in the form of double helices are split evenly into two halves. By rotating one-half of the subunit around the shared vertex using a rotation matrix, the desired square and kiteshaped subunits can be generated. In this step, design parameters, including the number and lengths of DNA double helices and the lengths of various single-stranded loops, are calculated separately for both subunits. (d) Two copies of the 90° subunits and three copies of the 60° subunits can assemble into the complete Cairo pentagonal tile. (e) With all design parameters calculated, the tile design is created using Tiamat and finalized by

generating the scaffold strand (gray), core (blue) and edge (orange) staple strands, assigning sequences to scaffold and staples, and defining the matching rule.

We take M13mp18 Cairo pentagonal tile as a representative example to introduce the design workflow of low-symmetry tiles for Laves tilings. Similar to the design of regular polygonal tiles, we start with the splitting of the Cairo pentagon into subunits (Figure 2.5a). Due to the lack of rotational symmetry, the strategy typically used for regular polygons gets complicated for low-symmetry tiles, as more unique triangular subunits are involved in the design. An alternative strategy is taken in which the geometry of interest is split into quadrilateral subunits by drawing perpendiculars from the center of the Cairo pentagon's incircle to each side. The Cairo pentagon is thus split into two types of quadrilateral subunits (Figure 2.5b), one is square and the other is kite-shaped. We name each subunit based on the degree of its internal angle pointing to the center of the tile (90° for the square subunit and 60° for the kite-shaped one). Despite the different geometries, both subunits are derived from isosceles triangular subunits composing regular polygonal tiles. The 90° and 60° subunits can be traced back to the subunit for a square tile ($\alpha = 90^{\circ}$) and a regular hexagonal tile ($\alpha = 60^{\circ}$), respectively (Figure 2.5c). Similar to the procedure for designing regular polygonal tiles, both isosceles triangular subunits are sequentially converted to line segments and DNA double helices. With the number of double helices in the subunit (H) and the length of the shortest/longest helix assigned, the length of each helix can be calculated and further converted to the (x, y, z)coordinates of nucleotides, from which the lengths of scaffold loops can be calculated. Next, the subunits in the form of double helices are transformed from isosceles triangular into quadrilateral by rotating half of the helices about the apex of the original isosceles

triangle (Figure 2.5c). The resultant subunits have DNA double helices arranged in pairs, where the lengths of scaffold and staple bridges can be calculated. Although two subunits are designed and transformed separately, the following requirements must be met to ensure their compatibility, so that two copies of the 90° subunits and three copies of the 60° subunits can assemble into the complete Cairo pentagonal tile (Figure 2.5d). 1. Basic design parameters, including D, r, the diameter of DNA double helix, and the double-helical twist density, are shared by both subunits.

2. The same *h* is shared by both subunits.

3. The sum of *H*s for both subunits must be a multiple of 4.

Figure 2.6. Schematic illustrations of the subunits composing low-symmetry tiles. Including (a) p3548 isosceles right triangular tile, (b) M13mp18 rhombic tile, (c) M13mp18 kite tile, (d) M13mp18 prismatic pentagonal tile, (e) M13mp18 Cairo pentagonal tile, and (f) p8064 floret pentagonal tile. Each low-symmetry tile is decomposed into subunits that are named based on the internal angle pointing to the center of the tile and colored differently based on their counterparts in regular polygonal tiles. All tiles and subunits are drawn to scale. Scale bar: 50 nm.

Finally, with all design parameters calculated for both subunits, the Cairo pentagonal tile is created using Tiamat and finalized by generating the scaffold and staples, assigning sequences, and defining the matching rule (Figure 2.5e). By applying the same design

workflow, other five low-symmetry tiles include p3548 isosceles right triangular tile, M13mp18 rhombic tile, M13mp18 kite tile, M13mp18 prismatic pentagonal tile and p8064 floret pentagonal tile are also designed for Laves tilings (Figure 2.6).

Figure 2.7. Refining design parameters to minimize tile curvature. (a) Given its 3fold rotational symmetry, equilateral triangular tiles are usually designed by rotating a repeating subunit corresponding to one-third of the complete tile about the C_3 axis. Ideally, the vertex angle (α) of the repeating subunit is accurately 120° to ensure the flatness of the tile. Inset: Two design parameters, the interhelical distance (D) and helix extension (E), determine the shape and dimension of the repeating subunit and further the conformation of the tile. (b) There are two undesired situations when **D** is overestimated (i) or underestimated (ii) in the design process. In the actual tile, however, helices tend to adjust their spacing, from which tension can be generated (dashed box), resulting in a curved tile. Inset: Side view of the curved tile. (c) Tile conformations were studied by the oxDNA model. To quantitatively compare the curvature of different tile designs, three vectors, \vec{u}, \vec{v} , and \vec{w} , are defined. Each represents the helical direction of a repeating subunit. Inset: The sum of angles between each pair of vectors $(\theta_1 + \theta_2 + \theta_3)$ can be exploited to quantify the curvature of a tile. (d) Curvature analysis of four equilateral triangular tiles designed based on **D** ranging from 2.55 to 3.00 nm with 0.15 nm intervals. The degree of curvature is defined as the deviation of $(\theta_1 + \theta_2 + \theta_3)$ from 360° with plus or minus indicating the direction of curvature. The mean (red) and standard deviation (white) were also calculated for each design. (e) A mixture of multimeric complexes composed of 5-7 monomer tiles can be assembled from equilateral triangular tiles encoded with two edges complementary to each other (marked by 1 and 1*) and an inert third edge (marked by an "x"). The proportion of multimeric complexes can be exploited to deduce the curvature of tiles. (f) Representative AFM images of different multimeric complexes. From left to right: pentamers, hexamers, and heptamers. Scale bar: 200 nm. (g) A statistical analysis of multimer distribution as a function of **D**. When **D** is in the range of 2.70 ± 0.05 nm, the percentage of hexamer can be as high as 99%.

Taking equilateral triangular tile, one of the simplest geometries that can tile the plane, as a model, we look into design parameters that may induce curvature and seek the possibilities to minimize curvature by design. Tiles of this geometry are generally designed by rotating a repeating subunit resembling an isosceles triangle with a 120° vertex angle (α) about the C₃ axis (Figure 2.7a). Two associated design parameters, interhelical distance (D) and helical extension (E), determine the shape and dimension of the repeating subunit. D is defined as the average distance between the central axes of neighboring helices, which describes the compactness of the structure. E is defined as the common difference in length between neighboring helices, which equals the rise per base pair (r) multiplied by the number of additional base pairs per helix (n_{bp}). D and E are along two orthogonal axes and strictly follow the tangent function. Assuming \mathbf{r} is 0.34 nm for B-form DNA, for a given α , n_{bp} can be calculated from D.

$$\tan\frac{\alpha}{2} = \frac{D}{E}$$
$$n_{bp} = \frac{E}{r} = \frac{D}{r \cdot \tan\frac{\alpha}{2}}$$

There are two undesired situations when D is overestimated or underestimated (Figure 2.7b). In the former case, DNA helices are loosely arranged in the design, while the actual tile tends to contract in size under experimental conditions, inducing tension at its corners. Conversely, in the latter case, DNA helices are tightly arranged in the designed structure. The actual tile tends to expand, inducing tension at its center. The monomer tiles are curved in both cases, and the tiling process will deviate from the 2D plane. Therefore, it can be inferred that finding the optimal D to minimize tension-

induced curvature is a promising strategy to enhance the geometric design of DNA origami tiles for tessellation.

Towards this goal, we designed four equilateral triangular tiles with **D** ranging from 2.55 to 3.00 nm with 0.15 nm intervals and investigated *D*-dependent tile conformations using a coarse-grained model, oxDNA³⁷⁻³⁹. To quantitatively compare the curvature of different tile designs, we defined three vectors, namely $\vec{u}, \vec{v}, \vec{w}$, to describe the helical directions of each composing subunit (Figure 2.7c). The curvature could be estimated by the sum of the angles between each pair of vectors (i.e., $\theta_1 + \theta_2 + \theta_3$). For a flat tile, the sum is approximately 360°. The more curved a tile is, the more the sum deviates from 360°. Therefore, the degree of curvature was defined as the deviation of the sum from 360° (i.e., $360^{\circ} - \theta_1 - \theta_2 - \theta_3$), while the direction of curvature (i.e., upwards or downwards) was determined by $(\vec{u} \times \vec{v}) \cdot \vec{w}$. The vector-based curvature analysis was applied to all configurations sampled throughout the simulation trajectory (Figure 2.7d). Due to the single-layer construct, all designed tiles exhibited a high degree of flexibility and conformational dynamics (Supplementary Figure S2.3). The 2.55 nm, 2.70 nm, and 3.00 nm designs had a dominant curvature direction taken by more than 80% of configurations, while the 2.85 nm design could more easily access opposite curvature directions. As **D** increased from 2.55 to 3.00 nm, the curvature of tile decreased at first and subsequently increased. We treat the simulation results mainly as a qualitative reference to evidence the influence of **D** on tile curvature. The model currently does not capture sequence-dependent effects on the duplex curvature or of multivalent ions, and due to its coarse-grained nature, it does not capture the conformations of Holliday junctions⁴⁰. These factors may impact the prediction of tile curvature.

To experimentally determine the optimal D, we encoded the equilateral triangular tiles with two edges complementary to each other and left the third edge inert (Figure 2.7e). Ideally, equilateral triangular tiles guided by this matching rule assemble exclusively into hexamers. However, if the tile is curved, the multimerization process is accompanied by the accumulation of curvature, which perturbs the correct vertex arrangement of tiles and results in multimeric complexes other than hexamers. Thus, the distribution of multimerization products can be exploited to deduce the optimal **D**. The cooling ramp was controlled slow enough (-0.1 $^{\circ}C/30$ min) to keep the multimerization process close to thermodynamic equilibrium. As expected, multimeric complexes composed of 5, 6, or 7 monomer tiles were assembled, which could be unambiguously distinguished by AFM (Figure 2.7f). As D increased from 2.55 to 3.00 nm, statistical analysis of multimer distribution revealed a clear trend for each species (Figure 2.2g and Supplementary Figure S2.4). The percentage of hexamer peaked at 2.70 nm (~99%) and dropped to ~9% at 3.00 nm, along with the marked increase of pentamer from <10% to ~91% (Supplementary Table S2.11 and S2.12). For all designs tested, heptamer stayed below 7%. To further narrow down the range of D, two additional designs (D = 2.65 and 2.75 nm, respectively) were included. Both produced >90% hexamers but did not outcompete the 2.70 nm design (Supplementary Figure S2.5). Therefore, the optimal Dwas in the range of 2.70 ± 0.05 nm under the experimental conditions, which was used for subsequent tile designs. Despite the slight difference in cation concentrations, our result agrees with the **D** measured by small-angle X-ray scattering (SAXS). Finally, by changing the third edge from inert to self-complementary, the 2.70 nm tile design yielded micrometer-scale single-crystalline lattices (Supplementary Figure S2.6), which

confirmed the effectiveness of D optimization. Notably, D can be varied under different cationic conditions and origami design principles⁴¹. The statistical analysis strategy employed here correlates the subtle change in D with the distribution of multimerization products, presenting a general and straightforward alternative that works under various buffer conditions. Refined design parameters will facilitate the rational design of DNA-based dynamic systems such as localized DNA computing⁴², nanorobotics⁴³, and molecular binding assays³¹, whose performance relies on the precise placement of functional components on the DNA origami scaffold.

2.6 Regular tilings

Figure 2.8. Regular tilings. Two groups of regular tessellation patterns were assembled from tiles based on a short scaffold strand, p3548 (a, c, e), and a long scaffold strand, M13mp18 (b, d, f), respectively. Each group included three tile geometries: equilateral triangle, square, and regular hexagon. From top to bottom in each column: schematic illustrations of the monomer tile (left) and tile arrangement within the lattice (right). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n* refers to a self-complementary edge. The monomer size is estimated from the number and lengths of constituent double-helices using the geometry attributes of standard B-form DNA. The relative orientations of tiles within a lattice are marked by yellow arrows. A zoomed-in AFM image showing the detailed tile arrangement and inter-tile connections. Scale bar: 50 nm. A 1 μ m-by-1 μ m AFM image

showing a nearly defect-free area on the lattice. Scale bar: 200 nm. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice. Scale bar: $2 \mu m$.

The optimized **D** was first applied to designing regular tessellation (also known as Platonic tiling) patterns. Two groups of tiles, each including three geometries: equilateral triangle (Figure 2.8a and 2.8b), square (Figure 2.8c and 2.8d), and regular hexagon (Figure 2.8e and 2.8f), were constructed based on p3548 (a customized scaffold comprised of 3,548 nt) and M13mp18 (a 7,249-nt scaffold widely used for building DNA origami nanostructures), respectively. As visualized by AFM, all six designs produced micrometer-scale single-crystalline lattices, suggesting that **D** is generally applicable to DNA origami tiles of different sizes and rotational symmetries. The best lattice could grow up to $\sim 350 \,\mu\text{m}^2$ with the largest dimension exceeding 20 μm (Figure 2.8e), which contained $\sim 10^5$ monomer tiles. Moreover, nearly defect-free areas were readily located for all designs in the high-magnification AFM images, in which ordered repeats of cavities and the connections between tiles were clearly visible. Finely-tuned **D** improved the geometric design of monomer tiles and reduced the dependence of tessellation on curvature correction. Remarkably, two designs, the square and regular hexagonal tiles based on the p3548 scaffold, produced high-quality single-crystalline lattices without implementing curvature-correcting mechanism (Figure 2.8c and 2.8e). The resultant lattices are composed of monomer tiles taking the same orientation, opening up new opportunities for applications requiring the exact patterning of functional molecules on the DNA template with sequence-level consistency.

In terms of size and quality, the tessellation patterns based on the p3548 scaffold were superior to those based on the M13mp18 scaffold, which could be attributed to two factors. Firstly, the p3548 tiles comprise a shorter scaffold and fewer staple strands. Simpler structure makes them less prone to common defects in DNA origami assembly, such as nicked scaffold, missing staples, or staple misincorporation. Secondly, more unpaired regions are exposed on the M13mp18 tiles, which can mediate the stochastic attachment of free tiles (or groups of tiles) onto a growing lattice, resulting in surface defects (analogous to adatom in crystallography). Additional loop interactions also promote excessive spontaneous nucleation and the rapid consumption of free tiles, hindering lattice growth. Therefore, it can be inferred that to further scale up DNA origami tessellation systems to the macroscopic scale, improved monomer integrity, defect inhibition, and nucleation control are promising routes to take.

Figure 2.9. Tessellation patterns assembled from low-symmetry tiles. Tiles of six different geometries, including isosceles right triangle (a), rhombus (b), kite (c), prismatic pentagon (d), Cairo pentagon (e), and floret pentagon (f), were designed and assembled

into tessellation patterns. From top to bottom in each column: schematic illustrations of the monomer tile (left) and tile arrangement within the lattice (right). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n* refers to a self-complementary edge. The monomer size is estimated from the number and lengths of constituent double-helices using the geometry attributes of standard B-form DNA. The relative orientations of tiles within a lattice are marked by yellow arrows. A zoomed-in AFM image showing the detailed tile arrangement and intertile connections. Scale bar: 50 nm. A 1 μ m-by-1 μ m AFM image showing a nearly defect-free area on the lattice. Scale bar: 200 nm. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice. Scale bar: 2 μ m.

Current DNA origami tessellation systems mostly focus on three regular tilings. To demonstrate the versatility of our system, we designed six tessellation patterns composed of low-symmetry tiles, which are the duals of semiregular tilings (categorized as Laves tilings¹). The tile geometries included isosceles right triangle (Figure 2.9a), rhombus (Figure 2.9b), kite (Figure 2.9c), prismatic pentagon (Figure 2.9d), Cairo pentagon (Figure 2.9e), and floret pentagon (Figure 2.9f). With the exception of the rhombic tile, the rest five tiles lack rotational symmetry and involve a combination of different interior angles and side lengths. Following the thermodynamic guidelines derived from regular tilings, bond connections were assigned to monomer tiles based on the included angle between each pair of complementary edges and the corresponding vertex arrangement (Supplementary Table S2.21-S2.26). The aim was to synchronize the pairing temperature of each edge during thermal annealing by taking into account its geometric context within the tiling pattern. For instance, complementary edges forming a 60° angle (e.g., 1 and 1* of the kite tile) were assigned with ΔG_{edge} equivalent to that of the equilateral triangular tile.

Robust tessellation was facilitated by accurate geometric design and rational bond assignment. Despite the reduced symmetry of monomer tiles, all six designs yielded crystalline lattices that were comparable in size to regular tilings. Among them, the rhombille tiling produced the largest single-crystalline lattice consisted of over 2×10^4 rhombic tiles and measured 150 μ m² (Figure 2.9b). The detailed connections between tiles were consistent with the intended design as visualized in imaging areas free of defects.

The prismatic pentagonal tiling (Figure 2.9d) was the only one that did not produce a large single-crystalline lattice. It appeared more susceptible to excessive spontaneous nucleation, where fragments growing from separate nuclei fused into polycrystalline lattices. Similarly to regular tilings, the primary type of defect observed was undesired tile attachment onto the lattice. In addition, a second type of defect (resembling an interstitial defect in crystallography) was identified in the isosceles right triangular tiling (Supplementary Figure S2.13), which was caused by tiles that were inserted into the cavities of the lattice (~58 nm in diameter).

2.8 Discussion

In summary, we generalize the design of DNA origami tiles for tessellation by finely tuning a critical design parameter (D), which enables crystalline lattices with great diversity and complexity. 12 out of 13 unique tile designs yield single-crystalline lattices, confirming the effectiveness of D optimization. Notably, the improved geometric design reduces the dependence of DNA origami tiling on rotation-based curvature correction, as evidenced by several high-quality lattices with all composing monomer tiles taking the

same orientation. Tessellation remains robust as tile symmetry reduces, suggesting the general applicability of D to a wide variety of geometries.

2.9 Material and Methods

See APPENDIX A.

2.10 References

1. Grünbaum, B.; Shephard, G. C., *Tilings and patterns*. Courier Dover Publications: 1987.

2. Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X.; Chen, J.; Murray, C. B., Quasicrystalline order in self-assembled binary nanoparticle superlattices. *Nature* **2009**, *461* (7266), 964-967.

3. Nagaoka, Y.; Zhu, H.; Eggert, D.; Chen, O., Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. *Science* **2018**, *362* (6421), 1396-1400.

4. Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A., Self-assembly of hydrogen-bonded twodimensional quasicrystals. *Nature* **2014**, *507* (7490), 86-89.

5. Urgel, J. I.; Ecija, D.; Lyu, G.; Zhang, R.; Palma, C.-A.; Auwaerter, W.; Lin, N.; Barth, J. V., Quasicrystallinity expressed in two-dimensional coordination networks. *Nature Chemistry* **2016**, *8* (7), 657-662.

6. Zhang, Y.-Q.; Paszkiewicz, M.; Du, P.; Zhang, L.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V., Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. *Nature chemistry* **2018**, *10* (3), 296-304.

7. Gonen, S.; DiMaio, F.; Gonen, T.; Baker, D., Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. *Science* **2015**, *348* (6241), 1365-1368.

8. Tanrikulu, I. C.; Forticaux, A.; Jin, S.; Raines, R. T., Peptide tessellation yields micrometre-scale collagen triple helices. *Nature chemistry* **2016**, *8* (11), 1008-1014.

9. Ben-Sasson, A. J.; Watson, J. L.; Sheffler, W.; Johnson, M. C.; Bittleston, A.; Somasundaram, L.; Decarreau, J.; Jiao, F.; Chen, J.; Mela, I., Design of biologically active binary protein 2D materials. *Nature* **2021**, *589* (7842), 468-473.

10. Shi, Q.; Gómez, D. E.; Dong, D.; Sikdar, D.; Fu, R.; Liu, Y.; Zhao, Y.; Smilgies, D. M.; Cheng, W., 2D freestanding Janus gold nanocrystal superlattices. *Advanced Materials* **2019**, *31* (28), 1900989.

11. Lee, Y. H.; Shi, W.; Lee, H. K.; Jiang, R.; Phang, I. Y.; Cui, Y.; Isa, L.; Yang, Y.; Wang, J.; Li, S., Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. *Nature communications* **2015**, *6* (1), 6990.

12. Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T., Charge transport and localization in atomically coherent quantum dot solids. *Nature materials* **2016**, *15* (5), 557-563.

13. Chen, H.; Voigt, L.; Kubus, M.; Mihrin, D.; Mossin, S.; Larsen, R. W.; Kegnaes, S.; Piligkos, S.; Pedersen, K. S., Magnetic Archimedean Tessellations in Metal-Organic Frameworks. *J Am Chem Soc* **2021**, *143* (35), 14041-14045.

14. Wu, L.; Jubert, P. O.; Berman, D.; Imaino, W.; Nelson, A.; Zhu, H.; Zhang, S.; Sun, S., Monolayer assembly of ferrimagnetic Co(x)Fe(3-x)O4 nanocubes for magnetic recording. *Nano Lett* **2014**, *14* (6), 3395-9.

15. Kim, T.; Hong, J.; Kim, J.; Cho, J.; Kim, Y., Two-Dimensional Peptide Assembly via Arene-Perfluoroarene Interactions for Proliferation and Differentiation of Myoblasts. *J Am Chem Soc* **2023**, *145* (3), 1793-1802.

16. Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H., Challenges and opportunities for structural DNA nanotechnology. *Nat Nanotechnol* **2011**, *6* (12), 763-72.

17. Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., Structural DNA nanotechnology: state of the art and future perspective. *J Am Chem Soc* **2014**, *136* (32), 11198-211.

18. Seeman, N. C.; Sleiman, H. F., DNA nanotechnology. *Nature Reviews Materials* **2017**, *3* (1), 1-23.

19. Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y., Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. *J Am Chem Soc* **2016**, *138* (24), 7733-40.

20. Liu, X.; Zhang, F.; Jing, X.; Pan, M.; Liu, P.; Li, W.; Zhu, B.; Li, J.; Chen, H.; Wang, L.; Lin, J.; Liu, Y.; Zhao, D.; Yan, H.; Fan, C., Complex silica composite nanomaterials templated with DNA origami. *Nature* **2018**, *559* (7715), 593-598.

21. Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J.; Cao, T.; Zhou, Z.; Ta, T.; Streit, J. K., Precise pitch-scaling of carbon nanotube arrays within threedimensional DNA nanotrenches. *Science* **2020**, *368* (6493), 874-877.

22. Shen, J.; Sun, W.; Liu, D.; Schaus, T.; Yin, P., Three-dimensional nanolithography guided by DNA modular epitaxy. *Nature Materials* **2021**, *20* (5), 683-690.

23. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

24. Wang, P.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y., The beauty and utility of

DNA origami. Chem 2017, 2 (3), 359-382.

25. Hong, F.; Zhang, F.; Liu, Y.; Yan, H., DNA Origami: Scaffolds for Creating Higher Order Structures. *Chem Rev* **2017**, *117* (20), 12584-12640.

26. Dey, S.; Fan, C.; Gothelf, K. V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M. A.; Saccà, B.; Simmel, F. C., DNA origami. *Nature Reviews Methods Primers* **2021**, *1* (1), 13.

27. Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C., Crystalline two-dimensional DNAorigami arrays. *Angew Chem Int Ed Engl* **2011**, *50* (1), 264-7.

28. Liu, W.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O., Self-organized architectures from assorted DNA-framed nanoparticles. *Nature chemistry* **2016**, *8* (9), 867-873.

29. Tikhomirov, G.; Petersen, P.; Qian, L., Programmable disorder in random DNA tilings. *Nat Nanotechnol* **2017**, *12* (3), 251-259.

30. Tikhomirov, G.; Petersen, P.; Qian, L., Triangular DNA Origami Tilings. *J Am Chem Soc* 2018.

31. Aghebat Rafat, A.; Sagredo, S.; Thalhammer, M.; Simmel, F. C., Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based proteinbinding cavities. *Nature chemistry* **2020**, *12* (9), 852-859.

32. Aghebat Rafat, A.; Pirzer, T.; Scheible, M. B.; Kostina, A.; Simmel, F. C., Surfaceassisted large-scale ordering of DNA origami tiles. *Angew Chem Int Ed Engl* **2014**, *53* (29), 7665-8.

33. Woo, S.; Rothemund, P. W., Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. *Nat Commun* **2014**, *5*, 4889.

34. Suzuki, Y.; Endo, M.; Sugiyama, H., Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. *Nature communications* **2015**, *6* (1), 8052.

35. Suzuki, Y.; Sugiyama, H.; Endo, M., Complexing DNA origami frameworks through sequential self-assembly based on directed docking. *Angewandte Chemie International Edition* **2018**, *57* (24), 7061-7065.

36. Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. In *Tiamat: a three-dimensional editing tool for complex DNA structures*, DNA Computing: 14th International Meeting on DNA Computing, DNA 14, Prague, Czech Republic, June 2-9, 2008. Revised Selected Papers 14, Springer: 2009; pp 90-101.

37. Ouldridge, T. E.; Louis, A. A.; Doye, J. P., Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. *The Journal of chemical physics* **2011**, *134* (8), 02B627.

38. Snodin, B. E.; Randisi, F.; Mosayebi, M.; Šulc, P.; Schreck, J. S.; Romano, F.; Ouldridge, T. E.; Tsukanov, R.; Nir, E.; Louis, A. A., Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. *The Journal of chemical physics* **2015**, *142* (23), 06B613_1.

39. Poppleton, E.; Romero, R.; Mallya, A.; Rovigatti, L.; Šulc, P., OxDNA. org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures. *Nucleic acids research* **2021**, *49* (W1), W491-W498.

40. Snodin, B. E.; Schreck, J. S.; Romano, F.; Louis, A. A.; Doye, J. P., Coarse-grained modelling of the structural properties of DNA origami. *Nucleic acids research* **2019**, *47* (3), 1585-1597.

41. Fischer, S.; Hartl, C.; Frank, K.; Radler, J. O.; Liedl, T.; Nickel, B., Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. *Nano Lett* **2016**, *16* (7), 4282-7.

42. Chatterjee, G.; Dalchau, N.; Muscat, R. A.; Phillips, A.; Seelig, G., A spatially localized architecture for fast and modular DNA computing. *Nature Nanotechnology* **2017**, *12*, 920.

43. Chao, J.; Wang, J.; Wang, F.; Ouyang, X.; Kopperger, E.; Liu, H.; Li, Q.; Shi, J.; Wang, L.; Hu, J.; Wang, L.; Huang, W.; Simmel, F. C.; Fan, C., Solving mazes with single-molecule DNA navigators. *Nat Mater* **2019**, *18* (3), 273-279.

CHAPTER 3

DNA ORIGAMI COMPLEX TILING

Adapted with permission from Yue Tang, Hao Liu, Qi Wang, Xiaodong Qi, Lu Yu, Petr Šulc, Fei Zhang, Hao Yan, Shuoxing Jiang. **DNA Origami Tessellations** (manuscript under review).

3.1 Abstract

The DNA origami technology enables the rational design of nearly arbitrary DNA architectures with nanometer precision at the sub-100 nm scale. Yet, the scaled-up self-assembly of DNA origami into higher-order molecular patterns has faced challenges in size and complexity. Here, a general design and assembly method of DNA origami tiles were described for tessellation by finely tuned tile-tile interaction to self-assemble into tessellation patterns with increased size and complexity. 6 tile designs of DNA origami complex tilings confirming the effectiveness. These DNA origami complex tilings include five Archimedean tilings and a 12-fold quasicrystal tiling. The various tiling patterns that rivaled Platonic tilings in size and quality, indicating the robustness of the optimized tessellation system. This work addresses the limitations in the size and complexity of DNA origami tessellation and paves the way for user-defined, programmable patterning of molecules or materials across scales where new properties may arise. It opens up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
3.2 Introduction

Tessellation is the arrangement of repeating geometric shapes to cover a plane with no gaps or overlaps¹. The tessellation of nanoscale building blocks including colloidal nanoparticles^{2, 3}, organic compounds⁴⁻⁶, and biomolecules⁷⁻⁹ via bottom-up self-assembly provides a versatile means of engineering two-dimensional materials whose properties can be tailored by altering the long-range order or the local arrangement of constituent units, which has been the common focus of nanomaterials, supramolecular chemistry, and molecular science. Two-dimensional complex tilings exemplify the variety and intricacy of designs and formations achievable through the arrangement of elementary geometric figures^{10, 11}. These patterns hold significant relevance across disciplines such as mathematics, the arts, and architecture. In the realm of two-dimensional complex tilings, there are examples such as Archimedean tilings^{12, 13}, quasicrystals¹⁴⁻¹⁶, Girih tilings¹⁷, and Wang tilings^{18, 19}. Archimedean tilings represent periodic tessellations formed by aligning regular polygons edge-to-edge around a vertex, yielding intriguing properties within the emergent patterns¹. In contrast, quasicrystals are characterized by their ordered yet nonperiodic structures¹⁴. These quasicrystalline patterns possess the ability to occupy all available space continuously while exhibiting an absence of translational symmetry. However, the lack of modularity and customizable specificity in the majority of nanoobjects has limited the diversity and efficiency of tessellation dictated solely by their inherent self-organizing properties, necessitating the development of a versatile scaffolding material that simultaneously endows the target nanoobject with long-range order and local precision. Programmable DNA self-assembly offers significant benefits in the creation of molecular scaffolds, as it incorporates rational geometric design,

nanoscale accuracy, and user-defined specificity through Watson-Crick base pairing²⁰⁻²². Crucially, the order and precision embedded in the DNA scaffolds can be transferred to molecules or materials that lack self-organizing capabilities²³⁻²⁶, substantially expanding the range of material fabrication possibilities.

Among the numerous design approaches, the DNA origami technique²⁷ stands out for its versatility in creating intricate nanostructures. This method involves folding a long single-stranded DNA (scaffold) using hundreds of short synthetic oligonucleotides (staples) to form pre-determined shapes. The inherent programmability and addressability of DNA origami nanostructures facilitate the rational design of nearly any DNA architecture and the precise organization of functional elements on custom DNA templates²⁸⁻³⁰. However, expanding the size and complexity of molecular patterns assembled from DNA origami tiles remains challenging. To date, DNA origami tessellation has only successfully achieved the tiling of three regular polygons: equilateral triangles³¹, squares³²⁻³⁵, and regular hexagons²³. In addition, the complexity of patterns created by a single tile geometry is limited. So far, there is only one example of tile coassembly by docking a second tile species into the cavities of a preassembled lattice³⁶. Direct co-assembly of size-compatible DNA origami tiles of distinct geometries into molecular patterns has been elusive.

To address these limitations, here, we applied the general approach from our previous work for creating DNA origami tiles with the optimal interhelical distance (D) range of 2.70 ± 0.05 nm and finely tuned tile-tile interaction to self-assemble into tessellation patterns with increased size and complexity. In this study, seven DNA origami tile designs self-assembled into six distinct 2D complex tessellation patterns,

encompassing five Archimedean tilings and one 12-fold quasicrystal tiling (Figure 3.1a). The tile design is finalized in Tiamat, a graphical user interface program for designing DNA nanostructures and sequences (Figure 3.1b). Atomic force microscopy (AFM) enabled the visualization of micrometer-scale crystalline lattices with minimal defects (Figure 3.1c and Figure 3.1d). The demonstrated complex tiling patterns remained robust as tile symmetry decreased or as the number of unique tile species increased, further expanding the potential complexity attainable through DNA origami tessellation. This research harnessed finely tuned tile-tile interaction to generalize and optimize the creation of DNA origami tessellation patterns, potentially serving as a larger template for metamaterial engineering, nanolithography, and nanoelectronics.

3.3 Design workflow

Figure 3.1. Overview of DNA origami complex tessellation patterns. (a) Overview of the tillings. DNA origami tile designs with six geometries self-assembled into six complex tessellation patterns, includes five Archimedean tilings and one 12-fold quasicrystal tiling. (b) The designed Elongated triangular tiling (3³.4²) involves triangular and square DNA origami units to co-assemble into tessellation patterns. The designs are finalized on Tiamat³⁷ by generating the scaffold strand (gray), core (blue), and edge (orange) staple strands, assigning sequences, and defining matching rules. (c) A DNA origami tessellation pattern corresponding to the one in (b) is visualized by atomic force microscopy (AFM). The sample pattern is superimposed on the AFM image. Scale bar: 50 nm. (d) A zoomed-out AFM image showing large scale of the DNA origami tessellation pattern. Scale bar: 200 nm.

3.4 Thermodynamic Analysis of Tile Interactions

Tile-tile interaction is a critical factor determining the outcome of tessellation. Intuitively, insufficient or excess tile-tile interaction may result in incomplete consumption or nonspecific aggregations of tiles, respectively. Two types of bonds, 2-nt sticky end hybridization and blunt end stacking, were used to 'glue' tiles together, whose binding free energies could be estimated from the DNA nearest-neighbor parameters for hybridization³⁸ and stacking³⁹ (Supplementary Table S3.9), respectively, and further summed up to obtain the total binding free energy for each pair of complementary edges $(\Delta G_{edge}, Supplementary Table S3.10-S3.17)$. We analyzed the strength and uniformity of bond interaction for regular tilings and found two empirical rules. Firstly, a higher ΔG_{edge} is needed for tiles with a lower coordination number to assemble into lattices. It is because, in the growth stage, tiles with a higher coordination number can simultaneously form bonds with more tiles on the growth frontier of a lattice⁴⁰, reducing the minimal requirement for the ΔG_{edge} contributed by each edge. Secondly, a balanced ΔG_{edge} facilitates unbiased lattice growth via single-tile incorporation. The difference in ΔG_{edge} between two pairs of complementary edges was less than 8 % for equilateral triangular and square tiles. For regular hexagonal tiles involving three pairs of complementary edges, the difference was no more than 7% for the two thermodynamically dominant pairs. Understanding the role of ΔG_{edge} could effectively reduce the trial and error before identifying the optimal bond design.

Figure 3.2. Design and AFM characterization of nanotubes assembled from p3548 square DNA origami tiles with imbalanced tile-tile interactions. The monomer tile is encoded with two opposite edges complementary to each other. In contrast to the same tile encoded with balanced interaction, which produces high-quality single-crystalline lattices, tiles with imbalanced bond interactions assemble exclusively into nanotubes, suggesting the role of thermodynamics in determining the outcome of tessellation.

Figure 3.3. Design and AFM characterization of 2D lattices assembled from M13mp18 square DNA origami tiles with imbalanced tile-tile interactions. The monomer tile is encoded with two pairs of neighboring edges complementary to each other. Intriguingly, the tiling was not hindered by imbalanced tile-tile interactions. Single-crystalline lattices with neat edges were obtained, which can be attributed to the hierarchical pathway of lattice growth via the formation and incorporation of 2-by-2 tetramers, as evidenced by the notches and stairs on the edges of the lattice.

To elucidate the impacts of imbalanced ΔG_{edge} on tessellation, we designed two derivative square tiles. Imbalanced ΔG_{edge} was detrimental to square tiling without curvature correction, resulting in highly anisotropic lattice growth and nanotube formation (Figure 3.2). In contrast, the square tiling with rotation-based curvature correction exhibited better resistance to imbalanced ΔG_{edge} , resulting in the formation of single-crystalline lattices (Figure 3.3). Intriguingly, the resultant lattices had neat edges, in contrast to the jagged contour of its counterpart with balanced ΔG_{edge} , which could be attributed to the hierarchical pathway of lattice growth via the formation and assembly of 2-by-2 tetramers. The tetrameric intermediate presented identical bonds on all four edges, which prevented the imbalanced ΔG_{edge} in monomer tiles from propagating throughout the lattice and allowed for balanced lattice growth. Taken together, our results suggest that matching rule and thermodynamic pathway are two critical factors determining the outcome of tessellation, in addition to geometric design.

3.5 Complex tilings

Theoretically, tiles with different geometries can co-assemble into tessellation patterns more complex than those assembled from one tile type, but realizing this concept using DNA origami tiles has remained challenging for several reasons. Co-assembly involves multiple tile species with mutually compatible size, geometry, and bond interaction, which are not readily attainable. Besides, as tile species increase, the tessellation process will be guided by more complex matching rules and become more prone to assembly defects. Moreover, tiles with drastically different sizes and coordination numbers can have distinct self-assembly behaviors, which need to be synchronized in one-pot annealing. Our tile designs featured precisely-defined geometry and unified bond connectivity while exhibiting improved size and quality in tilings constructed from a single tile type, which motivated us to explore the possibility of creating semiregular tessellation (also known as Archimedean tiling) patterns via the coassembly of size-compatible, regular polygonal tiles.

Figure 3.4. Regular tilings assembled from equilateral triangular and regular hexagonal tiles. (a) Tiling a plane with incompatible geometries is unattainable (i), while regular polygonal tiles with compatible sizes can co-assemble into semiregular tessellation patterns (ii). (b-c) Regular tilings assembled from equilateral triangular (b) and regular hexagonal tiles (c) with sizes that are compatible with the square tile based on the M13mp18 scaffold. (b and c) From top to bottom in each column: schematic illustrations of the monomer tile(s) (left) and tile arrangement within the lattice (right). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n^* refers to a self-complementary edge. The monomer size is estimated from the number and lengths of constituent double-helices using the geometry attributes of standard B-form DNA. The relative orientations of tiles within a lattice are marked by yellow arrows. Tiles that can take more than one possible orientation are marked by multiple yellow arrows. A zoomed-in AFM image showing the detailed tile arrangement and inter-tile connections. A 1 µm-by-1 µm AFM image showing a nearly defect-free area on the lattice. Scale bar: 200 nm. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice. Scale bar: 2 µm.

Tile size compatibility is one of the essential prerequisites for semiregular tiling (Figure 3.4a) since the propagation of patterns can be readily disrupted by the mismatches between monomer tiles with discrepant sizes. In our designs, tile size can be adjusted by extending or shortening helices collectively by the same number of base pairs. For example, by adding one base pair per helix, the side lengths of square tiles and equilateral triangular tiles are expected to increase by 0.68 nm (2*r*) and 1.18 nm ($2\sqrt{3}r$), respectively. We adopted the square tile based on the M13mp18 scaffold (calculated side length: 84.9 nm) and customized the equilateral triangular and regular hexagonal tiles accordingly.

The size-compatible equilateral triangular tile with a calculated side length of 84.4 nm was designed based on a miniaturized scaffold composed of 2,820 nt (p2820). Double-helices in this tile were held together by a combination of double-crossover and single-crossover linkages to adapt to the short scaffold strand, different from prevailing origami designs commonly based on the double-crossover linkages. As a result, the design that produced single-crystalline lattices (Figure 3.4b), consistent with the fact that helices are more widely spaced when held together by fewer crossover linkages⁴¹.

For a size-compatible regular hexagonal tile, the scaffold strand was estimated to be approximately 20,000 nt. Considering the reduced amplification yield for long scaffold strands and the high synthesis cost of staple strands, we took an alternative route to build this tile (calculated side length: 84.4 nm) by dimerizing two isosceles-trapezoid-shaped DNA origami components based on the M13mp18 scaffold (Figure 3.4c), leaving a hole (~47 nm in diameter) at the center of the dimer. Likewise, single-crystalline lattices were obtained in the 2.75 nm D design containing single-crossover linkages. The characteristic arrangements of bonds enabled the hexagonal tile and both components to be distinguished in AFM images. Interstitial defects were also observed in the lattice, which resulted from the lack of continuity in the tile's surface area and malformed tiles embedded in the cavities. Nonetheless, the tessellation proceeded with reasonable fidelity, suggesting the robustness of this system.

Figure 3.5. Elongated triangular tiling $(3^3.4^2)$. Schematic illustrations of the monomer tile(s) (left) and tile arrangement within the lattice (right). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n* refers to a self-complementary edge. A 1 µm-by-1 µm AFM image showing a nearly defect-free area on the lattice. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice.

Figure 3.6. Snub square tiling (3^2 .4.3.4). Schematic illustrations of the monomer tile(s) (left) and tile arrangement within the lattice (right). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n* refers to a self-complementary edge. A 1 µm-by-1 µm AFM image showing a nearly defect-free area on the lattice. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice.

Figure 3.7. Trihexagonal tiling (3.6.3.6). Schematic illustrations of the monomer tile(s) (left) and tile arrangement within the lattice (right). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n* refers to a self-complementary edge. A 1 μ m-by-1 μ m AFM image showing a nearly defect-free area on the lattice. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice.

Confirmed the tessellation capability of three compatible regular polygonal tiles, we encoded them with more complex matching rules to build three semiregular tilings of different rotational symmetries: the elongated triangular tiling (3³.4², Figure 3.5), the snub square tiling (3².4.3.4, Figure 3.6), and the trihexagonal tiling (3.6.3.6, Figure 3.7). The numeric symbols are termed Cundy & Rollett's notations⁴², which describe the vertex configuration of tilings (i.e., the number and types of regular polygons around each vertex). Semiregular tilings were prepared in two steps, in which monomer tiles were separately annealed and subsequently mixed for co-assembly. Single-crystalline lattices were obtained for all three designs with micrometer-scale, nearly defect-free areas

visualized by AFM, but the $(3^3.4^2)$ tiling was inferior to the other two in size. In the $(3^3.4^2)$ tiling, triangular and square tiles with a molar ratio of 2:1 were patterned into alternating rows. This arrangement allowed the 0.5 nm difference in their side lengths to accumulate during assembly, hindering lattice growth. To compensate for the size discrepancy, the triangular tiles were slightly stretched along the rows they assembled, which deformed the lattice (Figure 3.5). In the $(3^2.4.3.4)$ and (3.6.3.6) tilings, square or hexagonal tiles were spaced by triangular tiles, preventing the discrepancy in tile size from accumulating along a specific growth direction. The resultant lattices had size and quality rivaling isohedral tilings. The $(3^2.4.3.4)$ tiling involves a triangular tile and two differentially coded square tiles with a molar ratio of 4:1:1. Dimers of triangular tiles were arranged in a chiral way but of opposite handedness around each type of square tile, making the resultant lattice achiral. The (3.6.3.6) tiling demonstrated similar characteristics, including symmetry, defects, and patterns of cavities, to the hexagonal tiling in Figure 3.4c. These two designs could be distinguished by the shapes of cavities on the lattice. In the former, the hexagonal and rectangular cavities were located at the center and vertices of the hexagonal tiles, respectively, while in the latter, only hexagonal cavities existed.

Figure 3.8. Rhombitrihexagonal (3.4.6.4) tiling. Schematic illustrations of the monomer tile(s) (top) and tile arrangement within the lattice (bottom). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n* refers to a self-complementary edge. A 1 μ m-by-1 μ m AFM image showing a nearly defect-free area on the lattice. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice.

Figure 3.9. **3-isohedral pentagonal DNA origami tiling.** Schematic illustrations of the monomer tile(s) (top) and tile arrangement within the lattice (bottom). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n^* refers to a self-complementary edge. A 1 µm-by-1 µm AFM image showing a nearly defect-free area on the lattice. A schematic illustrating the arrangement of tiles within the lattice is superimposed on the AFM image for better visualization. A zoomed-out AFM image showing the size and overall quality of the crystalline lattice.

Next, to explore the complexity limit of DNA origami tessellation, we attempted to co-assemble three different geometries into a semiregular rhombitrihexagonal tiling (3.4.6.4, Figure 3.8) and a complex 3-isohedral pentagonal tiling (Figure 3.9). As more unique tile species (up to 5) were involved, the specificity imparted by the short sticky ends became inadequate to define their matching rules strictly, resulting in increased adatom and interstitial defects. Despite this, polycrystalline lattices with micrometer-scale, nearly defect-free areas were observed for both designs, demonstrating the highest level of complexity that this system could achieve.

Figure 3.10. **12-fold quasicrystal tiling.** Tile-tile interaction is provided by DNA-DNA kissing loop which has a 12-nt double helix domain and an 8-nt single helix binding domain. Tiling a plane with incompatible geometries is unattainable (ii), while regular polygonal tiles with compatible sizes can co-assemble into semiregular tessellation patterns (iii). Schematic illustrations of the monomer tile(s) (top) and tile arrangement within the lattice (bottom). Matching rules are denoted by Arabic numerals and asterisks, where n and n* refer to two complementary edges, and n/n* refers to a self-complementary edge. AFM images scale bar: 500 nm.

Finally, we encoded the equilateral triangular tiles and square tile with a matching rule which is differ to other tilings in this work to build 12-fold quasicrystal tiling (Figure 3.10). Since the sequence of a DNA origami nanostructure can hardly be freely defined because it is primarily determined by the scaffold sequence used. The 2-nt sticky ends is not competent to self-assembly the tiles. Here, we applied DNA-DNA kissing loop⁴³⁻⁴⁵ to provide tile-tile interactions to co-assemble the 12-fold quasicrystal tiling (Figure 3.10(i)). This kissing loop extension has a double strand domain with 12-nt and a single strand domain with 8-nt. One single strand closed stem-loop would hybridize and wrap around to its sequence complementary single strand loop and generate a helical structure.

The side lengths of the p2820 based equilateral triangular tiles and M13mp18 based square tile will add up to 103 nm and 96 nm, respectively (Figure 3.10(ii)). To compatibility with the size of equilateral triangular tile, a square tile with a calculated side length of 103 nm was designed based on the scaffold composed of 8064 nt (Figure 3.10(iii)).

The 12-fold quasicrystal tiling did not produce a large single-crystalline lattice so far. Its tile-tile interaction appeared to be not fine-tuned, where high aggregations on polycrystalline lattices and many fragments on backgrounds.

3.6 Discussion

In summary, we generalize the design of DNA origami tiles for tessellation by finely tuned tile-tile interaction to self-assemble into tessellation patterns with increased size and complexity. 6 tile designs of DNA origami complex tilings confirming the effectiveness. We demonstrate the co-assembly of two or more unique tile species into semiregular tiling patterns, enabling DNA origami tilings beyond isohedral. Overall, our work addresses the limitations in the size and complexity of DNA origami tessellation and paves the way for user-defined, programmable patterning of molecules or materials across scales where new properties may arise.

3.7 Material and Methods

See APPENDIX B.

3.8 Referance

1. Grünbaum, B.; Shephard, G. C., *Tilings and patterns*. Courier Dover Publications: 1987.

2. Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X.; Chen, J.; Murray, C. B., Quasicrystalline order in self-assembled binary nanoparticle superlattices. *Nature* **2009**, *461* (7266), 964-967.

3. Nagaoka, Y.; Zhu, H.; Eggert, D.; Chen, O., Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. *Science* **2018**, *362* (6421), 1396-1400.

4. Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A., Self-assembly of hydrogen-bonded twodimensional quasicrystals. *Nature* **2014**, *507* (7490), 86-89.

5. Urgel, J. I.; Ecija, D.; Lyu, G.; Zhang, R.; Palma, C.-A.; Auwaerter, W.; Lin, N.; Barth, J. V., Quasicrystallinity expressed in two-dimensional coordination networks. *Nature Chemistry* **2016**, *8* (7), 657-662.

6. Zhang, Y.-Q.; Paszkiewicz, M.; Du, P.; Zhang, L.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V., Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. *Nature chemistry* **2018**, *10* (3), 296-304.

7. Gonen, S.; DiMaio, F.; Gonen, T.; Baker, D., Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. *Science* **2015**, *348* (6241), 1365-1368.

8. Tanrikulu, I. C.; Forticaux, A.; Jin, S.; Raines, R. T., Peptide tessellation yields micrometre-scale collagen triple helices. *Nature chemistry* **2016**, *8* (11), 1008-1014.

9. Ben-Sasson, A. J.; Watson, J. L.; Sheffler, W.; Johnson, M. C.; Bittleston, A.; Somasundaram, L.; Decarreau, J.; Jiao, F.; Chen, J.; Mela, I., Design of biologically active binary protein 2D materials. *Nature* **2021**, *589* (7842), 468-473.

10. Robinson, R. M., Undecidability and nonperiodicity for tilings of the plane. *Inventiones mathematicae* **1971**, *12*, 177-209.

11. Mozes, S., Tilings, substitution systems and dynamical systems generated by them. *Journal d'Analyse Mathématique* **1989**, *53* (1), 139-186.

12. Grunbaum, B.; Shephard, G. C., Tilings by Regular Polygons. *Mathematics Magazine* **1977**, *50* (5), 227-247.

13. Zhang, F.; Liu, Y.; Yan, H., Complex Archimedean tiling self-assembled from DNA nanostructures. *J Am Chem Soc* **2013**, *135* (20), 7458-61.

14. Levine, D.; Steinhardt, P. J., Quasicrystals: a new class of ordered structures. *Physical review letters* **1984**, *53* (26), 2477.

15. Senechal, M., *Quasicrystals and geometry*. CUP Archive: 1996.

16. Liu, L.; Li, Z.; Li, Y.; Mao, C., Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals. *J Am Chem Soc* **2019**, *141* (10), 4248-4251.

17. Lu, P. J.; Steinhardt, P. J., Decagonal and quasi-crystalline tilings in medieval Islamic architecture. *science* **2007**, *315* (5815), 1106-1110.

18. Cohen, M. F.; Shade, J.; Hiller, S.; Deussen, O., Wang tiles for image and texture generation. *ACM Transactions on Graphics (TOG)* **2003**, *22* (3), 287-294.

Winfree, E., *Algorithmic self-assembly of DNA*. California Institute of Technology:
1998.

20. Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H., Challenges and opportunities for structural DNA nanotechnology. *Nat Nanotechnol* **2011**, *6* (12), 763-72.

21. Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., Structural DNA nanotechnology: state of the art and future perspective. *J Am Chem Soc* **2014**, *136* (32), 11198-211.

22. Seeman, N. C.; Sleiman, H. F., DNA nanotechnology. *Nature Reviews Materials* **2017**, *3* (1), 1-23.

23. Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y., Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. *J Am Chem Soc* **2016**, *138* (24), 7733-40.

24. Liu, X.; Zhang, F.; Jing, X.; Pan, M.; Liu, P.; Li, W.; Zhu, B.; Li, J.; Chen, H.; Wang, L.; Lin, J.; Liu, Y.; Zhao, D.; Yan, H.; Fan, C., Complex silica composite nanomaterials templated with DNA origami. *Nature* **2018**, *559* (7715), 593-598.

25. Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J.; Cao, T.; Zhou, Z.; Ta, T.; Streit, J. K., Precise pitch-scaling of carbon nanotube arrays within threedimensional DNA nanotrenches. *Science* **2020**, *368* (6493), 874-877.

26. Shen, J.; Sun, W.; Liu, D.; Schaus, T.; Yin, P., Three-dimensional nanolithography guided by DNA modular epitaxy. *Nature Materials* **2021**, *20*(5), 683-690.

27. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

28. Wang, P.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y., The beauty and utility of DNA origami. *Chem* **2017**, *2* (3), 359-382.

29. Hong, F.; Zhang, F.; Liu, Y.; Yan, H., DNA Origami: Scaffolds for Creating Higher Order Structures. *Chem Rev* **2017**, *117* (20), 12584-12640.

30. Dey, S.; Fan, C.; Gothelf, K. V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M. A.; Saccà, B.; Simmel, F. C., DNA origami. *Nature Reviews Methods Primers* **2021**, *1* (1), 13.

31. Tikhomirov, G.; Petersen, P.; Qian, L., Triangular DNA Origami Tilings. *J Am Chem Soc* **2018**.

32. Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C., Crystalline two-dimensional DNAorigami arrays. *Angew Chem Int Ed Engl* **2011**, *50* (1), 264-7.

33. Liu, W.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O., Self-organized architectures from assorted DNA-framed nanoparticles. *Nature chemistry* **2016**, *8* (9), 867-873.

34. Tikhomirov, G.; Petersen, P.; Qian, L., Programmable disorder in random DNA tilings. *Nat Nanotechnol* **2017**, *12* (3), 251-259.

35. Aghebat Rafat, A.; Sagredo, S.; Thalhammer, M.; Simmel, F. C., Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based proteinbinding cavities. *Nature chemistry* **2020**, *12* (9), 852-859.

36. Suzuki, Y.; Sugiyama, H.; Endo, M., Complexing DNA origami frameworks through sequential self - assembly based on directed docking. *Angewandte Chemie International Edition* **2018**, *57* (24), 7061-7065.

37. Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. In *Tiamat: a three-dimensional editing tool for complex DNA structures*, DNA Computing: 14th International Meeting on DNA Computing, DNA 14, Prague, Czech Republic, June 2-9, 2008. Revised Selected Papers 14, Springer: 2009; pp 90-101.

38. SantaLucia Jr, J.; Hicks, D., The thermodynamics of DNA structural motifs. *Annu. Rev. Biophys. Biomol. Struct.* **2004**, *33*, 415-440.

39. Kilchherr, F.; Wachauf, C.; Pelz, B.; Rief, M.; Zacharias, M.; Dietz, H., Single-molecule dissection of stacking forces in DNA. *Science* **2016**, *353* (6304), aaf5508.

40. Minev, D.; Wintersinger, C. M.; Ershova, A.; Shih, W. M., Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. *Nature communications* **2021**, *12* (1), 1741.

41. Fischer, S.; Hartl, C.; Frank, K.; Radler, J. O.; Liedl, T.; Nickel, B., Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. *Nano Lett* **2016**, *16* (7), 4282-7.

42. Coxeter, H., Mathematical Models. By HM Cundy and AP Rollett. Pp. 286. 25s. 1961.(Oxford University Press). *The Mathematical Gazette* **1962**, *46* (358), 331-331.

43. Tomizawa, J.-i., Control of cole 1 plasmid replication: the process of binding of RNA I to the primer transcript. *Cell* **1984**, *38* (3), 861-870.

44. Barbault, F.; Huynh-Dinh, T.; Paoletti, J.; Lancelot, G., A new peculiar DNA structure: NMR solution structure of a DNA kissing complex. *Journal of Biomolecular Structure and Dynamics* **2002**, *19* (4), 649-658.

45. Barth, A.; Kobbe, D.; Focke, M., DNA–DNA kissing complexes as a new tool for the assembly of DNA nanostructures. *Nucleic Acids Research* **2016**, *44* (4), 1502-1513.

CHAPTER 4

ALGORITHMIC SELF-ASSEMBLY OF DNA ORIGAMI

4.1 Abstract

Conventional integrated circuit technology in electronic computers is nearing the limits of its capabilities. In light of this, the development of DNA computers has attracted significant interest. DNA computers utilize base pairings of four types of nucleotides and are built on the principle of complementary base pairing. Current methods for reading DNA computer signals are expensive and challenging to automate. In this study, a series of square DNA origami units were introduced that algorithmically self-assemble into a Sierpiński triangular pattern while performing the XOR function. All four edges of the square origami are identical in 2D space, and the unique geometry of the DNA origami capitalizes on the geometric differences of various bond arrangements. The '1-bit' and '0-bit' information is transmitted through distinct pathways, and the output information can be read not only by atomic force microscopy (AFM) but also by non-invasive methods such as stochastic optical reconstruction microscopy (STORM) and DNA-PAINT. This work has the potential for further development and broader applications, including the design of nanoscale combinatorial circuits, devices, and networks.

4.2 Introduction

The birth of the electronic computer marked a milestone in human history. However, the increasing demand for higher integration levels poses significant challenges to conventional integrated circuit technology, which is approaching the limits of what current techniques can achieve¹⁻⁴. Recognizing this, the development of DNA computers has garnered widespread attention⁵⁻⁸. DNA is composed of four types of nucleotides bases and stores biological genetic information through their unique arrangements⁹⁻¹². DNA computers are built upon these distinctive base pairings. In fact, DNA molecules can be viewed as strings composed of four different symbols of four bases which can be encoded based on the principle of complementary base pairing¹³⁻¹⁵. While DNA molecules have successfully realized various complex biochemical circuits¹⁶⁻²⁰, the output of DNA computer signals has always been a challenge. Currently, the characterization of single DNA computer molecules mainly relies on expensive and difficult-to-automate techniques such as atomic force microscopy (AFM) and single-molecule fluorescence spectroscopy.

DNA origami technique, which involves folding a long single-stranded DNA (scaffold) by hundreds of short DNA strands (staples) into designed shapes²¹, is exceptionally versatile in manufacturing delicate nanostructures with different shapes and sizes²²⁻²⁶. Here, we present a series of square DNA origami units to algorithmic self-assemble into Sierpiński triangular pattern while operation XOR function²⁷⁻³¹. In this work, SQ origami is geometrically more similar to Wang Tile^{32, 33}, all four edges are identical in 2D space. The output Information can be read not only by AFM, but also by non-invasive method like STORM, DNA-PAINT, etc^{34, 35}. The unique geometry of the

DNA origami makes use of the geometric difference of different bond arrangements. '1bit' and '0-bit' are propagated through distinct path. Also, 5'- and 3'- bond in this origami units are intrinsically orthogonal to each other. DNA origami will not bind once flipped.

4.3 Design with p3548 square DNA origami

Figure 4.1. Workflow of algorithmic self-Assembly of DNA origami into Sierpiński triangular pattern. (a) Overview of the design of Sierpiński triangular pattern from square units. This Sierpiński triangular pattern is composed through the XOR logical operation by 3 types of seed units and 4 types of building units. (b) The design of operation units, which is a M13mp18 square DNA origami with different sticky end

arrangements. The designs are finalized on Tiamat³⁶ by generating the scaffold strand (gray), core (blue), and edge (orange) staple strands, assigning sequences, and defining matching rules. (c) A DNA origami operation unit corresponding to the one in (b) is visualized by atomic force microscopy (AFM). (d) An AFM image showing Sierpiński triangular pattern which assembled by origami units.

The process of algorithmically self-assembling DNA origami into a Sierpiński triangular pattern consists of four stages (Figure 4.1). This pattern is composed of two series of units: seed origami and building units (Figure 4.1a). Seed origami includes type S, type B, and type R units. Type S units act as nucleation sites for the pattern and initially assemble with type B and type R units. The type B/type R units then bind with other type B/type R units, forming a right-angle frame. Subsequently, the four types of building units - type 00, type 11, type 01, and type 10 units - programmably assemble from the bottom to the top and from left to right directions, starting with the type B/ type R units on the right-angle frame. These building units also serve as algorithm units for the XOR operation.

In the building units, the sticky end arrangements on their bottom and right sides represent '1-bit' or '0-bit' input, while the sticky end arrangements on their top and left sides represent '1-bit' or '0-bit' output. As the seed origami and building units selfassemble into a 2D lattice, they exhibit the Sierpiński triangular pattern, as programmed by the XOR operation. The square unit design is finalized in Tiamat (Figure 4.1b) using the M13mp18 (a 7,249-nt scaffold widely used for building DNA origami nanostructures) and visualized through atomic force microscopy (AFM) (Figure 4.1c). The selfassembled 2D lattice of seed origami and building units, displaying the Sierpiński triangular pattern, is also characterized (Figure 4.1d).

Figure 4.2. 2D lattices assembled from p3548 square DNA origami with different sticky end arrangements. (a) The p3548 square DNA origami units with the sticky end arrangement give at 4th, 6th, 10th, and 12th helix on the top; accept at 4th, 6th, 10th, and 12th helix on the bottom; give at 3rd, 5th, 9th, and 11th helix on the left; and accept at 3rd, 5th, 9th and, 11th helix on the right. (b) The p3548 square DNA origami units with the sticky end arrangement give at 2nd, 4th, 12th, and 14th helix on the top; accept at 2nd, 4th, 12th, and 14th helix on the bottom; give at 1st, 3rd, 11th, and 13th helix on the left; and accept at 1st, 3rd, 11th, and 13th helix on the right. (c) The p3548 square DNA origami units with the sticky end arrangement give at 2nd, 6th, 10th, and 14th helix on the top; accept at 2nd, 6th, 10th, and 14th helix on the bottom; give at 1st, 5th, 9th, and 13th helix on the left; and accept at 1st, 5th, 9th, and 13th helix on the right. (d) The p3548 square DNA origami units with the sticky end arrangement give at 4th, 6th, 10th, and 12th helix on the top; accept at 4th, 6th, 10th, and 12th helix on the bottom; give at 4th, 6th, 10th, and 12th helix on the left; and accept at 4th, 6th, 10th, and 12th helix on the right. (e) The p3548 square DNA origami units with the sticky end arrangement give at 3rd, 5th, 9th, and 11th helix on the top; accept at 3rd, 5th, 9th, and 11th helix on the bottom; give at 1st, 3rd, 11th, and 13th helix on the left; and accept at 1st, 3rd, 11th, and 13th helix on the right. (f) The p3548 square DNA origami unit with the sticky end arrangement gives at 1st, 5th, 9th, and 13th helix on the top; accept at 1st, 5th, 9th, and 13th helix on the bottom; give at 1st, 5th, 9th, and 13th helix on the left; and accept at 1st, 5th, 9th, and 13th helix on the right. Scale bar: 2 µm.

Initially, the square units were designed based on p3548 (a customized scaffold consisting of 3,548 nt). In order to create the Sierpiński triangular pattern, the square units possess varying sticky end arrangements on their distinct unit sides. This necessitates the selection of square DNA origami capable of forming a 2D lattice with diverse sticky end configurations. As visualized by atomic force microscopy (AFM), all six square designs yielded micrometer-scale lattices (Figure 4.2). Despite having different sticky end arrangements, as seen in Figure 4.2d-f, the square units were still able to grow

up to dimensions exceeding 10 µm, exhibiting nearly defect-free areas.

Design with labeled strands

Figure 4.3. Sierpiński triangular pattern assembled from p3548 square DNA

origami units. (a) The sticky end arrangements of the 4 types of building units and 3 types of seed origami. The edges of the bottom side and the right side of type S seed origami, the bottom side of type B seed origami, and the right side of type R seed origami have hairpin blocking strands. (b) 4 types of units are selected for surface label: type 01 building unit, type 10 building unit, type B seed origami, and type R seed origami. (c) The design of surface labeled units. Core staple strands (red) with 20-nt of ploy A extension. (d) A zoomed-out AFM image showing the Sierpiński triangular pattern. Scale

bar: 1 μ m. (e) A zoomed-in AFM image showing the Sierpiński triangular pattern. Scale bar: 500 nm.

The building units and seed origami, created using the p3548 square DNA origami, were assigned distinct sticky end configurations to facilitate algorithmic assembly (Figure 4.2a). In order to enable pattern information to be read via AFM, two types of building units and two types of seed origami were chosen for surface labeling (Figure 4.2b). To label the square DNA origami, ten core staple strands in each triangular subunit were extended with 20-nt of poly A (Figure 4.2c). During the lattice annealing process, the addition of complementary poly T resulted in modified aggregation visible in the captured AFM images. However, the zoom-out and zoom-in AFM images (Figure 4.2d, e) of the 2D lattice with the Sierpiński triangular pattern did not meet expectations, as the lattice size failed to grow substantially.

To assess whether surface modifications on the square units could affect lattice size and pattern, four square DNA origami designs with varying numbers and sites of surface labeling strands were prepared (Figure S4.2). The different patterns of captured arrays, ranging from large arrays to tube-like structures, suggest that surface labeling strands can alter the curvature of the origami units and limit the growth of the 2D lattice. Moreover, the seed origami pattern did not display a consistent line pattern, indicating that the seed origami failed to function as a nucleation site and guide lattice formation. The surfacelabeled unit patterns also did not align well with the Sierpiński triangle pattern. Even through the different building units had assigned different sticky end arrangements, the specificity imparted by the number of helixes became inadequate to define their matching rules strictly, resulting in increased defects. To mitigate this issue, a larger square design with a greater number of helices on each side is recommended.

4.4 Design with M13mp18 square DNA origami

Figure 4.4. 2D lattices assembled from M13mp18 square DNA origami with different sticky end arrangements. (a) The M13mp18 square DNA origami units with the sticky end arrangement give at 7th, 9th, 13th, and 15th helix on the top; accept at 7th, 9th, 13th, and 15th helix on the bottom; give at 8th, 10th, 14th, and 16th helix on the left; and accept at 8th, 10th, 14th, and 16th helix on the right. (b) The M13mp18 square DNA origami units with the sticky end arrangement give at 3rd, 5th, 17th, and 19th helix on the top; accept at 3rd, 5th, 17th, and 19th helix on the bottom; give at 4th, 6th, 18th, and 20th helix on the left; and accept at 4th, 6th, 18th, and 20th helix on the right. (c) The M13mp18 square DNA origami units with the sticky end arrangement give at 4th, 8th, 16th, and 20th helix on the top; accept at 4th, 8th, 16th, and 20th helix on the bottom; give at 3rd, 7th, 15th, and 19th helix on the left; and accept at 3rd, 7th, 15th, and 19th helix on the right. (d) The M13mp18 square DNA origami units with the sticky end arrangement give at 3rd, 7th, 15th, and 19th helix on the top; accept at 3rd, 7th, 15th, and 19th helix on the bottom; give at 4th, 8th, 16th, and 20th helix on the left; and accept at 4th, 8th, 16th, and 20th helix on the right. (e) The M13mp18 square DNA origami units with the sticky end arrangement give at 8th, 10th, 14th, and 16th helix on the top; accept at 8th, 10th, 14th, and 16th helix on the bottom; give at 3rd, 5th, 17th, and 19th helix on the left; and accept at 3rd, 5th, 17th, and 19th helix on the right. (f) The M13mp18 square DNA origami unit with the sticky end arrangement gives at 3rd, 7th, 15th and, 19th helix on the top; accept at 3rd, 7th, 15th, and 19th helix on the bottom; give at 2nd, 6th, 14th, and 18th helix on the left; and accept at 2nd, 6th, 14th, and 18th helix on the right. Scale bar: 2 µm.

Figure 4.5. Melting temperature measurements of square DNA origami. (a) The design of DNA origami unit for fluorescence experiments to test its melting temperature. A FAM fluorophore (red) is attached to the 3' end of one edge staple strand on the top side and a TAMRA quencher (black) is also attached at the 5' end of edge staple strand on the bottom side, which allow the fluorophore and quencher could be placed face to face once the lattice was formed. (b) The results of melting temperature of the square units from 2D lattice to monomers. The melting points of the units with 2-nt, 3-nt and 4-nt sticky ends were $41.0 \,^{\circ}C$, $44.3 \,^{\circ}C$, and $45.2 \,^{\circ}C$.

Subsequently, the square units were designed using the M13mp18 scaffold. The adaptability of this square DNA origami to form a 2D lattice with varying sticky end configurations was verified (Figure 4.4). In order to decrease the number of nucleation sites in the M13mp18 square units, seed origami with different sticky end lengths were evaluated. The seed origami was intended to assemble first at a higher temperature than the building units during the lattice annealing process. This approach would guide the assembly of building units, thereby significantly improving their addressability.

To determine the melting point of the 2D lattice of square origami, a FAM fluorophore (red) was attached to the 3' end of one edge staple strand on the top side of the square origami (Figure 4.5a), and a TAMRA quencher (black) was also attached to the 5' end of the edge staple strand on the bottom side, allowing the fluorophore and quencher to be positioned face-to-face once the lattice was formed. In the fluorescence

experiments (Figure 4.5b), the melting points of the units with 2-nt, 3-nt, and 4-nt sticky ends were found to be 41.0°C, 44.3°C, and 45.2°C, respectively. Additionally, the M13mp18 square DNA origami monomers could be effectively formed at 50°C (Figure S4.3), which allowed the preparation of lattices assembled from two or more tile species (Sierpiński triangular pattern) at 50°C for the initial step. · Building units

Figure 4.6. Design and AFM characterization of 2D lattices assembled from M13mp18 square DNA origami. (a) The sticky end arrangements of the 4 types of building units and 3 types of seed origami. The edges of the bottom side and the right side of type S seed origami, the bottom side of type B seed origami, and the right so f type R seed origami have hairpin blocking strands. (b) 4 types of units are selected for surface label: type 01 building unit, type 10 building unit, type B seed origami, and type

а

R seed origami. (c) The design of surface labeled units. Core staple strands (red) with 20nt of ploy A and biotin extension. (d) A zoomed-out AFM image showing the Sierpiński triangular pattern. Scale bar: $2 \mu m$. (e) A zoomed-in AFM image showing the Sierpiński triangular pattern. Scale bar: 500 nm.

The M13mp18 square DNA origami-based building units and seed origami were assigned various sticky end configurations for conducting the algorithmic assembly (Figure 4.6a). In order to enable the pattern information to be read using AFM, two types of building units and two types of seed origami were chosen for surface labeling (Figure 4.6b). To label the square DNA origami, three core staple strands in each triangular subunit were biotin-labeled to bind with streptavidin (Figure 4.6c). Zoomed-out and zoomed-in AFM images (Figure 4.6d, e) of the 2D lattice with the Sierpiński triangular pattern were captured. In this design, the arrays could achieve sizes on the micrometer scale. The zoomed-in images showed a linear-like label at the edge of the array. The surface label pattern suggested that the assembly was guided by a single type of either type B seed origami or type R seed origami, rather than an origami frame assembled by all three types of seed origami. Further optimization of the annealing program and tile design could prove beneficial for this process.

4.5 Discussion

In conclusion, we have developed a series of square DNA origami units that algorithmically self-assemble into a Sierpiński triangular pattern while executing the XOR function. Our design employs M13mp18 square DNA origami to form a 2D lattice with six distinct sticky end arrangements. By introducing seed origami with longer sticky ends (3-nt), we facilitate initial assembly at higher temperatures, which guides the building units during the lattice annealing process. Following the surface labeling of DNA units with biotin, the Sierpiński triangular pattern was captured, demonstrating that the assembly is directed by the seed origami. This research holds promise for future advancements and wider applications, such as designing nanoscale combinatorial circuits, devices, and networks.

4.6 Material and Methods

See APPENDIX B.

4.7 Referance

1. Lloyd, S., Ultimate physical limits to computation. *Nature* **2000**, *406* (6799), 1047-1054.

2. Markov, I. L., Limits on fundamental limits to computation. *Nature* **2014**, *512* (7513), 147-154.

3. Peercy, P. S., The drive to miniaturization. *Nature* **2000**, *406* (6799), 1023-1026.

4. Kitano, H., Computational systems biology. *Nature* **2002**, *420* (6912), 206-210.

5. Adleman, L. M., Molecular computation of solutions to combinatorial problems. *science* **1994**, *266* (5187), 1021-1024.

6. Benenson, Y.; Paz-Elizur, T.; Adar, R.; Keinan, E.; Livneh, Z.; Shapiro, E., Programmable and autonomous computing machine made of biomolecules. *Nature* **2001**, *414* (6862), 430-434.

7. Ma, Q.; Zhang, C.; Zhang, M.; Han, D.; Tan, W., DNA Computing: Principle, Construction, and Applications in Intelligent Diagnostics. *Small Structures* **2021**, *2* (11), 2100051.

8. Liu, Q.; Wang, L.; Frutos, A. G.; Condon, A. E.; Corn, R. M.; Smith, L. M., DNA computing on surfaces. *Nature* **2000**, *403* (6766), 175-179.

9. Lund, K.; Williams, B.; Ke, Y.; Liu, Y.; Yan, H., DNA nanotechnology: a rapidly evolving field. *Current Nanoscience* **2006**, *2* (2), 113-122.

10. Ghosh, A.; Bansal, M., A glossary of DNA structures from A to Z. *Acta Crystallographica Section D: Biological Crystallography* **2003**, *59* (4), 620-626.

11. Pray, L., Discovery of DNA structure and function: Watson and Crick. *Nature Education* **2008**, *1* (1), 100.

12. Lin, C.; Liu, Y.; Rinker, S.; Yan, H., DNA tile based self-assembly: building complex nanoarchitectures. *ChemPhysChem* **2006**, *7* (8), 1641-1647.

13. Gibbons, A.; Amos, M.; Hodgson, D., DNA computing. *Current opinion in biotechnology* **1997**, *8* (1), 103-106.

14. Ezziane, Z., DNA computing: applications and challenges. *Nanotechnology* **2005**, *17* (2), R27.

15. Paun, G.; Rozenberg, G.; Salomaa, A., DNA computing: new computing paradigms.
Springer Science & Business Media: 2005.

16. Qian, L.; Winfree, E., Scaling up digital circuit computation with DNA strand displacement cascades. *Science* **2011**, *332* (6034), 1196-201.

17. Qian, L.; Winfree, E.; Bruck, J., Neural network computation with DNA strand displacement cascades. *Nature* **2011**, *475* (7356), 368-72.

18. Woods, D.; Doty, D.; Myhrvold, C.; Hui, J.; Zhou, F.; Yin, P.; Winfree, E., Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. *Nature* **2019**, *567* (7748), 366-372.

19. Tikhomirov, G.; Petersen, P.; Qian, L., Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. *Nature* **2017**, *552* (7683), 67-71.

20. Genot, A.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredèche, N.; Bartolo, J.; Taly, V.; Fujii, T.; Rondelez, Y., High-resolution mapping of bifurcations in nonlinear biochemical circuits. *Nature chemistry* **2016**, *8* (8), 760-767.

21. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

22. Ke, Y.; Sharma, J.; Liu, M.; Jahn, K.; Liu, Y.; Yan, H., Scaffolded DNA origami of a DNA tetrahedron molecular container. *Nano Lett* **2009**, *9* (6), 2445-7.

23. Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M., Self-assembly of DNA into nanoscale three-dimensional shapes. *Nature* **2009**, *459* (7245), 414-418.

24. Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H., DNA origami with complex curvatures in three-dimensional space. *Science* **2011**, *332* (6027), 342-6.

25. Zhang, F.; Jiang, S.; Wu, S.; Li, Y.; Mao, C.; Liu, Y.; Yan, H., Complex wireframe DNA origami nanostructures with multi-arm junction vertices. *Nat Nanotechnol* **2015**, *10* (9), 779-84.

26. Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H., Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. *Science* **2015**, *347* (6229), 1446-1452.

27. Rothemund, P. W.; Papadakis, N.; Winfree, E., Algorithmic self-assembly of DNA Sierpinski triangles. *PLoS Biol* **2004**, *2* (12), e424.

28. Fujibayashi, K.; Hariadi, R.; Park, S. H.; Winfree, E.; Murata, S., Toward reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern. *Nano*

Letters 2008, 8 (7), 1791-1797.

29. Winfree, E., Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments. *J Biomol Struct Dyn* **2000**, *17 Suppl 1*, 263-70.

30. Winfree, E., *Algorithmic self-assembly of DNA*. California Institute of Technology: 1998.

31. Mao, C.; LaBean, T. H.; Relf, J. H.; Seeman, N. C., Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. *Nature* **2000**, *407* (6803), 493-6.

32. Wang, H., Proving theorems by pattern recognition—II. *Bell system technical journal* **1961**, *40* (1), 1-41.

33. Cohen, M. F.; Shade, J.; Hiller, S.; Deussen, O., Wang tiles for image and texture generation. *ACM Transactions on Graphics (TOG)* **2003**, *22* (3), 287-294.

34. Jungmann, R.; Steinhauer, C.; Scheible, M.; Kuzyk, A.; Tinnefeld, P.; Simmel, F. C., Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. *Nano letters* **2010**, *10* (11), 4756-4761.

35. Jungmann, R.; Avendano, M. S.; Woehrstein, J. B.; Dai, M.; Shih, W. M.; Yin, P., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. *Nat Methods* **2014**, *11* (3), 313-8.

36. Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. In *Tiamat: a three-dimensional editing tool for complex DNA structures*, DNA Computing: 14th International Meeting on DNA Computing, DNA 14, Prague, Czech Republic, June 2-9, 2008. Revised Selected Papers 14, Springer: 2009; pp 90-101.

CHAPTER 5

SUMMARY AND OUTLOOK

5.1 Main

Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami technology enables the fabrication of nearly arbitrary DNA architectures with nanoscale precision, which can serve as excellent building blocks for the construction of tessellation patterns. Here, we describe a general design and assembly method for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. A critical design parameter, interhelical distance (D), was identified, which determined the conformation of monomer tiles and the outcome of tessellation. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability. To demonstrate the generality of the design method, 9 tile geometries and 15 unique tile designs were generated. The designed tiles were assembled into single-crystalline lattices ranging from tens to hundreds of square micrometers with micrometer-scale, nearly defect-free areas readily visualized by atomic force microscopy. We took two strategies to further increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and co-assembling tiles of various geometries. The designed 6 complex tilings that includes 5 Archimedean tilings and a 12-fold quasicrystal tiling yielded various tiling patterns that great in size and quality, indicating the robustness of the optimized tessellation system. The described design and assembly approach can also

be employed to create square DNA origami units for algorithmic self-assembly. As the square units assembled and expanded, they executed the binary function XOR, which generated the Sierpinski triangular pattern according to the predetermined instructions.

We draw two clues from this study that are useful for future research. Firstly, design parameters with angstrom-level or better precision are in demand for designing higherorder self-assemblies of DNA, but resources for high-precision design parameters are limited. Among techniques commonly used for DNA nanostructure characterization, cryogenic electron microscopy (cryo-EM) provides the route for high-resolution structural determination in solution. Due to excessive conformational heterogeneity, the accurate structural validation of single-layer DNA origami nanostructures with cryo-EM has been challenging¹. Assembling DNA origami tiles into 2D lattices is expected to effectively reduce the conformational dynamics of monomer tiles and facilitate the visualization of structural features in high resolution, which can, in turn, guide further design refinement. Our system sets the structural foundation for establishing this feedback loop. Secondly, sequence design is nontrivial in determining the global conformation and the self-assembly thermodynamics of DNA origami tiles. Owing to the cooperativity imparted by the scaffold strand, monomer DNA origami nanostructures can be folded in a nearly quantitative manner without being severely influenced by different sequence assignments². However, the ample design space of scaffold sequence assignment has been largely overlooked. Unlike tiles composed of short oligonucleotides, whose sequences can be arbitrarily defined to achieve a perfectly symmetric sequence design, the sequence of a DNA origami nanostructure can hardly be freely defined because it is primarily determined by the scaffold sequence used. DNA origami tiles are

intrinsically asymmetric at the sequence level, regardless of their geometries. This study provides multiple examples that are useful for elucidating the role of sequence with further thermodynamic analysis.

In addition to the continuous refinement of design parameters and rational sequence design, to further advance DNA origami tessellation systems, defect suppression, nucleation control, sustained growth, and shape recognition are viable strategies to take. Two types of point defects, adatom and interstitial, are commonly observed in the DNA origami tessellation systems. Both originate from the undesired interactions between monomer tiles and lattices mediated by unpaired loop regions, which can be minimized by optimizing the routing path of the scaffold strand. Secondly, tilings reported here begin with spontaneous nucleation and terminate primarily due to the exhaustion of free tiles. Inhibiting excessive spontaneous nucleation by introducing pre-formed seeds and sustaining lattice growth by replenishing free tiles may serve the purpose of further scaling up. Besides, the finite combinatorial possibilities of short sticky ends can only endow the tiling with limited specificity, especially when the tiling involves multiple unique tile species. Integrating shape complementarity as an additional proofreading mechanism can facilitate correct tile recognition and compensate for the deficiencies in specificity. Optimizations in these aspects are expected to further improve the size and quality of DNA origami tessellation patterns and hold promise for extending the remarkable advantages of DNA origami to the macroscopic scale.

More broadly, the design method has the potential to be compiled or incorporated into automatic design software tools to make it available to non-experts³. It can also be generalized to more rigid, multi-layer DNA tile constructs that overcome the intrinsic

flexibility of single-layer DNA origami and better support long-range patterning of bulky cargos, such as nanoparticles and carbon nanotubes, for applications in nanoplasmonics and nanoelectronics. Other potential applications include interfacing with large guests such as cells and bacteria, hosting long-range light-harvesting and energy transfer molecular systems, and integrating with conventional lithographic materials and techniques. Overall, our work addresses the limitations in the size and complexity of DNA origami tessellation and paves the way for user-defined, programmable patterning of molecules or materials across scales where new properties may arise.

5.2 References

1. Kube, M.; Kohler, F.; Feigl, E.; Nagel-Yüksel, B.; Willner, E. M.; Funke, J. J.; Gerling, T.; Stömmer, P.; Honemann, M. N.; Martin, T. G., Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution. *Nature communications* **2020**, *11* (1), 6229.

2. Sobczak, J. P.; Martin, T. G.; Gerling, T.; Dietz, H., Rapid folding of DNA into nanoscale shapes at constant temperature. *Science* **2012**, *338* (6113), 1458-61.

3. Huang, C.-M.; Kucinic, A.; Johnson, J. A.; Su, H.-J.; Castro, C. E., Integrated computer-aided engineering and design for DNA assemblies. *Nature Materials* **2021**, *20* (9), 1264-1271.

REFERENCES

Chapter 1 References

1. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. *Science* **2002**, *295* (5564), 2418-2421.

2. Philp, D.; Stoddart, J. F., Self-assembly in natural and unnatural systems. *Angewandte Chemie International Edition in English* **1996**, *35* (11), 1154-1196.

3. Ball, P., The self-made tapestry: pattern formation in nature. **1999**.

4. Marth, J. D., A unified vision of the building blocks of life. *Nature cell biology* **2008**, *10* (9), 1015-1015.

5. Zhang, S., Fabrication of novel biomaterials through molecular self-assembly. *Nature biotechnology* **2003**, *21* (10), 1171-1178.

6. Li, J.; Ye, Q.; Cassell, A.; Ng, H. T.; Stevens, R.; Han, J.; Meyyappan, M., Bottom-up approach for carbon nanotube interconnects. *Applied Physics Letters* **2003**, *82* (15), 2491-2493.

7. Thiruvengadathan, R.; Korampally, V.; Ghosh, A.; Chanda, N.; Gangopadhyay, K.; Gangopadhyay, S., Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. *Reports on Progress in Physics* **2013**, *76* (6), 066501.

8. Whitesides, G. M.; Boncheva, M., Beyond molecules: Self-assembly of mesoscopic and macroscopic components. *Proceedings of the National Academy of Sciences* **2002**, *99* (8), 4769-4774.

9. Okesola, B. O.; Smith, D. K., Applying low-molecular weight supramolecular gelators in an environmental setting–self-assembled gels as smart materials for pollutant removal. *Chemical Society Reviews* **2016**, *45* (15), 4226-4251.

10. Watson, J. D.; Crick, F. H., Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. *Nature* **1953**, *171* (4356), 737-738.

11. Lund, K.; Williams, B.; Ke, Y.; Liu, Y.; Yan, H., DNA nanotechnology: a rapidly evolving field. *Current Nanoscience* **2006**, *2* (2), 113-122.

12. Ghosh, A.; Bansal, M., A glossary of DNA structures from A to Z. *Acta Crystallographica Section D: Biological Crystallography* **2003**, *59* (4), 620-626.

13. Pray, L., Discovery of DNA structure and function: Watson and Crick. *Nature Education* **2008**, *1* (1), 100.

14. Lin, C.; Liu, Y.; Rinker, S.; Yan, H., DNA tile based self-assembly: building complex nanoarchitectures. *ChemPhysChem* **2006**, *7* (8), 1641-1647.

15. Smith, A., Nucleic acids to amino acids: DNA specifies protein. *Nature Education* **2008**, *1* (1), 126.

16. Zhang, C.; Su, M.; He, Y.; Zhao, X.; Fang, P. A.; Ribbe, A. E.; Jiang, W.; Mao, C., Conformational flexibility facilitates self-assembly of complex DNA nanostructures. *Proc Natl Acad Sci U S A* **2008**, *105* (31), 10665-9.

17. Seeman, N. C., An overview of structural DNA nanotechnology. *Mol Biotechnol* **2007**, *37* (3), 246-57.

18. Seeman, N. C., Nanomaterials based on DNA. Annu Rev Biochem 2010, 79, 65-87.

19. Bujold, K. E.; Lacroix, A.; Sleiman, H. F., DNA nanostructures at the interface with biology. *Chem* **2018**, *4* (3), 495-521.

20. Mao, C., The emergence of complexity: lessons from DNA. *PLoS Biol* **2004**, *2* (12), e431.

21. Holliday, R., A mechanism for gene conversion in fungi. *Genetics Research* **1964**, *5* (2), 282-304.

Seeman, N. C., Nucleic acid junctions and lattices. *J Theor Biol* 1982, 99 (2), 23747.

23. Fu, T. J.; Seeman, N. C., DNA double-crossover molecules. *Biochemistry* **1993**, *32* (13), 3211-20.

24. Sa-Ardyen, P.; Vologodskii, A. V.; Seeman, N. C., The flexibility of DNA double crossover molecules. *Biophys J* **2003**, *84* (6), 3829-37.

25. Li, X.; Yang, X.; Qi, J.; Seeman, N. C., Antiparallel DNA double crossover molecules as components for nanoconstruction. *Journal of the American Chemical Society* **1996**, *118* (26), 6131-6140.

26. Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C., Design and self-assembly of two-dimensional DNA crystals. *Nature* **1998**, *394* (6693), 539-44.

27. Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., DNA-templated self-assembly of protein arrays and highly conductive nanowires. *Science* **2003**, *301* (5641), 1882-4.

28. He, Y.; Chen, Y.; Liu, H.; Ribbe, A. E.; Mao, C., Self-assembly of hexagonal DNA two-dimensional (2D) arrays. *J Am Chem Soc* **2005**, *127* (35), 12202-3.

29. He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C., Highly connected two-dimensional crystals of DNA six-point-stars. *J Am Chem Soc* **2006**, *128* (50), 15978-9.

30. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

31. Ke, Y.; Sharma, J.; Liu, M.; Jahn, K.; Liu, Y.; Yan, H., Scaffolded DNA origami of a DNA tetrahedron molecular container. *Nano Lett* **2009**, *9* (6), 2445-7.

32. Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M., Self-assembly of DNA into nanoscale three-dimensional shapes. *Nature* **2009**, *459* (7245), 414-418.

33. Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H., DNA origami with complex curvatures in three-dimensional space. *Science* **2011**, *332* (6027), 342-6.

34. Zhang, F.; Jiang, S.; Wu, S.; Li, Y.; Mao, C.; Liu, Y.; Yan, H., Complex wireframe DNA origami nanostructures with multi-arm junction vertices. *Nat Nanotechnol* **2015**, *10* (9), 779-84.

35. Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H., Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. *Science* **2015**, *347* (6229), 1446-1452.

36. Nickels, P. C.; Wünsch, B.; Holzmeister, P.; Bae, W.; Kneer, L. M.; Grohmann, D.; Tinnefeld, P.; Liedl, T., Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. *Science* **2016**, *354* (6310), 305-307.

37. Liu, W.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O., Self-organized architectures from assorted DNA-framed nanoparticles. *Nature chemistry* **2016**, *8* (9), 867-873.

38. Jungmann, R.; Avendano, M. S.; Woehrstein, J. B.; Dai, M.; Shih, W. M.; Yin, P., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. *Nat Methods* **2014**, *11* (3), 313-8.

39. Fu, J.; Liu, M.; Liu, Y.; Woodbury, N. W.; Yan, H., Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. *J Am Chem Soc* **2012**, *134* (12), 5516-9.

40. Ke, Y.; Lindsay, S.; Chang, Y.; Liu, Y.; Yan, H., Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. *Science* **2008**, *319* (5860),

180-3.

41. Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M., Nanomechanical DNA origami'single-molecule beacons' directly imaged by atomic force microscopy. *Nature communications* **2011**, *2* (1), 449.

42. Bell, N. A.; Engst, C. R.; Ablay, M.; Divitini, G.; Ducati, C.; Liedl, T.; Keyser, U. F., DNA origami nanopores. *Nano letters* **2012**, *12* (1), 512-517.

43. Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C., Synthetic lipid membrane channels formed by designed DNA nanostructures. *Science* **2012**, *338* (6109), 932-6.

44. Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z. G.; Zou, G.; Liang, X.; Yan, H.; Ding, B., DNA origami as a carrier for circumvention of drug resistance. *J Am Chem Soc* **2012**, *134* (32), 13396-403.

45. Douglas, S. M.; Bachelet, I.; Church, G. M., A logic-gated nanorobot for targeted transport of molecular payloads. *Science* **2012**, *335* (6070), 831-834.

46. Schuller, V. J.; Heidegger, S.; Sandholzer, N.; Nickels, P. C.; Suhartha, N. A.; Endres, S.; Bourquin, C.; Liedl, T., Cellular immunostimulation by CpG-sequence-coated DNA origami structures. *ACS Nano* **2011**, *5* (12), 9696-702.

47. Wang, P.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y., The beauty and utility of DNA origami. *Chem* **2017**, *2* (3), 359-382.

48. Tikhomirov, G.; Petersen, P.; Qian, L., Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. *Nature* **2017**, *552* (7683), 67-71.

49. Fan, S.; Cheng, J.; Liu, Y.; Wang, D.; Luo, T.; Dai, B.; Zhang, C.; Cui, D.; Ke, Y.; Song, J., Proximity-Induced Pattern Operations in Reconfigurable DNA Origami Domino Array. *Journal of the American Chemical Society* **2020**, *142* (34), 14566-14573.

50. Zhao, Z.; Liu, Y.; Yan, H., Organizing DNA origami tiles into larger structures using preformed scaffold frames. *Nano Lett* **2011**, *11* (7), 2997-3002.

51. Tikhomirov, G.; Petersen, P.; Qian, L., Triangular DNA Origami Tilings. *J Am Chem Soc* 2018.

52. Aghebat Rafat, A.; Sagredo, S.; Thalhammer, M.; Simmel, F. C., Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based proteinbinding cavities. *Nature chemistry* **2020**, *12* (9), 852-859.

53. Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C., Crystalline two-dimensional DNA-

origami arrays. Angew Chem Int Ed Engl 2011, 50 (1), 264-7.

54. Tikhomirov, G.; Petersen, P.; Qian, L., Programmable disorder in random DNA tilings. *Nat Nanotechnol* **2017**, *12* (3), 251-259.

55. Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y., Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. *J Am Chem Soc* **2016**, *138* (24), 7733-40.

56. Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J., DNA origami design of dolphin-shaped structures with flexible tails. *ACS Nano* **2008**, *2* (6), 1213-8.

57. Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H., Challenges and opportunities for structural DNA nanotechnology. *Nat Nanotechnol* **2011**, *6* (12), 763-72.

58. Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., Structural DNA nanotechnology: state of the art and future perspective. *J Am Chem Soc* **2014**, *136* (32), 11198-211.

59. Seeman, N. C.; Sleiman, H. F., DNA nanotechnology. *Nature Reviews Materials* **2017**, *3* (1), 1-23.

60. Hong, F.; Zhang, F.; Liu, Y.; Yan, H., DNA Origami: Scaffolds for Creating Higher Order Structures. *Chem Rev* **2017**, *117* (20), 12584-12640.

61. Dey, S.; Fan, C.; Gothelf, K. V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M. A.; Saccà, B.; Simmel, F. C., DNA origami. *Nature Reviews Methods Primers* **2021**, *1* (1), 13.

62. Aghebat Rafat, A.; Pirzer, T.; Scheible, M. B.; Kostina, A.; Simmel, F. C., Surface-Assisted Large-Scale Ordering of DNA Origami Tiles. *Angewandte Chemie International Edition* **2014**, *53* (29), 7665-7668.

63. Woo, S.; Rothemund, P. W., Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. *Nat Commun* **2014**, *5*, 4889.

64. Suzuki, Y.; Endo, M.; Sugiyama, H., Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. *Nature communications* **2015**, *6* (1), 8052.

65. Suzuki, Y.; Sugiyama, H.; Endo, M., Complexing DNA origami frameworks through sequential self-assembly based on directed docking. *Angewandte Chemie International Edition* **2018**, *57* (24), 7061-7065.

Chapter 2 References

1. Grünbaum, B.; Shephard, G. C., *Tilings and patterns*. Courier Dover Publications: 1987.

2. Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X.; Chen, J.; Murray, C. B., Quasicrystalline order in self-assembled binary nanoparticle superlattices. *Nature* **2009**, *461* (7266), 964-967.

3. Nagaoka, Y.; Zhu, H.; Eggert, D.; Chen, O., Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. *Science* **2018**, *362* (6421), 1396-1400.

4. Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A., Self-assembly of hydrogen-bonded twodimensional quasicrystals. *Nature* **2014**, *507* (7490), 86-89.

5. Urgel, J. I.; Ecija, D.; Lyu, G.; Zhang, R.; Palma, C.-A.; Auwaerter, W.; Lin, N.; Barth, J. V., Quasicrystallinity expressed in two-dimensional coordination networks. *Nature Chemistry* **2016**, *8* (7), 657-662.

6. Zhang, Y.-Q.; Paszkiewicz, M.; Du, P.; Zhang, L.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V., Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. *Nature chemistry* **2018**, *10* (3), 296-304.

7. Gonen, S.; DiMaio, F.; Gonen, T.; Baker, D., Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. *Science* **2015**, *348* (6241), 1365-1368.

8. Tanrikulu, I. C.; Forticaux, A.; Jin, S.; Raines, R. T., Peptide tessellation yields micrometre-scale collagen triple helices. *Nature chemistry* **2016**, *8* (11), 1008-1014.

9. Ben-Sasson, A. J.; Watson, J. L.; Sheffler, W.; Johnson, M. C.; Bittleston, A.; Somasundaram, L.; Decarreau, J.; Jiao, F.; Chen, J.; Mela, I., Design of biologically active binary protein 2D materials. *Nature* **2021**, *589* (7842), 468-473.

10. Shi, Q.; Gómez, D. E.; Dong, D.; Sikdar, D.; Fu, R.; Liu, Y.; Zhao, Y.; Smilgies, D. M.; Cheng, W., 2D freestanding Janus gold nanocrystal superlattices. *Advanced Materials* **2019**, *31* (28), 1900989.

11. Lee, Y. H.; Shi, W.; Lee, H. K.; Jiang, R.; Phang, I. Y.; Cui, Y.; Isa, L.; Yang, Y.; Wang, J.; Li, S., Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. *Nature communications* **2015**, *6* (1), 6990.

12. Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T.,

Charge transport and localization in atomically coherent quantum dot solids. *Nature materials* **2016**, *15* (5), 557-563.

13. Chen, H.; Voigt, L.; Kubus, M.; Mihrin, D.; Mossin, S.; Larsen, R. W.; Kegnaes, S.; Piligkos, S.; Pedersen, K. S., Magnetic Archimedean Tessellations in Metal-Organic Frameworks. *J Am Chem Soc* **2021**, *143* (35), 14041-14045.

14. Wu, L.; Jubert, P. O.; Berman, D.; Imaino, W.; Nelson, A.; Zhu, H.; Zhang, S.; Sun, S., Monolayer assembly of ferrimagnetic Co(x)Fe(3-x)O4 nanocubes for magnetic recording. *Nano Lett* **2014**, *14* (6), 3395-9.

15. Kim, T.; Hong, J.; Kim, J.; Cho, J.; Kim, Y., Two-Dimensional Peptide Assembly via Arene-Perfluoroarene Interactions for Proliferation and Differentiation of Myoblasts. *J Am Chem Soc* **2023**, *145* (3), 1793-1802.

16. Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H., Challenges and opportunities for structural DNA nanotechnology. *Nat Nanotechnol* **2011**, *6* (12), 763-72.

17. Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., Structural DNA nanotechnology: state of the art and future perspective. *J Am Chem Soc* **2014**, *136* (32), 11198-211.

18. Seeman, N. C.; Sleiman, H. F., DNA nanotechnology. *Nature Reviews Materials* **2017**, *3* (1), 1-23.

19. Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y., Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. *J Am Chem Soc* **2016**, *138* (24), 7733-40.

20. Liu, X.; Zhang, F.; Jing, X.; Pan, M.; Liu, P.; Li, W.; Zhu, B.; Li, J.; Chen, H.; Wang, L.; Lin, J.; Liu, Y.; Zhao, D.; Yan, H.; Fan, C., Complex silica composite nanomaterials templated with DNA origami. *Nature* **2018**, *559* (7715), 593-598.

21. Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J.; Cao, T.; Zhou, Z.; Ta, T.; Streit, J. K., Precise pitch-scaling of carbon nanotube arrays within threedimensional DNA nanotrenches. *Science* **2020**, *368* (6493), 874-877.

22. Shen, J.; Sun, W.; Liu, D.; Schaus, T.; Yin, P., Three-dimensional nanolithography guided by DNA modular epitaxy. *Nature Materials* **2021**, *20* (5), 683-690.

23. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

24. Wang, P.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y., The beauty and utility of DNA origami. *Chem* **2017**, *2* (3), 359-382.

25. Hong, F.; Zhang, F.; Liu, Y.; Yan, H., DNA Origami: Scaffolds for Creating Higher Order Structures. *Chem Rev* **2017**, *117* (20), 12584-12640.

26. Dey, S.; Fan, C.; Gothelf, K. V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M. A.; Saccà, B.; Simmel, F. C., DNA origami. *Nature Reviews Methods Primers* **2021**, *1* (1), 13.

27. Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C., Crystalline two-dimensional DNA-origami arrays. *Angew Chem Int Ed Engl* **2011**, *50* (1), 264-7.

28. Liu, W.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O., Self-organized architectures from assorted DNA-framed nanoparticles. *Nature chemistry* **2016**, *8* (9), 867-873.

29. Tikhomirov, G.; Petersen, P.; Qian, L., Programmable disorder in random DNA tilings. *Nat Nanotechnol* **2017**, *12* (3), 251-259.

30. Tikhomirov, G.; Petersen, P.; Qian, L., Triangular DNA Origami Tilings. *J Am Chem Soc* 2018.

31. Aghebat Rafat, A.; Sagredo, S.; Thalhammer, M.; Simmel, F. C., Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based proteinbinding cavities. *Nature chemistry* **2020**, *12* (9), 852-859.

32. Aghebat Rafat, A.; Pirzer, T.; Scheible, M. B.; Kostina, A.; Simmel, F. C., Surfaceassisted large-scale ordering of DNA origami tiles. *Angew Chem Int Ed Engl* **2014**, *53* (29), 7665-8.

33. Woo, S.; Rothemund, P. W., Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. *Nat Commun* **2014**, *5*, 4889.

34. Suzuki, Y.; Endo, M.; Sugiyama, H., Lipid-bilayer-assisted two-dimensional selfassembly of DNA origami nanostructures. *Nature communications* **2015**, *6* (1), 8052.

35. Suzuki, Y.; Sugiyama, H.; Endo, M., Complexing DNA origami frameworks through sequential self-assembly based on directed docking. *Angewandte Chemie International Edition* **2018**, *57* (24), 7061-7065.

36. Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. In *Tiamat: a three-dimensional editing tool for complex DNA structures*, DNA Computing: 14th International Meeting on DNA Computing, DNA 14, Prague, Czech Republic, June 2-9, 2008. Revised Selected Papers 14, Springer: 2009; pp 90-101.

37. Ouldridge, T. E.; Louis, A. A.; Doye, J. P., Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. *The Journal of chemical*

physics 2011, 134 (8), 02B627.

38. Snodin, B. E.; Randisi, F.; Mosayebi, M.; Šulc, P.; Schreck, J. S.; Romano, F.; Ouldridge, T. E.; Tsukanov, R.; Nir, E.; Louis, A. A., Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. *The Journal of chemical physics* **2015**, *142* (23), 06B613_1.

39. Poppleton, E.; Romero, R.; Mallya, A.; Rovigatti, L.; Šulc, P., OxDNA. org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures. *Nucleic acids research* **2021**, *49* (W1), W491-W498.

40. Snodin, B. E.; Schreck, J. S.; Romano, F.; Louis, A. A.; Doye, J. P., Coarse-grained modelling of the structural properties of DNA origami. *Nucleic acids research* **2019**, *47* (3), 1585-1597.

41. Fischer, S.; Hartl, C.; Frank, K.; Radler, J. O.; Liedl, T.; Nickel, B., Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. *Nano Lett* **2016**, *16* (7), 4282-7.

42. Chatterjee, G.; Dalchau, N.; Muscat, R. A.; Phillips, A.; Seelig, G., A spatially localized architecture for fast and modular DNA computing. *Nature Nanotechnology* **2017**, *12*, 920.

43. Chao, J.; Wang, J.; Wang, F.; Ouyang, X.; Kopperger, E.; Liu, H.; Li, Q.; Shi, J.; Wang, L.; Hu, J.; Wang, L.; Huang, W.; Simmel, F. C.; Fan, C., Solving mazes with single-molecule DNA navigators. *Nat Mater* **2019**, *18* (3), 273-279.

Chapter 3 References

1. Grünbaum, B.; Shephard, G. C., *Tilings and patterns*. Courier Dover Publications: 1987.

2. Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X.; Chen, J.; Murray, C. B., Quasicrystalline order in self-assembled binary nanoparticle superlattices. *Nature* **2009**, *461* (7266), 964-967.

3. Nagaoka, Y.; Zhu, H.; Eggert, D.; Chen, O., Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. *Science* **2018**, *362* (6421), 1396-1400.

4. Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A., Self-assembly of hydrogen-bonded twodimensional quasicrystals. *Nature* **2014**, *507* (7490), 86-89. 5. Urgel, J. I.; Ecija, D.; Lyu, G.; Zhang, R.; Palma, C.-A.; Auwaerter, W.; Lin, N.; Barth, J. V., Quasicrystallinity expressed in two-dimensional coordination networks. *Nature Chemistry* **2016**, *8* (7), 657-662.

6. Zhang, Y.-Q.; Paszkiewicz, M.; Du, P.; Zhang, L.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V., Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. *Nature chemistry* **2018**, *10* (3), 296-304.

7. Gonen, S.; DiMaio, F.; Gonen, T.; Baker, D., Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. *Science* **2015**, *348* (6241), 1365-1368.

8. Tanrikulu, I. C.; Forticaux, A.; Jin, S.; Raines, R. T., Peptide tessellation yields micrometre-scale collagen triple helices. *Nature chemistry* **2016**, *8* (11), 1008-1014.

9. Ben-Sasson, A. J.; Watson, J. L.; Sheffler, W.; Johnson, M. C.; Bittleston, A.; Somasundaram, L.; Decarreau, J.; Jiao, F.; Chen, J.; Mela, I., Design of biologically active binary protein 2D materials. *Nature* **2021**, *589* (7842), 468-473.

10. Robinson, R. M., Undecidability and nonperiodicity for tilings of the plane. *Inventiones mathematicae* **1971**, *12*, 177-209.

11. Mozes, S., Tilings, substitution systems and dynamical systems generated by them. *Journal d'Analyse Mathématique* **1989**, *53* (1), 139-186.

12. Grunbaum, B.; Shephard, G. C., Tilings by Regular Polygons. *Mathematics Magazine* **1977**, *50* (5), 227-247.

13. Zhang, F.; Liu, Y.; Yan, H., Complex Archimedean tiling self-assembled from DNA nanostructures. *J Am Chem Soc* **2013**, *135* (20), 7458-61.

14. Levine, D.; Steinhardt, P. J., Quasicrystals: a new class of ordered structures. *Physical review letters* **1984**, *53* (26), 2477.

15. Senechal, M., *Quasicrystals and geometry*. CUP Archive: 1996.

16. Liu, L.; Li, Z.; Li, Y.; Mao, C., Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals. *J Am Chem Soc* **2019**, *141* (10), 4248-4251.

17. Lu, P. J.; Steinhardt, P. J., Decagonal and quasi-crystalline tilings in medieval Islamic architecture. *science* **2007**, *315* (5815), 1106-1110.

18. Cohen, M. F.; Shade, J.; Hiller, S.; Deussen, O., Wang tiles for image and texture generation. *ACM Transactions on Graphics (TOG)* **2003**, *22* (3), 287-294.

19. Winfree, E., *Algorithmic self-assembly of DNA*. California Institute of Technology: 1998.

20. Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H., Challenges and opportunities for structural DNA nanotechnology. *Nat Nanotechnol* **2011**, *6* (12), 763-72.

21. Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., Structural DNA nanotechnology: state of the art and future perspective. *J Am Chem Soc* **2014**, *136* (32), 11198-211.

22. Seeman, N. C.; Sleiman, H. F., DNA nanotechnology. *Nature Reviews Materials* **2017**, *3* (1), 1-23.

23. Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y., Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. *J Am Chem Soc* **2016**, *138* (24), 7733-40.

24. Liu, X.; Zhang, F.; Jing, X.; Pan, M.; Liu, P.; Li, W.; Zhu, B.; Li, J.; Chen, H.; Wang, L.; Lin, J.; Liu, Y.; Zhao, D.; Yan, H.; Fan, C., Complex silica composite nanomaterials templated with DNA origami. *Nature* **2018**, *559* (7715), 593-598.

25. Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J.; Cao, T.; Zhou, Z.; Ta, T.; Streit, J. K., Precise pitch-scaling of carbon nanotube arrays within threedimensional DNA nanotrenches. *Science* **2020**, *368* (6493), 874-877.

26. Shen, J.; Sun, W.; Liu, D.; Schaus, T.; Yin, P., Three-dimensional nanolithography guided by DNA modular epitaxy. *Nature Materials* **2021**, *20*(5), 683-690.

27. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

28. Wang, P.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y., The beauty and utility of DNA origami. *Chem* **2017**, *2* (3), 359-382.

29. Hong, F.; Zhang, F.; Liu, Y.; Yan, H., DNA Origami: Scaffolds for Creating Higher Order Structures. *Chem Rev* **2017**, *117* (20), 12584-12640.

30. Dey, S.; Fan, C.; Gothelf, K. V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M. A.; Saccà, B.; Simmel, F. C., DNA origami. *Nature Reviews Methods Primers* **2021**, *1* (1), 13.

31. Tikhomirov, G.; Petersen, P.; Qian, L., Triangular DNA Origami Tilings. *J Am Chem Soc* **2018**.

32. Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C., Crystalline two-dimensional DNAorigami arrays. *Angew Chem Int Ed Engl* **2011**, *50* (1), 264-7.

33. Liu, W.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O., Self-organized architectures from assorted DNA-framed nanoparticles. *Nature chemistry* **2016**, *8* (9), 867-873.

34. Tikhomirov, G.; Petersen, P.; Qian, L., Programmable disorder in random DNA tilings. *Nat Nanotechnol* **2017**, *12* (3), 251-259.

35. Aghebat Rafat, A.; Sagredo, S.; Thalhammer, M.; Simmel, F. C., Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based proteinbinding cavities. *Nature chemistry* **2020**, *12* (9), 852-859.

36. Suzuki, Y.; Sugiyama, H.; Endo, M., Complexing DNA origami frameworks through sequential self - assembly based on directed docking. *Angewandte Chemie International Edition* **2018**, *57* (24), 7061-7065.

37. Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. In *Tiamat: a three-dimensional editing tool for complex DNA structures*, DNA Computing: 14th International Meeting on DNA Computing, DNA 14, Prague, Czech Republic, June 2-9, 2008. Revised Selected Papers 14, Springer: 2009; pp 90-101.

38. SantaLucia Jr, J.; Hicks, D., The thermodynamics of DNA structural motifs. *Annu. Rev. Biophys. Biomol. Struct.* **2004**, *33*, 415-440.

39. Kilchherr, F.; Wachauf, C.; Pelz, B.; Rief, M.; Zacharias, M.; Dietz, H., Single-molecule dissection of stacking forces in DNA. *Science* **2016**, *353* (6304), aaf5508.

40. Minev, D.; Wintersinger, C. M.; Ershova, A.; Shih, W. M., Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. *Nature communications* **2021**, *12* (1), 1741.

41. Fischer, S.; Hartl, C.; Frank, K.; Radler, J. O.; Liedl, T.; Nickel, B., Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. *Nano Lett* **2016**, *16* (7), 4282-7.

42. Coxeter, H., Mathematical Models. By HM Cundy and AP Rollett. Pp. 286. 25s. 1961.(Oxford University Press). *The Mathematical Gazette* **1962**, *46* (358), 331-331.

43. Tomizawa, J.-i., Control of cole 1 plasmid replication: the process of binding of RNA I to the primer transcript. *Cell* **1984**, *38* (3), 861-870.

44. Barbault, F.; Huynh-Dinh, T.; Paoletti, J.; Lancelot, G., A new peculiar DNA structure: NMR solution structure of a DNA kissing complex. *Journal of Biomolecular Structure and Dynamics* **2002**, *19* (4), 649-658.

45. Barth, A.; Kobbe, D.; Focke, M., DNA–DNA kissing complexes as a new tool for the assembly of DNA nanostructures. *Nucleic Acids Research* **2016**, *44* (4), 1502-1513.

Chapter 4 References

1. Lloyd, S., Ultimate physical limits to computation. *Nature* **2000**, *406* (6799), 1047-1054.

2. Markov, I. L., Limits on fundamental limits to computation. *Nature* **2014**, *512* (7513), 147-154.

3. Peercy, P. S., The drive to miniaturization. *Nature* **2000**, *406* (6799), 1023-1026.

4. Kitano, H., Computational systems biology. *Nature* **2002**, *420* (6912), 206-210.

5. Adleman, L. M., Molecular computation of solutions to combinatorial problems. *science* **1994**, *266* (5187), 1021-1024.

6. Benenson, Y.; Paz-Elizur, T.; Adar, R.; Keinan, E.; Livneh, Z.; Shapiro, E., Programmable and autonomous computing machine made of biomolecules. *Nature* **2001**, *414* (6862), 430-434.

7. Ma, Q.; Zhang, C.; Zhang, M.; Han, D.; Tan, W., DNA Computing: Principle, Construction, and Applications in Intelligent Diagnostics. *Small Structures* **2021**, *2* (11), 2100051.

8. Liu, Q.; Wang, L.; Frutos, A. G.; Condon, A. E.; Corn, R. M.; Smith, L. M., DNA computing on surfaces. *Nature* **2000**, *403* (6766), 175-179.

9. Lund, K.; Williams, B.; Ke, Y.; Liu, Y.; Yan, H., DNA nanotechnology: a rapidly evolving field. *Current Nanoscience* **2006**, *2* (2), 113-122.

10. Ghosh, A.; Bansal, M., A glossary of DNA structures from A to Z. *Acta Crystallographica Section D: Biological Crystallography* **2003**, *59* (4), 620-626.

11. Pray, L., Discovery of DNA structure and function: Watson and Crick. *Nature Education* **2008**, *1* (1), 100.

12. Lin, C.; Liu, Y.; Rinker, S.; Yan, H., DNA tile based self-assembly: building complex nanoarchitectures. *ChemPhysChem* **2006**, *7* (8), 1641-1647.

13. Gibbons, A.; Amos, M.; Hodgson, D., DNA computing. *Current opinion in biotechnology* **1997**, *8* (1), 103-106.

14. Ezziane, Z., DNA computing: applications and challenges. *Nanotechnology* **2005**, *17* (2), R27.

15. Paun, G.; Rozenberg, G.; Salomaa, A., *DNA computing: new computing paradigms*. Springer Science & Business Media: 2005.

16. Qian, L.; Winfree, E., Scaling up digital circuit computation with DNA strand displacement cascades. *Science* **2011**, *332* (6034), 1196-201.

17. Qian, L.; Winfree, E.; Bruck, J., Neural network computation with DNA strand displacement cascades. *Nature* **2011**, *475* (7356), 368-72.

18. Woods, D.; Doty, D.; Myhrvold, C.; Hui, J.; Zhou, F.; Yin, P.; Winfree, E., Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. *Nature* **2019**, *567* (7748), 366-372.

19. Tikhomirov, G.; Petersen, P.; Qian, L., Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. *Nature* **2017**, *552* (7683), 67-71.

20. Genot, A.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredèche, N.; Bartolo, J.; Taly, V.; Fujii, T.; Rondelez, Y., High-resolution mapping of bifurcations in nonlinear biochemical circuits. *Nature chemistry* **2016**, *8* (8), 760-767.

21. Rothemund, P. W., Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297-302.

22. Ke, Y.; Sharma, J.; Liu, M.; Jahn, K.; Liu, Y.; Yan, H., Scaffolded DNA origami of a DNA tetrahedron molecular container. *Nano Lett* **2009**, *9* (6), 2445-7.

23. Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M., Self-assembly of DNA into nanoscale three-dimensional shapes. *Nature* **2009**, *459* (7245), 414-418.

24. Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H., DNA origami with complex curvatures in three-dimensional space. *Science* **2011**, *332* (6027), 342-6.

25. Zhang, F.; Jiang, S.; Wu, S.; Li, Y.; Mao, C.; Liu, Y.; Yan, H., Complex wireframe DNA origami nanostructures with multi-arm junction vertices. *Nat Nanotechnol* **2015**, *10* (9), 779-84.

26. Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H., Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components.

Science 2015, 347 (6229), 1446-1452.

27. Rothemund, P. W.; Papadakis, N.; Winfree, E., Algorithmic self-assembly of DNA Sierpinski triangles. *PLoS Biol* **2004**, *2* (12), e424.

28. Fujibayashi, K.; Hariadi, R.; Park, S. H.; Winfree, E.; Murata, S., Toward reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern. *Nano Letters* **2008**, *8* (7), 1791-1797.

29. Winfree, E., Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments. *J Biomol Struct Dyn* **2000**, *17 Suppl 1*, 263-70.

30. Winfree, E., *Algorithmic self-assembly of DNA*. California Institute of Technology: 1998.

31. Mao, C.; LaBean, T. H.; Relf, J. H.; Seeman, N. C., Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. *Nature* **2000**, *407* (6803), 493-6.

32. Wang, H., Proving theorems by pattern recognition—II. *Bell system technical journal* **1961**, *40* (1), 1-41.

33. Cohen, M. F.; Shade, J.; Hiller, S.; Deussen, O., Wang tiles for image and texture generation. *ACM Transactions on Graphics (TOG)* **2003**, *22* (3), 287-294.

34. Jungmann, R.; Steinhauer, C.; Scheible, M.; Kuzyk, A.; Tinnefeld, P.; Simmel, F. C., Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. *Nano letters* **2010**, *10* (11), 4756-4761.

35. Jungmann, R.; Avendano, M. S.; Woehrstein, J. B.; Dai, M.; Shih, W. M.; Yin, P., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. *Nat Methods* **2014**, *11* (3), 313-8.

36. Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. In *Tiamat: a three-dimensional editing tool for complex DNA structures*, DNA Computing: 14th International Meeting on DNA Computing, DNA 14, Prague, Czech Republic, June 2-9, 2008. Revised Selected Papers 14, Springer: 2009; pp 90-101.

Chapter 5 References

Gerling, T.; Stömmer, P.; Honemann, M. N.; Martin, T. G., Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution. *Nature communications* **2020**, *11* (1), 6229.

2. Sobczak, J. P.; Martin, T. G.; Gerling, T.; Dietz, H., Rapid folding of DNA into nanoscale shapes at constant temperature. *Science* **2012**, *338* (6113), 1458-61.

3. Huang, C.-M.; Kucinic, A.; Johnson, J. A.; Su, H.-J.; Castro, C. E., Integrated computer-aided engineering and design for DNA assemblies. *Nature Materials* **2021**, *20* (9), 1264-1271.

APPENDIX A

SUPPLEMENTAL INFORMATION FOR CHAPTER 2

S2.1 Materials and Methods

S2.1.1 Synthesis of customized DNA scaffold strands

Three customized DNA scaffold strands (p2820, p3120, and p3548) were synthesized and utilized in this study. The phagemid vector with 2820 base pairs (bp) was synthesized by deleting a DNA fragment of 141 bp from pBlueScript II SK(+) vector using Q5 site-directed mutagenesis kit (New England Biolabs). For p3120 and p3548, customized DNA fragments were synthesized and inserted into pBlueScript II SK(+) vector by Bio Basic Inc. (biobasic.com) to form phagemid vectors with 3210 bp and 3548 bp, respectively. To synthesize DNA scaffold strands, the phagemid vector (2820 bp, 3120 bp, or 3548 bp) was co-transformed into *E. coli* DH5 α competent cells with a helper plasmid pSB4423, a kind gift from Dr. Stanley Brown (Niels Bohr Institute, Denmark). The DNA scaffold strands were amplified and purified as described previously¹. The mass concentration of each strand was measured by NanoDropTM 2000 spectrophotometer (Thermo Scientific) and converted to molar concentration using the average molecular weight of a DNA nucleotide (330 g/mol). Sequences of these scaffold strands are summarized in Section S2.7.1.

S2.1.2 Sample preparation

The M13mp18 single-stranded DNA was purchased from Bayou Biolabs (P-107, 1 $\mu g/\mu L$). The p8064 single-stranded DNA was purchased from tilibit nanosystems (M1-51, 100 nM). Both DNA strands were used as received without further purification. Sequences of both scaffold strands are summarized in Section S2.7.1. Staple strands were categorized based on their positions and functions within the DNA origami tiles: core staples fold the scaffold strand into the designed geometry; edge staples present sticky ends and base stackings that "glue" monomer DNA origami tiles together into higher-order assemblies. All staple strands were purchased from Integrated DNA Technologies (idtdna.com) at 100 μ M in RNase-free water and were used as received without further purification. Sequences of staple strands are summarized in Section S2.7.2.

The multimeric complexes assembled from p3120 equilateral triangular tiles were prepared by mixing the p3120 scaffold strand (5 nM) and corresponding staple strands (50 nM/each) in $1 \times TAE/Mg^{2+}$ buffer (Tris base 40 mM, acetic acid 20 mM, EDTA·Na₂·12H₂O 2 mM, (CH₃COO)₂Mg·4H₂O 12.5 mM) and annealing the mixture from 80 °C to 20 °C in ~101 h. The annealing procedure was controlled using DNA Engine Tetrad® 2 Thermal Cycler (Bio-Rad). The samples were heated up to 80 °C, held at 80 °C for 10 min, cooled from 80 °C to 40 °C at -1 °C/min, held at 40 °C for 10 min, cooled from 40 °C to 20 °C at -0.1 °C/30 min, and held at 15 °C until use. The lattices assembled from a single tile species were prepared by mixing the scaffold strand (25 nM), core staple strands (250 nM/each), and edge staple strands (375 nM/ea) in 1× TAE/Mg²⁺ buffer. The samples were annealed following the same procedure used for multimeric complexes.

The lattices assembled from two or more tile species were prepared in two steps. Firstly, different tile species were prepared in separate tubes by mixing the scaffold strand (25 nM), core staple strands (250 nM/each), and edge staple strands (375 nM/ea) in 1× TAE/Mg²⁺ buffer. The mixtures were heated up to 80 °C, held at 80 °C for 10 min, cooled from 80 °C to 40 °C at -1 °C/min, and held at 40 °C until Step 2. In Step 2, different tile species were mixed in one tube preheated to 40 °C, held at 40 °C for 30 min, annealed from 40 °C to 20 °C at -0.1 °C/30 min, and held at 15 °C until use.

S2.1.3 AFM imaging

For multimeric complexes imaging, the samples were diluted to 3 nM using $1 \times$ TAE/Mg²⁺ buffer. 5 µL of the diluted sample was deposited onto a freshly cleaved mica surface (Ted Pella) and incubated for 5 min. Then, 60 µL $1 \times$ TAE/Mg²⁺ buffer was added onto the mica surface and removed by compressed air. This step was repeated twice to minimize the imaging background from excess staples. Subsequently, the mica surface was covered by 60 µL $1 \times$ TAE/Mg²⁺ buffer, and 10 µL NiCl₂ solution (100 mM) was added to assist adsorption. The samples were imaged in "ScanAsyst in Fluid" mode with a ScanAsyst-liquid+ tip on the MultiMode 8 AFM (Bruker).

For the imaging of lattices, the samples were diluted to 5 nM (scaffold concentration) using $1 \times TAE/Mg^{2+}$ buffer. 10 µL of the diluted sample was deposited onto a freshly cleaved mica surface and incubated for 5 min. The rest steps were the same as the imaging of multimeric complexes.

S2.2 Designs of DNA Origami Tile

S2.2.1 Design parameters of DNA origami tiles

S2.2.1.1 Design parameters of p3120 equilateral triangular DNA origami tiles for

oxDNA simulation and AFM-based statistical analysis

Table S2.1. Design parameters of six p3120 equilateral triangular DNA origami tiles

based on different **D** values.

Design name	[TR]_p3120						
Rise							
per							
base			0.	34			
pair, r							
(nm)							
Interhel							
ical							
distanc	2.55	2.65	2.70	2.75	2.85	3.00	
e, D							
(nm)							
Numbe							
r of							
helices			1	8			
per							
subunit		1	1	1	1	1	
Minimu							
m helix	38	37	36	36	35	34	
length	50	57	50	50	55	54	
(bp)							
Maxim							
um							
helix	73	73	73	73	74	75	
length							
(bp)							
Lengths	38/42/47/5	37/41/46/5	36/41/45/5	36/41/45/5	35/40/45/5	34/39/44/4	
of	1/55	0/55	0/54	0/55	0/54	9/54	
helices	/60/64/68/	/59/64/68/	/59/64/68/	/59/64/69/	/59/64/69/	/59/65/70/	
(bp)	73	73	73	73	74	75	
Lengths	6/7/6/7/6/	6/6/7/7/6/	7/7/7/7/6/	7/6/7/7/6/	6/7/7/7/7/	7/7/7/9/	
of	8/9/7	7/8/8	8/9/9	8/8/9	8/9/9	8/8/9	
scaffold		77070		0,0,7		0/0/2	

loops (nt)						
Length of the scaffold bridge (nt)	1	1	4	3	5	6
Lengths of staple bridges (nt)	6/5/5/4/3/ 1/2/2	6/5/5/4/1/ 0/2/2	5/5/4/2/1/ 0/2/2	5/5/4/4/1/ 0/0/2	5/5/4/2/2/ 1/0/0	4/3/3/2/2/ 3/3/2

S2.2.1.2 Design parameters of DNA origami tiles for regular tilings

Table S2.2. Design parameters of p3120 equilateral triangular DNA origami tile (D =

Design name	[TR]_p3120
Rise per base pair, r (nm)	0.34
Interhelical distance, D (nm)	2.70
Number of helices per subunit	18
Minimum helix length (bp)	36
Maximum helix length (bp)	73
Lengths of helices (bp)	36/41/45/50/54/59/64/68/73
Lengths of scaffold loops (nt)	7/7/7/6/8/9/9
Length of the scaffold bridge (nt)	4
Lengths of staple bridges (nt)	5/5/4/2/1/0/2/2

2.70 nm) for regular tiling.

Table S2.3.	. Design	parameters	of three	regular	polygona	l DNA	origami	tiles	based	on the
p3548 scaf	fold.									

Design name	[TR]_p3548	[SQ]_p3548	[HE]_p3548
Rise per base pair, <i>r</i> (nm)	0.34	0.332	0.332
Interhelical distance, D (nm)	2.69	2.65	2.65
Number of helices per subunit	20	14	10
Minimum helix length (bp)	35	34	27
Maximum helix length (bp)	76	82	81
Lengths of helices (bp)	35/40/44/49/53/ 58/62/67/72/76	34/42/50/58/ 66/74/82	27/41/54/68/81
Lengths of scaffold loops (nt)	7/7/6/8/8/6/6/7/9	10/10/12/12/10/10	14/11/11/15
Length of the scaffold bridge (nt)	5	11	1
Lengths of staple bridges (nt)	4/3/2/0/0/4/4/4/5	8/8/3/6/9/8	8/2/4/9

Design name	[TR]_M13	[SQ]_M13	[HE]_M13
Rise per base pair, r (nm)	0.332	0.34	0.332
Interhelical distance, D (nm)	2.60	2.69	2.65
Number of helices per subunit	32	22	14
Minimum helix length (bp)	38	39	40
Maximum helix length (bp)	106	118	123
Lengths of helices (bp)	38/43/47/52/56/61/65/70/74/ 79/83/88/92/97/101/106	39/47/55/63/71/79/ 86/94/102/110/118	40/54/68/81/ 95/109/123
Lengths of scaffold loops (nt)	7/8/8/7/7/7/7/11/ 6/5/6/9/10/10/8	9/11/8/10/8/ 8/9/8/10/8	12/13/12/11/14/13
Length of the scaffold bridge (nt)	2	3	6
Lengths of staple bridges (nt)	5/6/6/6/6/4/3/1/ 1/5/5/7/6/7/6	2/4/7/6/0/ 4/7/7/1/5	9/8/5/1/4/8

Table S2.4. Design parameters of three regular polygonal DNA origami tiles based on the M13mp18 scaffold.

S2.2.1.3 Design parameters of low-symmetry tiles for Laves tilings

Design name	[irTR]_p3548			
Rise per base pair, <i>r</i> (nm)	0.	34		
Interhelical distance, \boldsymbol{D} (nm)	2.	70		
Composing subunit	Subunit 135°	Subunit 90 °		
Number of helices per subunit	26	10		
Minimum helix length (bp)	35	37		
Maximum helix length (bp)	74	69		
Lengths of helices (bp)	35/38/41/44/48/51/54/ 58/61/64/67/71/74	37/45/53/61/69		
Lengths of scaffold loops (nt)	6/6/8/5/7/7/9/ 9/4/10/6/6	12/7/8/10		
Length of the scaffold bridge (nt)	4	1		
Lengths of staple bridges (nt)	0/4/4/2/4/1/ 0/4/3/5/4/0	6/1/6/7		

Table S2.5. Design parameters of p3548 isosceles right triangular DNA origami tile.

Table S2.6.	Design	parameters	of M13m	p18 rhc	mbic D	NA orig	gami tile.

Design name	[RH]_M13			
Rise per base pair, <i>r</i> (nm)	0.34			
Interhelical distance, \boldsymbol{D} (nm)	2.69			
Composing subunit	Subunit 120°	Subunit 60°		
Number of helices per subunit	36	12		
Minimum helix length (bp)	34	34		
Maximum helix length (bp)	112	103		
Lengths of helices (bp)	34/39/43/48/53/57/62/66/71/75/ 80/85/89/94/98/103/107/112	34/48/62/76/89/103		
Lengths of scaffold loops (nt)	7/7/8/8/7/7/7/7/9/ 9/9/7/6/6/6/7/8	12/12/9/12/12		
Length of the scaffold bridge (nt)	6	9		
Lengths of staple bridges (nt)	3/1/1/0/4/4/6/5/6/ 5/5/6/5/6/5/4/3	1/4/8/9/7		

Design name	[KT]_M13				
Rise per base pair, <i>r</i> (nm)		0.34			
Interhelical distance, D (nm)		2.69			
Composing subunit	Subunit 120°	Subunit 90 °	Subunit 60°		
Number of helices per subunit	38	22	14		
Minimum helix length (bp)	33	33	24		
Maximum helix length (bp)	115	112	106		
Lengths of helices (bp)	33/37/42/46/51/56/60/ 65/69/74/78/83/88/92/ 97/101/106/110/115	33/41/49/57/65/72/ 80/88/96/104/112	24/37/51/65/ 79/92/106		
Lengths of scaffold loops (nt)	7/8/6/6/7/6/6/7/7/ 7/8/8/8/8/6/4/6/7	9/10/8/10/10/ 9/9/8/9/9	12/13/13/14/12/12		
Length of the scaffold bridge (nt)	5	7	7		
Lengths of staple bridges (nt)	2/2/5/5/5/6/5/6/5/ 6/6/5/5/4/2/1/2/2	7/7/3/3/7/8/4/3/7/7	2/6/8/9/6/2		

Table S2.7. Design parameters of M13mp18 kite DNA origami tile.

<i>Table S2.8.</i> [Design param	eters of M13m	p18 prisma	tic pentagonal	DNA origami tile.
THOIC SHIOL L	param			ne pennagonai	DI III OII Guilli Ulle.

Design name	[PT-prism]_M13			
Rise per base pair, <i>r</i> (nm)	0.34			
Interhelical distance, \boldsymbol{D} (nm)	2.	69		
Composing subunit	Subunit 90°	Subunit 60°		
Number of helices per subunit	22	14		
Minimum helix length (bp)	44	35		
Maximum helix length (bp)	123	117		
Lengths of helices (bp)	44/52/60/68/76/83/ 91/99/107/115/123	35/48/62/76/ 90/103/117		
Lengths of scaffold loops (nt)	10/9/9/9/10/ 10/9/9/8/9	12/12/13/15/12/12		
Length of the scaffold bridge (nt)	7	6		
Lengths of staple bridges (nt)	7/7/2/4/7/ 7/3/4/7/7	1/5/8/9/7/3		

Design name	[PT-Cair	ro]_M13
Rise per base pair, <i>r</i> (nm)	0.34	
Interhelical distance, D (nm)	2.69	
Composing subunit	Subunit 90 °	Subunit 60°
Number of helices per subunit	22	14
Minimum helix length (bp)	42	35
Maximum helix length (bp)	122	116
Lengths of helices (bp)	42/50/58/66/74/82/ 90/98/106/114/122	35/49/62/76/ 89/103/116
Lengths of scaffold loops (nt)	7/12/8/12/8/ 8/12/8/12/7	12/13/14/14/13/12
Length of the scaffold bridge (nt)	9	7
Lengths of staple bridges (nt)	6/9/8/3/7/ 8/7/1/7/8	2/6/9/9/6/2

Table S2.9. Design parameters of M13mp18 Cairo pentagonal DNA origami tile.

Table S2.10. Design parameters of p8064 floret pentagonal DNA origami tile.

Design name	[PT-floret]_p8064		
Rise per base pair, r (nm)	0.34		
Interhelical distance, \boldsymbol{D} (nm)	2.69		
Composing subunit	Subunit 120°	Subunit 60°	
Number of helices per subunit	42	14	
Minimum helix length (bp)	35	35	
Maximum helix length (bp)	126	117	
Lengths of helices (bp)	35/39/44/48/53/57/62/67/71/76/80/85/ 89/94/99/103/108/112/117/121/126	35/48/62/76/ 90/103/117	
Lengths of scaffold loops (nt)	6/7/8/6/6/7/7/6/6/7/ 7/8/8/8/7/5/4/6/7/8	12/12/13/ 15/12/12	
Length of the scaffold bridge (nt)	5	6	
Lengths of staple bridges (nt)	4/3/1/0/4/4/4/6/5/6/ 5/6/6/5/6/5/4/3/1/1	1/5/8/9/7/3	

Figure S2.1. Tiamat designs of DNA origami tiles for regular tilings. (a) p3120 equilateral triangular tile, (b) p3548 equilateral triangular tile, (c) M13mp18 equilateral triangular tile, (d) p3548 square tile, (e) M13mp18 square tile, (f) p3548 regular hexagonal tile, (g) M13mp18 regular hexagonal tile, (h) p2820 equilateral triangular tile, and (i) M13mp18 half hexagonal tile. The scaffold strand (gray) is folded by core staple strands (blue) into the target shape, which can be further linked together by edge staple strands (orange) into 2D lattices.

Figure S2.2. Tiamat designs of low-symmetry tiles for Laves tilings. (a) p3548 isosceles right triangular tile, (b) M13mp18 rhombic tile, (c) M13mp18 kite tile, (d) M13mp18 prismatic pentagonal tile, (e) M13mp18 Cairo pentagonal tile, and (f) p8064 floret pentagonal tile. The scaffold strand (gray) is folded by core staple strands (blue) into the target shape, which can be further linked together by edge staple strands (orange) into 2D lattices.
S2.3 Curvature Analysis via oxDNA Simulation

S2.3.1 Simulation procedure

We used an extended version of the oxDNA model²⁻⁴, oxDNA2, to study the curvature of equilateral triangular DNA origami tiles designed based on D values ranging from 2.55 nm to 3.00 nm with 0.15 nm intervals. In this model, each DNA nucleotide is presented as a rigid body subject to multiple interactions such as hydrogen bonding, (coaxial) stacking, and electrostatic repulsion. The interactions are parameterized to reproduce the basic structure, thermodynamic, and mechanical properties of single-stranded and double-stranded DNA.

Designs of DNA origami tiles were prepared using Tiamat and converted into the oxDNA format using TacoxDNA⁵, a webserver-based suite for converting the blueprints generated with common DNA design software tools into the inputs for molecular dynamics simulations. The simulations were conducted under a condition equivalent to 1 M salt concentration (monovalent ion, modeled with Debye-Hückel potential) at 25 °C (set with an Andersen-like thermostat). For each tile design, the individual simulation step was set to ~0.015 ps, and the simulation was run for ~75 µs. It is important to note that the timescales used in the coarse-grained model do not directly correspond to experimental timescales and may underestimate the actual experimental time that the simulation would correspond to. We saved a configuration every 5×10^5 steps during the simulation with a total number of 10^4 configurations captured throughout the simulation trajectory for each tile design for curvature analysis.

S2.3.2 Curvature analysis

To quantitatively compare the curvature of equilateral triangular DNA origami tiles designed based on different **D** values, we defined three vectors, namely \vec{u}, \vec{v} , and \vec{w} , to represent the helical direction of each isosceles triangular subunit composing the tile. Specifically, in each subunit, there are two double-crossover linkages between the two central double-helices. The (x, y, z)-coordinates of the four staple nucleotides at each double-crossover linkage were averaged to obtain the initial and the terminal points of the three vectors. Each vector started from the double-crossover linkage near the center of the tile and pointed outwards along the helical direction to the second crossover linkage. The sum of the angles between each pair of vectors $(\theta_1 + \theta_2 + \theta_3)$ was calculated to estimate the tile's curvature. For example, the sum is approximately 360° for a flat tile. The more curved a tile is, the more the sum deviates from 360°. Therefore, we defined the degree of curvature as the deviation of the sum from 360° (i.e., $360^{\circ} - \theta_1 - \theta_2 - \theta_3$). The direction of curvature (i.e., upwards or downwards) was determined by the plus or minus of $(\vec{u} \times \vec{v}) \cdot \vec{w}$. This approach was applied to every configuration sampled throughout the simulation trajectory to determine the degree and direction of its curvature. The vectorbased curvature analysis mainly serves as a rough estimation owing to the non-uniform distribution of curvature throughout the tile. Nonetheless, a clear trend was revealed for the four tile designs we examined. As the value of D increases from 2.55 to 3.00 nm, the degree of curvature initially decreases before subsequently increasing, while the preferential direction of curvature shifts from downwards to upwards (Supplementary Figure S2.3). These observations suggest that D plays a vital role in determining the conformation of DNA origami tiles.

Figure S2.3. Histograms illustrating the distributions of curvature for four tile designs based on D values ranging from 2.55 to 3.00 nm with 0.15 nm intervals.

S2.4 Statistical Analysis of DNA Origami Tile Multimerization

S2.4.1 AFM characterization of multimers assembled from equilateral triangular

DNA origami tiles

Figure S2.4. AFM characterization and analysis of multimeric complexes assembled from p3120 equilateral triangular DNA origami tiles. Four monomer tiles were designed based on different D values, including 2.55 nm (a), 2.70 nm (b), 2.85 nm (c), and 3.00 nm (d). Three non-overlapping AFM images (from left to right: #1, #2, #3) were analyzed for each design with pentamers, hexamers, and heptamers marked by green, blue, and orange circles, respectively. Scale bars: 200 nm.

Figure S2.5. AFM characterization and analysis of multimers assembled from two additional tiles designed based on 2.65 nm (a) and 2.75 nm (b) D, respectively. Three non-overlapping AFM images (from left to right: #1, #2, #3) were analyzed for each design with pentamers, hexamers, and heptamers marked by green, blue, and orange circles, respectively. Scale bars: 200 nm.

S2.4.2 Statistical analysis of multimers assembled from equilateral triangular tiles

D (nm)	AFM image	Total number of multimers	Count and percentage of pentamersCount and percentage of hexamers		Count and percentage of heptamers
	#1	160	11 (6.88%)	134 (83.75%)	15 (9.38%)
2.55	#2	163	11 (6.75%)	142 (87.12%)	10 (6.13%)
	#3	168	17 (10.12%)	142 (84.52%)	9 (5.36%)
	#1	180	14 (7.78%)	165 (91.67%)	1 (0.56%)
2.65	#2	164	6 (3.66%)	157 (95.73%)	1 (0.61%)
	#3	147	4 (2.72%)	143 (97.28%)	0 (0.00%)
	#1	166	0 (0.00%)	165 (99.40%)	1 (0.60%)
2.70	2.70 #2	185	0 (0.00%)	182 (98.38%)	3 (1.62%)
	#3	156	2 (1.28%)	153 (98.08%)	1 (0.64%)
	#1	137	1 (0.73%)	126 (91.97%)	10 (7.30%)
2.75	#2	131	1 (0.76%)	120 (91.60%)	10 (7.63%)
	#3	152	0 (0.00%)	143 (94.08%)	9 (5.92%)
	#1	177	36 (20.34%)	141 (79.66%)	0 (0.00%)
2.85	#2	162	42 (25.93%)	119 (73.46%)	1 (0.62%)
	#3	172	38 (22.09%)	133 (77.33%)	1 (0.58%)
	#1	226	205 (90.71%)	21 (9.29%)	0 (0.00%)
3.00	#2	228	212 (92.98%)	16 (7.02%)	0 (0.00%)
	#3	223	201 (90.13%)	22 (9.87%)	0 (0.00%)

Table S2.11. Summary of the statistical analysis of multimers assembled from p3120 equilateral triangular tiles based on different *D* values.

D (nm)	Pentamer	Hexamer	Heptamer
2.55	$7.91\% \pm 1.91\%$	$85.13\% \pm 1.76\%$	$6.96\% \pm 2.13\%$
2.65	$4.72\% \pm 2.69\%$	$94.89\% \pm 2.90\%$	$0.39\% \pm 0.34\%$
2.70	$0.43\% \pm 0.74\%$	$98.62\% \pm 0.69\%$	$0.96\% \pm 0.58\%$
2.75	$0.50\% \pm 0.43\%$	$92.55\% \pm 1.34\%$	$6.95\% \pm 0.91\%$
2.85	$22.79\% \pm 2.86\%$	$76.81\% \pm 3.13\%$	$0.40\% \pm 0.35\%$
3.00	$91.27\% \pm 1.51\%$	$8.73\% \pm 1.51\%$	$0.00\% \pm 0.00\%$

Table S2.12. Mean percentage and standard deviation of multimers assembled from p3120 equilateral triangular tiles based on different *D* values.

S2.4.3 2D lattices assembled from p3120 equilateral triangular tiles (D = 2.70 nm)

Figure S2.6. AFM images of 2D lattices assembled from p3120 equilateral triangular DNA origami tiles (D = 2.70 nm).

S2.5 Additional AFM Images

Figure S2.7. Additional AFM images of 2D lattices assembled from p3548 equilateral triangular DNA origami tiles.

Figure S2.8. Additional AFM images of 2D lattices assembled from p3548 square DNA origami tiles.

Figure S2.9. Additional AFM images of 2D lattices assembled from p3548 regular hexagonal DNA origami tiles.

Figure S2.10. Additional AFM images of 2D lattices assembled from M13mp18 equilateral triangular DNA origami tiles.

Figure S2.11. Additional AFM images of 2D lattices assembled from M13mp18 square DNA origami tiles.

Figure S2.12. Additional AFM images of 2D lattices assembled from M13mp18 regular hexagonal DNA origami tiles.

Figure S2.13. Additional AFM images of 2D lattices assembled from p3548 isosceles right triangular DNA origami tiles.

Figure S2.14. Additional AFM images of 2D lattices assembled from M13mp18 rhombic DNA origami tiles.

Figure S2.15. Additional AFM images of 2D lattices assembled from M13mp18 kite DNA origami tiles.

Figure S2.16. Additional AFM images of 2D lattices assembled from M13mp18 prismatic pentagonal DNA origami tiles.

Figure S2.17. Additional AFM images of 2D lattices assembled from M13mp18 Cairo pentagonal DNA origami tiles.

Figure S2.18. Additional AFM images of 2D lattices assembled from p8064 floret pentagonal DNA origami tiles.

S2.6 Thermodynamic Analysis of Tile Interactions

S2.6.1 Nearest-neighbor parameters for the thermodynamic analysis

We exploited the nearest neighbor model⁶ to analyze the thermodynamic free energy of tile-tile interaction. 2-nt sticky end hybridization and blunt end stacking are the two types of interactions holding tiles together. Typically, each edge staple strand presents one 2-nt sticky end and one blunt end, whose binding free energy (ΔG_{bond}) can be calculated from the nearest-neighbor parameters for DNA hybridization and stacking adapted from the literature^{6,7} (Table S2.15) and further summed up to obtain the total binding free energy for each pair of complementary edges (ΔG_{edge}).

Specifically, the sequence of a 2-nt sticky end can be read from the Tiamat design from 5' to 3' as "NNN/N" or "N/NNN" (N = A, T, C, or G), where the first and fourth "N"s are the coaxial stacking bases flanking the 2-nt sticky end and the slash represents

the two nucleotides lacking backbone linkage. Therefore, "NNN/N" corresponds to a 2-nt sticky end presented at the 3'-end of an edge staple, while "NNN/N" corresponds to a 2-nt sticky end at the 5'-end. The thermodynamic free energy of either case can be calculated by adding up the nearest-neighbor free energy of each pair of neighboring dinucleotides (ΔG_{NN}). Similarly, the sequence of a blunt end can be read from 5'- to 3'- end as "N/N", whose free energy (ΔG_{stack}) can be found in the literature⁹. Further, ΔG_{bond} can be calculated by adding the contributions from these two portions. Depending on the matching rule, a tile's edge can either be complementary to another edge or self-complementary. The complementarity in the former case is denoted by "n & n*" (n = 1, 2, 3, ...), whose ΔG_{edge} is the sum of each involved ΔG_{bond} . Self-complementary edge is denoted by "n/n*", where half of the edge staple strands possess ΔG_{bond} identical to the other half. Therefore, its ΔG_{edge} is the sum of each unique ΔG_{bond} multiplied by 2.

Nearest-neighbor free energy	Stacking free energy
(ΔG_{NN}) converted to 20 mM	$(\Delta G_{\text{stack}})$ in 20 mM MgCl ₂
MgCl ₂ (kcal/mol)	(kcal/mol)
-1.80	-1.36
-2.32	-2.03
-2.09	-1.60
-1.64	-2.35
-2.33	-0.81
-2.63	-1.64
-3.23	-2.06
-2.09	-1.60
-2.16	-1.39
-3.21	-3.42
-2.63	-1.64
-2.32	-2.03
-1.37	-1.01
-2.16	-1.39
-2.33	-0.81
-1.80	-1.36
	$\begin{tabular}{ c c c c c c } \hline Nearest-neighbor free energy (ΔG_{NN}) converted to 20 mM $MgCl_2$ (kcal/mol)$$-1.80$$-2.32$$-2.09$$-1.64$$-2.33$$-2.63$$-2.09$$-2.16$$-3.21$$-2.63$$-2.32$$-1.37$$-2.16$$-2.33$$-1.80$$}\end{tabular}$

Table S2.13. Nearest-neighbor parameters adapted from the literature⁷.

S2.6.2 Thermodynamic analysis of DNA origami tiles

S2.6.2.1 Thermodynamic analysis of DNA origami tiles for regular tilings

triangular file ($D = 2.70$ nm).							
Complementarity	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}		
Complementarity	Dona	2-nt sticky end	blunt end	(kcal/mol)	(kcal/mol)		
	#1	GAT/A	C/A	-5.89			
	#2	TAG/T	G/C	-9.20			
1 0-1*	#3	ACG/G	C/A	-8.99	40.25		
1 & 1*	#4	GAT/C	A/A	-7.32	-49.33		
	#5	CAA/G	G/T	-8.25			
	#6	CCC/T	A/T	-9.70			
	#7	TTG/C	C/C	-8.98	45.60		
2/2*	#8	CAA/T	T/T	-7.13	$\begin{bmatrix} -45.62 \\ (22.81 \times 2) \end{bmatrix}$		
	#9	AGA/T	C/A	-6.70	(-22.01^2)		

Table S2.14. Thermodynamic analysis of complementary edges in p3120 equilateral triangular tile (D = 2.70 nm).

Table S2.15. Thermodynamic analysis of complementary edges in p3548 equilateral triangular tile.

Complementarity	omplementarity Bond		Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
	#1	GAA/A	G/C	-9.18	
	#2	GGA/T	G/C	-9.85	
1 9-1*	#3	ACC/G	A/T	-10.53	55.00
1 & 1	#4	AGC/G	G/T	-10.56	-33.90
	#5	TAC/T	C/G	-7.84	
	#6	CAG/A	T/T	-7.94	
	#7	GGA/A	G/A	-7.98	55 40
2/2*	#8	ACC/C	A/T	-9.93	-33.48 (-27.74×2)
	#9	GGG/C	T/T	-9.83	(-27.74~2)

Complementa	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}
rity	Dong	2-nt sticky end	blunt end	(kcal/mol)	(kcal/mol)
	#1	TTT/T	G/G	-7.04	
1 & 1*	#2	GGG/A	A/T	-9.77	24.08
1 & 1	#3	CCT/G	G/G	-8.69	-34.90
	#4	GCC/C	T/A	-9.48	
	#5	CCC/A	T/G	-8.40	
<u> </u>	#6	CTG/T	G/G	-8.38	22.02
$2 \propto 2^{\circ}$	#7	CGA/G	T/C	-8.87	-33.92
	#8	CTC/C	T/C	-8.27	

Table S2.16. Thermodynamic analysis of complementary edges in p3548 square tile.

Table S2.17. Thermodynamic analysis of complementary edges in p3548 regular hexagonal tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)	
	#1	GCA/C	C/C	-9.50	()	
1 0- 1*	#2	CGA/A	G/C	-10.61	26 70	
$1 \propto 1^+$	#3	TAC/G	T/C	-8.31	-36.70	
	#4	CAA/A	A/T	-8.28		
	#5	GGA/A	A/A	-7.95		
<u></u>	#6	CAC/G	T/G	-8.69	21.26	
$2 \propto 2^{1}$	#7	TAG/C	G/C	-10.09	-34.20	
	#8	ATC/T	G/G	-7.53		
	#9	TAA/C	G/G	-7.13		
2 & 2*	#10	ATA/A	T/G	-5.62	28.52	
3 & 3 ⁺	#11	TTG/T	C/C	-8.09	-20.33	
	#12	TTC/T	C/C	-7.69		

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)	
	#1	GTT/G	T/C	-7.84	//////////_	
	#2	ATC/C	T/C	-7.82		
	#3	AAC/A	A/A	-7.81		
1 9-1*	#4	ATA/C	G/T	-7.36	62 52	
1 & 1*	#5	GAG/C	T/T	-8.82	-05.55	
	#6	CCT/T	A/C	-8.55		
	#7	GAA/G	A/A	-7.41		
	#8	TAC/C	C/T	-7.92		
	#9	TTG/A	C/A	-7.10		
2/2*	#10	CCA/G	G/A	-8.44	-59.56	
212	#11	ATT/T	T/C	-6.63	(-29.78×2)	
	#12	CTT/A	A/T	-7.61		

Table S2.18. Thermodynamic analysis of complementary edges in M13mp18 equilateral triangular tile.

Table S2.19. Thermodynamic analysis of complementary edges in M13mp18 square tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
	#1	CGT/A	A/C	-8.95	
1 9-1*	#2	AAA/C	T/C	-7.31	22.04
1 & 1	#3	ACA/A	G/G	-8.09	-33.04
	#4	CAC/G	C/A	-8.69	
	#5	GCG/C	T/G	-10.46	
<u> ∩ </u>	#6	ACA/C	T/C	-8.36	25 67
$2 \propto 2^{\circ}$	#7	ATA/C	C/C	-6.97	-33.07
	#8	CCG/C	C/A	-9.88	

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)	
	#1	TTA/A	T/T	-6.33		
1 0-1*	#2	TAT/T	A/G	-6.41	-30.73	
1 & 1	#3	GAC/G	C/C	-9.35		
	#4	GCT/G	T/A	-8.64		
	#5	TCA/A	T/T	-7.65		
<u>२</u> ₽ २*	#6	ATA/C	A/G	-6.93	-32.62	
$2 \propto 2^{-1}$	#7	ATT/C	A/G	-7.20		
	#8	TCC/C	G/C	-10.84		
	#9	CCT/A	T/A	-7.10		
2 & 2*	#10	AAG/T	C/C	-7.85	22 45	
5 & 5	#11	GAC/C	A/C	-9.14	-32.43	
	#12	TTG/G	A/G	-8.36		

Table S2.20. Thermodynamic analysis of complementary edges in M13mp18 regular hexagonal tile.

S2.6.2.2 Thermodynamic analysis of DNA origami tiles for Laves tilings

Table S2.21. Thermodyna	mic analysis of cor	nplementary edge	es in p3548	isosceles right
triangular tile.				

Complementarity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG _{bond} (kcal/mol)	ΔG _{edge} (kcal/mol)	
	#1	AGG/G	G/T	-10.13		
	#2	CAA/C	A/A	-7.81	07.50	
1/1*	#3	GGA/G	A/G	-7.70	-87.50 (-43.75×2)	
	#4	TGA/C	C/T	-9.17		
	#5	CTG/C	C/G	-8.94		
	#6	GGG/G	C/T	-9.49		
	#7	GGC/C	G/C	-11.89		
<u> ∩ </u>	#8	CCA/T	C/T	-8.20	51 10	
$2 \propto 2^{\circ}$	#9	CTG/A	C/G	-8.64	-54.48	
	#10	CTT/C	G/C	-9.47		
	#11	TAC/T	T/A	-6.79		

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)	
1 & 1*	#1	CCA/T	A/A	-7.96	-45.54	
	#2	ATA/C	A/A	-6.69		
	#3	GGT/T	C/G	-8.81		
	#4	CTC/A	T/A	-7.59		
	#5	TTG/A	C/G	-8.35		
	#6	GTA/T	C/A	-6.14		
2 & 2*	#7	TCG/A	G/T	-9.58		
	#8	CTA/A	G/G	-6.90		
	#9	CGA/T	G/A	-8.42	51.07	
	#10	CTC/G	A/T	-9.83	-51.07	
	#11	CCC/A	A/A	-8.95		
	#12	CTC/A	T/G	-7.39		

Table S2.22. Thermodynamic analysis of complementary edges in M13mp18 rhombic tile.

Complementa	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}	
rity	Dona	2-nt sticky end	blunt end	(kcal/mol)	(kcal/mol)	
	#1	TAA/T	G/A	-6.20		
	#2	CCA/A	C/C	-8.40		
	#3	AAG/A	A/C	-8.08		
1 & 1*	#4	CGC/A	T/A	-9.78	65 40	
	#5	GAA/A	A/A	-7.12	-03.49	
	#6	CAA/G	A/A	-7.58		
	#7	CCG/C	C/C	-10.71		
	#8	TGT/A	C/T	-7.62		
2 & 2*	#9	N/A	T/A & G/G	-2.65		
	#10	N/A	G/A & G/C	-4.81		
	#11	CTT/T	A/A	-7.05	-21.85	
	#12	N/A	T/T & C/T	-2.96		
	#13	N/A	G/T & A/T	-4.38		

Table S2.23. Thermodynamic analysis of complementary edges in M13mp18 kite tile.

Table S2.24. Thermodynamic analysis of complementary edges in M13mp18 prismatic pentagonal tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)	
1 /1 4	#1	TGG/A	A/C	-9.15	-29.94	
1/1 ·	#2	ATT/A	T/A	-5.82	(-14.97×2)	
2/2*	#3	CTA/A	T/A	-6.27	-32.20	
	#4	GGC/C	T/T	-9.83	(-16.10×2)	
3 & 3*	#5	ATA/A	T/T	-6.17	76.99	
	#6	TAA/A	T/A	-5.98		
	#7	TCA/T	G/G	-7.77	-20.00	
	#8	GAT/T	A/A	-6.96		
4/4*	#9	AGC/A	A/A	-8.99	57 00	
	#10	CGC/C	A/T	-11.42	-5/.80 (-28.90×2)	
	#11	C/GGG	N/A	-8.49	(-20.90^2)	

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)	
1 & 1*	#1	AAA/C	G/G	-7.56	-32.33	
	#2	CTT/T	T/A	-6.70		
	#3	CCG/G	T/G	-9.30		
	#4	ACA/G	G/T	-8.77		
2 & 2*	#5	TTA/A	G/A	-6.36	-29.19	
	#6	GCC/A	A/G	-9.77		
	#7	TAT/A	T/T	-5.74		
	#8	TAA/A	A/T	-7.32		
3/3*	#9	G/TAC	G/G	-7.65	-35.76	
	#10	T/GAC	G/C	-10.23	(-17.88×2)	

Table S2.25. Thermodynamic analysis of complementary edges in M13mp18 Cairo pentagonal tile.

Table S2.26. Thermodynamic analysis of complementary edges in p8064 floret pentagonal tile.

Complementa	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}	
rity	Donu	2-nt sticky end blunt end (kcal/mol)		(kcal/mol)		
	#1	CGT/T	A/C	-9.38		
	#2	CAA/G	A/C	-8.25		
	#3	ATT/A	T/G	-5.62		
1 & 1*	#4	GAC/C	C/A	-7.92	66 78	
	#5	AGC/G	A/C	-10.56	-00.78	
	#6	GTA/T	G/T	-7.36		
	#7	TGC/A	C/T	-9.47		
	#8	TCT/G	C/C	-8.22		
2 & 2*	#9	ACG/G	T/A	-9.19	-32.19	
	#10	CAT/C	A/A	-7.49		
	#11	AGG/T	C/A	-7.85		
	#12	GAT/T	C/G	-7.66		
3/3*	#13	GTA/G	T/A	-6.79	-31.86	
	#14	GGT/C	G/T	-9.14	(-15.93×2)	

S2.7 DNA Sequences

S2.7.1 Sequences of scaffold strands

S2.7.1.1 Sequence of the customized p3120 scaffold

CGATACGCTGAGGTATCGATGGCCCTGATTCAGAGCTCGCTACGTGTTTTAGCT GCCATTGATTGCTAACCCTTAGGCAAAATATTGAAGCATGTAGTCCTCCCTATC CGAGCTGGACAGAGTGGTAATCTCCCATTGCATCCAAGCTTATCGATACCGTCG ACCTCGAGGGGGGGGCCCGGTACCCAATTCGCCCTATAGTGAGTCGTATTACGC GCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTA CCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCG AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGA ATGGGACGCGCCTGTAGCGGCGCATTAAGCGCGGGGGGGTGTGGTGGTGGTACGC GCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTC TTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG GGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAA ACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTT TCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAAC TGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTG CCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCG AATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTTCGGGGGAAATG TGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTC ATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATG AGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTC CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAG TTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCT TGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTC TGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTC GCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAA AAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAAC CATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGA AGGAGCTAACCGCTTTTTTGCACAACATGGGGGGATCATGTAACTCGCCTTGATC GTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCAC GATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTAC GCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAA ATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAG ATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCA CATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCA AAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAG ATCAAAGGATCTTCTTGAGATCCTTTTTTTTCTGCGCGTAATCTGCTGCTTGCAA ACAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTAC

CAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACT GTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACC GCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCGGCGGA TAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC AGCGGTCGGGCTGAACGGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAAC GACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACG CTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAA CAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAG TCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTC AGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTC CTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCC GAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAA TACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCAC GACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGA GTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTA TGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGAC CATGATTACGCCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGG AGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCA GGAATTCGAACGGTCTCAGTCATGGATCA

S2.7.1.2 Sequence of the customized p3548 scaffold

GTGGCACTTTTCGGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAA TACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATA ATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCC CTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAA AGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTG GATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCC AATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGAC GCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGT TGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAG TGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGG CAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCG CAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA CTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGG CTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGT ATCATTGCAGCACTGGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTAC ACGACGGGGGGGGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGA TAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATA TACTTTAGATTGATTTAAAACTTCATTTTAATTTAAAAGGATCTAGGTGAAGAT CCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTG AGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTC TGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTT TGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAG CAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACC ACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTAC CAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGA CGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGGTTCGTGCA CACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG TGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTAT CCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGG GGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG CGTCGATTTTTGTGATGCTCGTCAGGGGGGGGGGGGGCGTATGGAAAAACGCCAG CAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTT CTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGA AGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCC GATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTG AGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTA CACTTTATGCTTCCGGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAATTT CACACAGGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCA CTAAAGGGAACAAAAGCTGGAGCTCCACCGCGGTGGCGGCCGCTCTAGAACT AGTGGATCCCCCGGGCTGCAGGAATTCTGACGGTCTCACTGTTCGGTCATTGT

GACACGTCGAGAAGTCCTGCCACTGTACGAGAGTTTTTTCCGCAGTACAGCTT CCTTTTACGGGCCTTCTCCCTCTTTTTTCGGATAGAAGGTATCTTGATACACATG GGTCGTTCGATGTGCATCAGACTTCAAGGTGACGTCGAATTGCACCACTCTTC CGACTACACGCACGCTTTTTTCCTAACGTGTACAAGGTTTTACCATGCCAGGGT TGCTTTTTTCCTATCCTGGTTGGAGCGGACTGCGTTTCGTGCTGGCCGAATAAT TGCTGCGCTGAGGCTAGGCGTTGGCTTATCTTGCCCCGATGGATAACTTCTTT TTCCAACTATCCACCCGATTTTGAGCTCTCTGCGTATCTTTTTTCCCTGGCAGAT TTGTCGTTGATTTTGTCCGTAGTCCGCTGATGCCAGTATCAGATGCCGGCGAGT CACGTTAAGCCAGGGATCTCGATTGGTGACTTTTTTCCTGTCAATCGCTCAATT TTCACGCCACCAGTCTTGTTTTTTCTGAGCTGGTTCTACGTGGGTACGAACGTA CAGACAGATGAGCTCACCATTGCACCAAAGCTTATCGATACCGTCGACCTCGA GGGGGGGCCCGGTACCCAATTCGCCCTATAGTGAGTCGTATTACGCGCGCTCA CTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACT TAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGG CCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGAC GCGCCCTGTAGCGGCGCATTAAGCGCGGGGGGGGTGTGGTGGTTACGCGCAGCG TGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTT CCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTC CCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGAT TAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCT TTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAAC AACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATT TCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTT AACAAAATATTAACGCTTACAATTTAG

S2.7.1.3 Sequence of the M13mp18 scaffold

TGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA CTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTGAT TTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCCTGC TGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGT GAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTG GCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCA GCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAAT TAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCC GGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAATTTCACACAGGAAACA GCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCG ACCTGCAGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTG GGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCG CCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTG CGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGT GCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCC CCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACC TATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGT TACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCG AATTATTTTTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAAT TTAATGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACA ATCTTCCTGTTTTTGGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACA TGCTAGTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGG CAATGACCTGATAGCCTTTGTAGATCTCTCAAAAATAGCTACCCTCTCCGGCAT TAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGTCTCC GGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTA AAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCC CGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTAGCTTTATG CTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGATTTAT TGGATGTTAATGCTACTACTATTAGTAGAATTGATGCCACCTTTTCAGCTCGCGC CCCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTAA TGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTATATGGAA TGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTACA GCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCA AAAGGAGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCG GTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGC TTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGG TAAAGACCTGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCA TTTGAGGGGGATTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCC AGTCTAAACATTTTACTATTACCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCT CTCGCTATTTTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGC TCTTACTATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTG GTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTT AGTTCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAG

CCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAAC CATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTT ATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGTTC TTGTCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACA CCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACC GTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACAC AATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATA ATCGCTGGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTT AGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGTTTAATGGAAACTTC CTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTT CCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAA CTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGT TGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCGAA AGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTGG AGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTA TTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAAATCCCATACAGAAA ATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACT ATGAGGGCTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACGAA ACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAG GGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCG GTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAA CCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTA ATCCTTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAG GTTCCGAAATAGGCAGGGGGGCATTAACTGTTTATACGGGCACTGTTACTCAAG GCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAAAGCCA TGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCT TTAATGAGGATTTATTTGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTC AACCTCCTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGGCGGCTCT GAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAG GCGGTTCCGGTGGTGGCTCTGGTTCCGGTGATTTTGATTATGAAAAGATGGCA AACGCTAATAAGGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTC TGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGA TGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGA TTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTGATAATTCACC AAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTATATGTTGCCACCTTTAT GTATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATCATGC CAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAAC TTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATT GCTATTTCATTGTTTCTTGCTCTTATTATTGGGCCTTAACTCAATTCTTGTGGGTTA TCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTA ATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTG CTATTTTCATTTTGACGTTAAACAAAAAATCGTTTCTTATTTGGATTGGGATAA ATAATATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCG

TTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACT AATCTTGATTTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAAC GAGTGCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACAGCC GATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTG TTCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATG TTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTACTTTATAT TCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTA AATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAA GAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATTATGATTCC AAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCG CGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTACATATAGTTATATAACCC AACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATTTTGATAAAT TCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGA TTCTAAGGGAAAATTAATTAATAGCGACGATTTACAGAAGCAAGGTTATTCACT CACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGAAATT GTTAAATGTAATTAATTTTGTTTTCTTGATGTTTGTTTCATCATCTTCTTTGCTC AGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAA AGCAATCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTACTG TATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTCTGTTTTA CGTGCAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCAGAAGTATA ATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGATAATCAGGAATA TGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAATGTT ACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGATTTAATACGAGTTGTC GAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGACG GCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATATTTTAGATAACCTTCCTCA ATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCA GCGTGGCACTGTTGCAGGCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATC TTCTGCTGGTGGTTCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTT CGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTTA CGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTA CTGGTCGTGTGACTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTG GTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCA GGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCG TGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCA GGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAG CTCCCGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAA GCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTT TCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATC

GGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAA AAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCC

S2.7.1.4 Sequence of the p8064 scaffold

TGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA CTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTGAT TTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCCTGC TGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGT GAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTG GCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCA GCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAAT TAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCC GGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAATTTCACACAGGAAACA GCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCAACTGTGA GGAGGCTCACGGACGCGAAGAACAGGCACGCGTGCTGGCAGAAACCCCCGG TATGACCGTGAAAACGGCCCGCCGCATTCTGGCCGCAGCACCACAGAGTGCA CAGGCGCGCAGTGACACTGCGCTGGATCGTCTGATGCAGGGGGCACCGGCAC CGCTGGCTGCAGGTAACCCGGCATCTGATGCCGTTAACGATTTGCTGAACACA CCAGTGTAAGGGATGTTTATGACGAGCAAAGAAACCTTTACCCATTACCAGCC GCAGGGCAACAGTGACCCGGCTCATACCGCAACCGCGCCCGGCGGATTGAGT GCGAAAGCGCCTGCAATGACCCCGCTGATGCTGGACACCTCCAGCCGTAAGC TGGTTGCGTGGGATGGCACCACCGACGGTGCTGCCGTTGGCATTCTTGCGGTT GCTGCTGACCAGACCAGCACCACGCTGACGTTCTACAAGTCCGGCACGTTCC GTTATGAGGATGTGCTCTGGCCGGAGGCTGCCAGCGACGAGACGAAAAAACG GACCGCGTTTGCCGGAACGGCAATCAGCATCGTTTAACTTTACCCTTCATCACT AAAGGCCGCCTGTGCGGCTTTTTTTACGGGATTTTTTTATGTCGATGTACACAA CCGCCCAACTGCTGGCGGCAAATGAGCAGAAATTTAAGTTTGATCCGCTGTTT CTGCGTCTCTTTTTCCGTGAGAGCTATCCCTTCACCACGGAGAAAGTCTATCTC TCACAAATTCCGGGACTGGTAAACATGGCGCTGTACGTTTCGCCGATTGTTTCC GGTGAGGTTATCCGTTCCCGTGGCGGCTCCACCTCTGAAAGCTTGGCACTGGC CGTCGTTTTACAACGTCGTGACTGGGGAAAACCCTGGCGTTACCCAACTTAATC GCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGC ACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGC CCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGA TGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGT TCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAA GCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTCCTATTGGTT AAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAAC GTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGGCTTTTCTGAT TATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGA TTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGATCT CTCAAAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATA TCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTA CCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTT ATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATG TTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTGC

TAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTAATGCTACTACTATTAGTA GAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTAAACAG GTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGC AGAATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACCGTACTTTAG TTGCATATTTAAAACATGTTGAGCTACAGCATTATATTCAGCAATTAAGCTCTAA GCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTA ATCCTGACCTGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTA AAACGCGATATTTGAAGTCTTTCGGGGCTTCCTCTTAATCTTTTGATGCAATCCG CTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCA TTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGGATTCAATGAATATTTATG ACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCCTC TGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCT GGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTCCTTTTGG CGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGAATC TTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCT TCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAAT TCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACTACTCGTT CTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACG TTGATTTGGGTAATGAATATCCGGTTCTTGTCAAGATTACTCTTGATGAAGGTC AGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTG GTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCCGGCTAAGTAAC ATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCC GTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGGGGGTCAAAGATGAGTGTTT TAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTAC GTATTTTACCCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAA GCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGT GACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATA TATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTAT CAAGCTGTTTAAGAAATTCACCTCGAAAGCAAGCTGATAAACCGATACAATTA AAGGCTCCTTTTGGAGCCTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTA TTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAA GTTGTTTAGCAAAATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACG GGCGTTGTAGTTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCC TATTGGGCTTGCTATCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTT CTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGAT ACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTG GTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTC TTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAA CTGTTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACC AGTACACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAAT TCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCT TTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCC

GGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGGCTATGACCGA AAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTG TCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCC TTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGG CTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTT ACCTTCCCTCCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCGCTGGTAA ACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTT GCGTTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACAT ACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTCCGTTATTAT TGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTCT TAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATT ATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTAC CCTCTGACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCT GTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACA AAAAATCGTTTCTTATTTGGATTGGGATAAATAATATGGCTGTTTATTTTGTAAC TGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATA AAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATTTAAGGCTTCAAAAC CTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGA TAAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGAT GAAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACC CGTAAATTAGGATGGGATATTATTTTTTTTTTTTGTTCAGGACTTATCTATTGTTGATAA ACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCTGGACAG AATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATTACTGGCTCGAAAATGC CTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTCAATTAAGCCC TACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACT AAACAGGCTTTTTCTAGTAATTATGATTCCGGTGTTTATTCTTATTTAACGCCTT ATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCAGAAGATGAAAT TAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATT TGCATCAGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAA GGTAGTCTCTCAGACCTATGATTTTGATAAATTCACTATTGACTCTTCTCAGCGT GCGACGATTTACAGAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGT CTTGATGTTTGTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCG CCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTATT GTTTCTCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTG AAAATCTACGCAATTTCTTTATTTCTGTTTTACGTGCAAATAATTTTGATATGGTA GGTTCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTG ATGAATTGCCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGG TGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATAAC TCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTTAGTGC TCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGATTTGCCA ACTGACCAGATATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCT

TTAGATTTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAGGCGGTGTT TTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTC AAAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTAT CTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGACTGGTGAATCTGC CAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCAT GAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAG CAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCA AAGAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGG TGGCCTCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACCGTTCCTGTC TAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAACGAGGA AAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGC CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCTTTAGGGTTCCGATT TAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCAC GTAGTGGGGCCATCGCCC

S2.7.2 Sequences of staple strands

S2.7.2.1 Staple strand sequences of p3120 equilateral triangular tiles for

multimerization

Table S2.27.	Core staples of	f p3120 equilat	eral triangular	DNA of	rigami tile ((D = 2.55)
nm).						

Name	Sequence
[TR]_p3120_255_c ore_1	TCAGGGTTATTTAGAAAAATAAAGCGTTAA
[TR]_p3120_255_c ore_2	CAAAAACAGGAAGGCAAAATGCACACGGAAATGTTGA AGCATTTA
[TR]_p3120_255_c ore 3	TTGAATACTCATACTTTTTTTTTTGTTCGATGTAAGATC
[TR]_p3120_255_c ore 4	TTACCGCTGTTGTTTTTTTTTTCAATATTA
[TR]_p3120_255_c ore 5	AAATCGGCTGCCACCTAAATTGTAACAAATAG
[TR]_p3120_255_c ore 6	GGGTTCCGCGCATTTTTTACGGGATAATA
[TR]_p3120_255_c ore 7	TCCCTTATATTTGCACTGCATAATTCTCTTGCCTTTTCCG AAAAGAAAA
[TR]_p3120_255_c ore 8	TATTTTGCTCATTTTTTAACCACAGTTTGG
[TR]_p3120_255_c ore 9	GGGCGATGGGGTTGAGTGTTGTTCATAGGCCG
[TR]_p3120_255_c ore 10	AACAAGAAAAGGGCGAAAAACCCCCTAAAG
[TR]_p3120_255_c ore 11	CCGAGATAGCCCACTACGTGAACCGGGTCGAG
[TR]_p3120_255_c ore 12	CACTCATGGTAAGAATAGA
[TR]_p3120_255_c ore 13	AAAGCGAAAAGCACTAAATCGGAAGTCTATCA
[TR]_p3120_255_c ore 14	TTTGATCACTTCTTCATCGTCGTTTGTTAAGTTT
[TR]_p3120_255_c ore 15	GTGCCGTAAGGAGCGGGGCGCTAGGACGCTGCGCGTAA CCATTCGCTAT
[TR]_p3120_255_c ore 16	GGAGCCCACGTGGCGAGAAAGGTAATGCGC
[TR]_p3120_255_c ore 17	CGGGCCTCCCACACCCGCCGCGCTAAGGGAAG
[TR]_p3120_255_c ore_18	AGAAGGTAATTCGGTCGCGCTGGCAATTATCCAC
[TR]_p3120_255_c ore_19	CGCTACAACTGTTGGGAAGGGCGGTAACGC
----------------------------	--
[TR]_p3120_255_c ore_20	TCGACGGTACGACTCACTATAGGGCAAGGCGATTAAGT TGGATCGGTG
[TR]_p3120_255_c ore_21	TACGCCAGCTATTAATGAA
[TR]_p3120_255_c ore_22	TGTCGTGCCTTTGGGGGGATGTGCTGCGAATTGGTTTTA ACATACGAACC
[TR]_p3120_255_c ore_23	CAGGGTTGTGAGCGCGCGTAATATCGATAA
[TR]_p3120_255_c ore_24	GCTTGGAGATAGGGAGGACTACATGGCAGC
[TR]_p3120_255_c ore_25	TCCGCTCACAATTTTTTCCCCCCTCGAGG
[TR]_p3120_255_c ore_26	TGTTGGCCGCCACCGTTTTTTGTTAGCAATCAATGC
[TR]_p3120_255_c ore_27	TTCAATATTTTGTTTTTAGCTCCAGCTTT
[TR]_p3120_255_c ore_28	TAAAACACCATCGATACCTCAGCGTATCG
[TR]_p3120_255_c ore 29	TGCACCCTTTCACCAGCGTTTCTGGGTGA
[TR]_p3120_255_c ore 30	AACTTTAGCGAAAACTCTCAAGCCCACTCG
[TR]_p3120_255_c ore 31	GATGCTTTCTGAGAATAGTGTACATAGCAG
[TR]_p3120_255_c ore 32	CCGCGCCATGCGGCGACCGAGTTGCTCTTACTGTCATG CCGAAGTAAG
[TR]_p3120_255_c ore 33	CCCCCATCTCCGATCGTTGTCAATCCGTAA
[TR]_p3120_255_c ore 34	AACTTTATCATCGTGGTGTCACGCTTCAGCTCCGGTTCC CAGTGTTAT
[TR]_p3120_255_c ore 35	TTGGCCGCAACGATCAAGGCGAGTTTGCCATT
[TR]_p3120_255_c ore 36	GTTGCCGGTTTGCGCAACGTTGTACATGAT
[TR]_p3120_255_c ore 37	GCTACAGGCCGCCTCCATCCAGTCGCTCCAGA
[TR]_p3120_255_c ore 38	GGCTTACGACCCACGCTCACCGTATTAATT
[TR]_p3120_255_c ore 39	TCCCCGTCCAATAAACCAGCCAGCGGTCCTGC
[TR]_p3120_255_c ore 40	AAGTCGGAATTGGCGACGCTCAAGTCTTGCGCAG
[TR]_p3120_255_c	TTTATCAGGTGTAGATAACTACGATATCTCAG

ore_41	
[TR]_p3120_255_c	
ore_42	TATATATATCAUTOAUOCACCTACUOUAU
[TR]_p3120_255_c	TGGCGCTTTTTTGCCTG▲C
ore_43	
[TR]_p3120_255_c	TTCGTTCATTTTTCACGCTGTAGGTTCTTGAGTTTTTAA
ore_44	TTAAAACTAT
[TR]_p3120_255_c	CGATCTGTATGAAGTTTTAAATCAAAAAGGAT
ore_45	
[TR]_p3120_255_c	GACGCTCGTCATGAGATTATCAATCTAAAG
ore_46	
[TR]_p3120_255_c	CTTCACCTAGATTTTTTAAGACACGACT
ore_47	
[TR]_p3120_255_c	CCGGCAAACAAACCACCGCIGGIIACGCGCAGAAAAA
ore 48	
[IR]_p3120_255_c	TCTAAAGGATCTCAATTTTTTGCTACACTAGACTTG
Ore_49	
$[1K]_{p3120}_{233}_{c}$	AAGTGGTGGCCTTTTTTCCTTTGATCTTT
<u>UIE_50</u> [TD] ==2120_255_0	
$[1K]_{p5120}_{235}_{c}$	ATTTGGTAAAAAGAGTTGGTAGCTCTTGA
TP1 n2120 255 o	
$[1K]_{p5120}_{235}_{c}$	AGCCACTCGGTGCTACAGAGTTAGGACAGT
[TR] n3120 255 c	
ore 53	GCTCCAACCGACCGCTGCGCCTCTGGCAGC
[TR] p3120 255 c	TATCGCCATATCCGGTAACTATCGATCTCAGTTCGGTGT
ore 54	ACCGCCTTT
[TR] p3120 255 c	
ore 55	GAAGCICITACCGGATACCIGIGGICGITC
[TR] p3120 255 c	TAACGCAGGCATCACAAAAATCGAAAACCCGACAGGAC
ore 56	TATGGGAAGCG
[TR] p3120 255 c	
ore_57	CICCUICAAAGAIACCAGGCGIIICCGCCCC
[TR]_p3120_255_c	
ore_58	AUCAAAACUITTTTCCAIAUUCTCCCCTU
[TR]_p3120_255_c	
ore_59	
[TR]_p3120_255_c	
ore_60	
[TR]_p3120_255_c	
ore_61	
[TR]_p3120_255_c	AGCGGTATCGCGCGGGGGGGGGGGGGCGCGCGCTTTCC
ore_62	
[TR]_p3120_255_c	CTGGGGTGTTGCGCTCACTGCCGTTTGCGT
ore 63	

[TR]_p3120_255_c ore_64	AGTCGGGAAGCCGGAAGCATAAAGAATTGTTA
[TR]_p3120_255_c ore_65	TGAGGGTCTGTTTCCTGTGTGATGTAAAGC
[TR]_p3120_255_c ore_66	GATCCATGACTGAGACCGTTCGCACTAGTTCTAGAGCC CCTTTAG

Table S2.28. Edge staples of p3120 equilateral triangular DNA origami tile (D = 2.55 nm).

,	
Name	Sequence
[TR]_p3120_255_edge_1	AAACGTTCTTCGGGAAAGTGCTCATCATTG
[TR]_p3120_255_edge_2	CTCAACCAAGTCATTTCTGTGACTGGTGAG
[TR]_p3120_255_edge_3	TAGCTCCTTCGGTCGTTGTGCAAAAAAGCG
[TR]_p3120_255_edge_4	TTCGCCAGTTAATAGGAAGCTAGAGTAAGT
[TR]_p3120_255_edge_5	CAATGATACCGCGACATCTGGCCCCAGTGC
[TR] p3120 255 edge_6	AGTTACCAATGCTTGAGTAAACTTGGTCTG
[TR] p3120 255 edge 7	GTTAAGGGATTTTGAGTGGAACGAAAACTC
[TR] p3120 255 edge 8	TTGCAAGCAGCAGATAGCGGTGGTTTTTTT
[TR] p3120 255 edge 9	GTAATCATGGTCATAGTAATTGCGCGCTTGGCGA
[TR]_p3120_255_edge_1 0	AACTCACATTAATTGCGCCTAATGAGTGAGCTTA
[TR]_p3120_255_edge_1 1	GCTCACTGACTCGCTGGCTCTTCCGCTTCCTCGT
[TR]_p3120_255_edge_1 2	AAGGCCGCGTTGCTGGGGGCCAGGAACCGTAAAA G
[TR]_p3120_255_edge_1 3	GTTCCGACCCTGCCGCCCTCGTGCGCTCTCCTTG
[TR]_p3120_255_edge_1 4	GAACCCCCCGTTCAGCGCTGGGCTGTGTGCACAC
[TR]_p3120_255_edge_1 5	GAGCGAGGTATGTAGGGGTAACAGGATTAGCAAC
[TR]_p3120_255_edge_1 6	AGCCAGTTACCTTCGGATCTGCGCTCTGCTGAGT
[TR] p3120 255 edge 1	GTGTCGTAGACAC GATACATATTTGAATGTATTGT
7	CTCATGAGCG GTGTCGTAGACAC
[TR]_p3120_255_edge_1	GTGTCGTAGACACATTTTTGTTAAATCAGTTAAAA
8	TTCGCGTTAAGTGTCGTAGACAC
[TR]_p3120_255_edge_1	GTGTCGTAGACACCGTGGACTCCAACGTCGTCCA
9	CTATTAAAGAAGTGTCGTAGACAC
[TR]_p3120_255_edge_2	GTGTCGTAGACACCGGGGGAAAGCCGGCGACCGA
0	TTTAGAGCTTGAGTGTCGTAGACAC
[TR]_p3120_255_edge_2	GTGTCGTAGACACCCATTCAGGCTGCGCAGGGCG
1	CGTCCCATTCGGTGTCGTAGACAC

[TR]_p3120_255_edge_2	GTGTCGTAGACACTGTAAAACGACGGCCATTCCC
2	AGTCACGACGTGTGTCGTAGACAC
[TR]_p3120_255_edge_2	GTGTCGTAGACACCACTCTGTCCAGCTCGTGCAA
3	TGGGAGATTACGTGTCGTAGACAC

Table S2.29. Core staples of p3120 equilateral triangular DNA origami tile (D = 2.65 nm).

Name	Sequence
[TR]_p3120_265_c ore_1	TCAGGGTTATTTAGAAAAATAATAAGCGTT
[TR]_p3120_265_c ore 2	GGTGAGCAAAAACAGGAAGGCACGGAAATGTTGAATA GCATTTA
[TR]_p3120_265_c ore 3	TTGAACTCATACTCTTTTTTTTTGTTGAGATCAAAA
[TR]_p3120_265_c ore 4	CTCTCAAGGATTTTTTTTTCAATATTA
[TR]_p3120_265_c ore 5	CGAAATCGAGTGCCACCTAAATTGACAAATAG
[TR]_p3120_265_c ore 6	GGGTTCCGCGCTTTTTCCCGGCGTCAA
[TR]_p3120_265_c ore 7	AATCCCTTTGTTATGGCAGCAGACCGAGTTTTTCCCCG AAAGCAA
[TR]_p3120_265_c ore 8	AATATTTAGCTCATTTTTTAACTCCAGTTT
[TR]_p3120_265_c ore 9	CAGGGCGATAGGGTTGAGTGTTGTCAATAGGC
[TR]_p3120_265_c ore_10	GGAACAATCAAAGGGCGAAAAAAACCCTAA
[TR]_p3120_265_c ore 11	GACCGAGATGGCCCACTACGTGAATGGGGTCG
[TR]_p3120_265_c ore 12	AGTGTTATCAAAAGAATA
[TR]_p3120_265_c ore_13	AGAAAGCGTAAAGCACTAAATCGGCCGTCTAT
[TR]_p3120_265_c ore 14	TTTTCCATCTTTGGTATGTCACGCTCTTTCAAGT
[TR]_p3120_265_c ore 15	AGGTGCCGAAAGGAGCGGGGCGCTATCACGCTGCGCGT AACTCTTCGCT
[TR]_p3120_265_c ore 16	AGGGAGCGAACGTGGCGAGAAACTTAATGC
[TR]_p3120_265_c ore 17	TGCGGGCCCACCACCCCGCCGCGGGAAGGGA
[TR]_p3120_265_c ore 18	ATCAAATACTTAGCGGGGGGGGCGCTGGCTTCACAGA

[TR]_p3120_265_c ore 19	GCCGCTACAACTGTTGGGAAGGGTTGGGTA
[TR]_p3120_265_c ore_20	TCGAGGTCTAATACGACTCACTATGCTGCAAGGCGATT AAGCGATCGG
[TR]_p3120_265_c ore 21	ATTACGCCAAATGAATCG
[TR]_p3120_265_c ore 22	CGTGCCAGTAAAGGGGGGATGTAGGGCGAATTTTATACG AGCCTGT
[TR]_p3120_265_c ore_23	ACGCCAGGCCAGTGAGCGCGCGGACGGTAT
[TR]_p3120_265_c ore_24	CGATAAGAGCTCGGATAGGGAGGCAATCAA
[TR]_p3120_265_c ore_25	TCACAATTCCATTTTTCGGGCCCCCCC
[TR]_p3120_265_c ore_26	CCTTACCGCGGTGGTTTTTTTTCTAAGGGTTAGACT
[TR]_p3120_265_c ore_27	ACATGCTTCAATTTTTAGCTTTTGTTC
[TR]_p3120_265_c ore_28	TGGCAGCCATCGATACCTCAGCGTATCG
[TR]_p3120_265_c ore_29	GATCCGGCAAACAAACCACCGCAGATTACGCGCAGATT TCTACG
[TR]_p3120_265_c ore_30	ATCTAAAAAGGATTTTTTTGGCTACACTATCTT
[TR]_p3120_265_c ore_31	GAAGTGGTGGCTTTTTAAGATCCTTTG
[TR]_p3120_265_c ore_32	TGTAACCTTTACTTTCACCAGCGTTTCT
[TR]_p3120_265_c ore_33	GCCACATACGTTCTTCGGGGGCGCAGTTCGA
[TR]_p3120_265_c ore_34	CCATCCGACCAAGTCATTCTGAAATACCGC
[TR]_p3120_265_c ore 35	TACGGGATGAATAGTGTATGCGGCCTGCATAATTCTCTT ACGTTGTCA
[TR]_p3120_265_c ore 36	TACATGACTTCGGTCCTCCGATCTGTCATG
[TR]_p3120_265_c ore_37	GGTCCTGCGCTACAGGCATCGTGGTGGCTTCATTCAGC TCTTGGCCGC
[TR]_p3120_265_c ore 38	GAAGTAAGCGGTTCCCAACGATCACAACGTTG
[TR]_p3120_265_c ore_39	TATTAATAGTTAATAGTTTGCGAGGCGAGT
[TR]_p3120_265_c ore 40	TTGCCATTAACTTTATCCGCCTCCGCTCACCG
[TR] p3120_265_c	TACGGGATACCGCGAGACCCACATCCAGTC

ore_41	
[TR]_p3120_265_c	
ore_42	ΤΟΟΟΤΟΑΟΤΤΙΑΙCΑΟΟΑΑΙΑΑΑΟΟΟΑΟΑΑΟΤ
[TR]_p3120_265_c	GAGCCAGCCTTGAAACTCAAGTCAGATTAGGGCC
ore_43	GAUCEAUCE I IUAAAC ICAAU ICAUAI IAUUUCE
[TR]_p3120_265_c	GCTCCAGATCCCCGTCGTGTAGATGAGGCACC
ore_44	
[TR]_p3120_265_c	ATCTAAACAATGCTTAATCAGTAACTACGA
ore 45	
[TR]_p3120_265_c	CGCTTTCTCATCCATAGT
ore_46	
[TR]_p3120_265_c	CTGTCTATTACGCTGTAGGTACTTGAGTCTTTTTCCTTTT
ore 47	ACGAT
[TR]_p3120_265_c	TATCTCAGAATTAAAAATGAAGTTTTATCAAA
ore_48	
[TR]_p3120_265_c	GGGTCTGATTTTGGTCATGAGATTAAATCA
ore_49	
[TR]_p3120_265_c	AAGGATCTTCATTTTTAAGACACGAC
ore_50	
[TR]_p3120_265_c	GATCCATGACTGAGACCGTTCTCTAGAGCGGCCGCCTA
ore_51	GTGAGG
[TR]_p3120_265_c	GTATTTGGGAAAAAGAGTTGGTAGCTCT
ore_52	
[TR]_p3120_265_c	CAGCCACGCGGTGCTACAGAGTGAAGGACA
ore 55	
[IR]_p3120_265_c	CTCCAAGCGACCGCTGCGCCTTACTGGCAG
TD1 #2120 265 a	
$[1K]_{p5120}_{205}_{c}$	GCCTTTCTC
TP1 n3120 265 c	deerriere
$[1K]_{p5120}_{205}_{c}$	GCTCCCTCCGGATACCTGTCCGGTCGTTCG
[TR] n3120 265 c	
ore 57	AAAAGCGTGG
[TR] n3120 265 c	
ore 58	CCTTCGGGGGATACCAGGCGTTTCCGCCCCCT
[TR] p3120 265 c	
ore 59	AAAAGGCTTTTCCATAGGCTCCCCCTGGAA
[TR] n3120 265 c	
ore 60	GACGAGCAAGAACATGTGAGCAAACGGCGAGC
[TR] p3120 265 c	
ore 61	GGGCGCTTCGGTCGTTCGGCTGAGGCCAGC
[TR] p3120 265 c	
ore 62	GCCAACGCCTCACTCAAAGGCGGTGGGGATAA
[TR] p3120 265 c	
ore 63	GGTATCAGGCGGGGGGGGGGGGGGGTTTTTCCAGT

[TR]_p3120_265_c ore_64	GGGTGCCGCGCTCACTGCCCGCTGCGTATT
[TR]_p3120_265_c ore_65	CGGGAAACCGGAAGCATAAAGTGTTTATCCGC
[TR]_p3120_265_c ore_66	GTTAATTTCCTGTGTGAAATTGAAAGCCTG

Table S2.30. Edge staples of p3120 equilateral triangular DNA origami tile (D = 2.65 nm).

Name	Sequence
[TR]_p3120_265_edge_1	CTCATCATTGGAAAAGCAGAACTTTAAAAG
[TR]_p3120_265_edge_2	CTGGTGAGTACTCATAAGATGCTTTTCTGT
[TR]_p3120_265_edge_3	AAAGCGGTTAGCTCTCCCCCATGTTGTGCA
[TR] p3120_265_edge_4	GTAAGTAGTTCGCCTGTTGCCGGGAAGCTA
[TR]_p3120_265_edge_5	CAGTGCTGCAATGAGGGCTTACCATCTGGC
[TR]_p3120_265_edge_6	GGTCTGACAGTTACGTATATATGAGTAAAC
[TR] p3120_265_edge_7	ACTCACGTTAAGGGACGCTCAGTGGAACGA
[TR] p3120 265 edge 8	TTGTTTGCAAGCAGCTGGTAGCGGTGGTTT
[TR] p3120 265 edge 9	CATGGTCATAGCTGTTGCGCGCTTGGCGTAATTG
[TR]_p3120_265_edge_1 0	TCACATTAATTGCGTTTAATGAGTGAGCTAACGA
[TR]_p3120_265_edge_1 1	CACTGACTCGCTGCGCCTTCCGCTTCCTCGCTAA
[TR]_p3120_265_edge_1 2	GCCGCGTTGCTGGCGTCAGGAACCGTAAAAAGG A
[TR]_p3120_265_edge_1 3	CCGACCCTGCCGCTTACGTGCGCTCTCCTGTTCC
[TR]_p3120_265_edge_1 4	AACCCCCGTTCAGCCCTGGGCTGTGTGCACGTT
[TR]_p3120_265_edge_1 5	AGAGCGAGGTATGTAGTGGTAACAGGATTAGCAA
[TR]_p3120_265_edge_1 6	GAAGCCAGTTACCTTCGTATCTGCGCTCTGCTTT
[TR] p3120 265 edge 1	GTGTCGTAGACACGATACATATTTGAATGTATTGT
7	CTCATGAGCGGTGTCGTAGACAC
[TR]_p3120_265_edge_1	GTGTCGTAGACACAAATTTTTGTTAAATCTGTTA
8	AAATTCGCGTTGTGTCGTAGACAC
[TR]_p3120_265_edge_1	GTGTCGTAGACACAACGTGGACTCCAACGGAGT
9	CCACTATTAAAGGTGTCGTAGACAC
[TR]_p3120_265_edge_2	GTGTCGTAGACACGACGGGGAAAGCCGGCCCC
0	CGATTTAGAGCTTGTGTCGTAGACAC
[TR]_p3120_265_edge_2	GTGTCGTAGACACCGCCATTCAGGCTGCGCAGG
1	GCGCGTCCCATTGTGTCGTAGACAC

[TR]_p3120_265_edge_2	GTGTCGTAGACACACGTTGTAAAACGACGGGTT
2	TTCCCAGTCACGGTGTCGTAGACAC
[TR]_p3120_265_edge_2	GTGTCGTAGACACGATTACCACTCTGTCCCTTG
3	GATGCAATGGGAGTGTCGTAGACAC

Table S2.31. Core staples of p3120 equilateral triangular DNA origami tile (D = 2.70 nm).

Name	Sequence
[TR]_p3120_270_co re 1	CGCCACATAGCAGAACTTTAGGGGGCGAAAACTCTCATG TAACC
[TR]_p3120_270_co re_2	TTCGAAGGATCTTATTTTACTCAACCAAATGC
[TR]_p3120_270_co re_3	CACTCGTCACCAGCGTTTCTGGACACGGAA
[TR]_p3120_270_co re 4	TTTTCTGTGATTTTTTGAGATCCAG
[TR]_p3120_270_co re 5	TCATGAGCAAAGGGAATAAGGGCGGTGAGCAA
[TR]_p3120_270_co re_6	AAACAGGAAGGTTTTCAGAAGTAAGT
[TR]_p3120_270_co re 7	ATGTTGAAAGCATTTATCAGGGCATTTCCC
[TR]_p3120_270_co re 8	ACATATTTTGTGTCACGCTCGGTCCTCCTTCCGCAAAG GAT
[TR]_p3120_270_co re_9	TAAATCAGATAGGGGTTCCGCGCATTATTGTC
[TR]_p3120_270_co re_10	CGAAAAGTAAAATTCGCGTTAATTGAGTGT
[TR]_p3120_270_co re 11	ATAAACAACTCATTTTTTAACCAACTTATAAA
[TR]_p3120_270_co re_12	TTGCTACAGTTTAGAAAA
[TR]_p3120_270_co re_13	AAACCGTCATAGACCGAGATAGGGATTTTTGT
[TR]_p3120_270_co re_14	ATCCTAGGCTTCCGGAGCAATAAACCTTGGCAAA
[TR]_p3120_270_co re_15	TGTTCCAGGACTCCAACGTCAAGCACTAAA
[TR]_p3120_270_co re_16	TCAAAAGATATCAGGGCGATGGCCAATCAAGTTTTTG GGGGGAAGAA
[TR]_p3120_270_co re_17	GAAAGGAAGTCGAGGTGCCGTAAAAGGGCGAA
[TR]_p3120_270_co re_18	GTGCCCAGTTTACCCTCACTACGTGATTCCTGTC

[TR]_p3120_270_co re 19	TCGGAACGGGAAAGCCGGCGAAGCTGCGCG
[TR]_p3120_270_co re_20	CTCTTCGCCATTCAGGCTGCGCAACAAGTGTAGCGGTC ACCGTGGCGA
[TR]_p3120_270_co re 21	AGCGAAAGGCTGTGTGAA
[TR]_p3120_270_co re 22	TAACCACGCGCGTCCCATTCGCTATTACGC
[TR]_p3120_270_co re_23	GGTCATAGTCTAGGGCGCTGGCTGTTGGTTCCTGCAGT CAT
[TR]_p3120_270_co re_24	CAGCTGGTGGGTAACGCCAGGGAGTGAGCG
[TR]_p3120_270_co re_25	ACTGAGACCGTTTTTTCGGTGCGGGC
[TR]_p3120_270_co re_26	CAATTGCTTCAATATTTTTAACGACGGCCTTTT
[TR]_p3120_270_co re_27	CCCAGTCACGTTTTTTAAGGGTTAG
[TR]_p3120_270_co re_28	CGCGTAACGGGCCCCCCCCCGAGGTCG
[TR]_p3120_270_co re_29	CAGCCACTGGTAACAGGATTGTTCTTGAAGTGGTGTTT GGTAT
[TR]_p3120_270_co re_30	AGTAGCCTAACTACTTTTTTTCAGCCCGAGGGC
[TR]_p3120_270_co re_31	CTGCGCTTGGTAGCTCTTGATCCAGATTAC
[TR]_p3120_270_co re_32	TGTGTGCACGTTTTTCTAGAAGGAC
[TR]_p3120_270_co re_33	GGAACGAATTTTGTTTGCAAGCAGCGGCAAAC
[TR]_p3120_270_co re_34	AAACCACCGCTTTTTTCTCCCTTCGG
[TR]_p3120_270_co re_35	GCGCAGATTCTACGGGGTCTGAAGATCCTT
[TR]_p3120_270_co re 36	CACGTTAATCGCTCAAGTCAGGATACCTTTGTGGTTTA ACT
[TR]_p3120_270_co re 37	TTACCAATAAAAGGATCTTCACCTCGCTCAGT
[TR]_p3120_270_co re_38	TTAAATTTATGAGTAAACTTGGCGTGTAGA
[TR]_p3120_270_co re_39	GATTATCAGCTTAATCAGTGAGGCTTTCGTTC
[TR]_p3120_270_co re 40	AGCATCACATGGTCATGA
[TR]_p3120_270_co	CGCTCACCTTGCCTGACTCCCCGTTCTGACAG

re_41	
[TR]_p3120_270_co	
re_42	
[TR]_p3120_270_co	
re_43	TAACTACCTOCAATOATACCOCCT
[TR]_p3120_270_co	ATCCATAGGGCTCCAGATTTATCAAGGGCCGAGCGCAG
re_44	AATGTTGCCA
[TR]_p3120_270_co	CGCAACGTGTGGTCCTGCAACTTTGAGACCCCA
re_45	
[TR]_p3120_270_co	CCATCCAGTAGTTCGCCAGTTACATTCAGC
re_46	
[TR]_p3120_270_co	TGGCCGCAGCGGTTAGCTCCTTCGTCGTTTGGTATGGC
re_47	TTATAGTTTG
[TR]_p3120_270_co	ΤΟΟGGTTΔΤGTTGTGCΔΔΔΔΔGTGTTΔΤΟ
re_48	
[TR]_p3120_270_co	Δ CTC ΔΤGC ΔΤGCC ΔΤCCGTΔ Δ GGTC ΔΤΤCΤ
re_49	
[TR]_p3120_270_co	<u>GAGA ΑΤΑ CGCCTC Α ΑΤΑ CGGGATA ΑΤ</u>
re_50	
[TR]_p3120_270_co	TATCGATAAGCTTGGATGCAATAGGGAGGACTACACAA
re_51	TGGCA
[TR]_p3120_270_co	GCTAAAACCTCAGCGTATCGTGTTCTAGA
re_52	de lanaanee lended la ledi di le lada
[TR]_p3120_270_co	TGGCGTAACCCGGGGGGATCCACTAGATCCATG
re_53	TOGEOTAACCEOOOOATCEACTAGATCEATG
[TR]_p3120_270_co	<u>Θ<u></u></u> <u>Θ</u> <u></u> <u>Θ</u> <u></u> <u></u> <u>Θ</u> <u></u> <u></u> <u></u> <u>Θ</u> <u></u> <u></u> <u>Θ</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
re_54	
[TR]_p3120_270_co	TGCGTTGCCCGCTCACAATTCCACTGCGCGCT
re_55	
[TR]_p3120_270_co	CGAGCCGTGAGTGAGCTAACTCGAGAGGCG
re_56	
[TR]_p3120_270_co	ATTGTTATGCTCACTGCCCGCTTTCAGCTGCA
re_57	
[TR]_p3120_270_co	CTGCGGCGTCGGCCAACGCGCGGGACATTAAT
re_58	
[TR]_p3120_2/0_co	GTTTGCGACTCGCTGCGCTCGGCATGTGAG
re_59	
[TR]_p3120_270_co	
re_60	GGCCCTGACG
[TR]_p3120_270_co	CTCCGCCCATAACGCAGGAAAGAATCGTTCGG
re_61	
[TR]_p3120_270_co	CAAAAGGCGTTGCTGGCGTTTTCAGGACTA
re_62	
[TR]_p3120_270_co	GAAGCGTGACCCTGCCGCTTACCGAGGTGGCGAAACC
re_63	CGATCCATAGG

[TR]_p3120_270_co re_64	TAAAGATCGCTCTCCTGTTCCGGCGCTTTC
[TR]_p3120_270_co re_65	TCATAGCCGTTCGCTCCAAGCTCCGCTGCG
[TR]_p3120_270_co re_66	CCTTATCGACACGACTTATCGCCACTG

Table S2.32. Edge staples of p3120 equilateral triangular DNA origami tile (D = 2.70 nm).

Name	Sequence
[TR]_p3120_270_edge_ 1	AATCAGGGCCATCGATCACGTAGCGAGCTCTGAT
[TR]_p3120_270_edge_ 2	CCAGCTTTTGTTCCCTCCACCGCGGTGGAGCTAG
[TR]_p3120_270_edge_ 3	AGCCTGGGGTGCCTAAGAAGCATAAAGTGTAACG
[TR]_p3120_270_edge_ 4	GCTTCCTCGCTCACTGTATTGGGCGCTCTTCCCC
[TR]_p3120_270_edge_ 5	AACCGTAAAAAGGCCGCCAGCAAAAGGCCAGGAT
[TR]_p3120_270_edge_ 6	TGGAAGCTCCCTCGTGACCAGGCGTTTCCCCCAA
[TR]_p3120_270_edge_ 7	TCAGTTCGGTGTAGGTTCACGCTGTAGGTATCCC
[TR]_p3120_270_edge_ 8	GAGTCCAACCCGGTAACGGTAACTATCGTCTTTA
[TR]_p3120_270_edge_ 9	AATTCTCTTACTGTGTTATGGCAGCACTGC
[TR]_p3120_270_edge_ 10	TTACATGATCCCCCCCAACGATCAAGGCG
[TR]_p3120_270_edge_ 11	GGAAGCTAGAGTAAGTCTATTAATTGTTGC
[TR]_p3120_270_edge_ 12	ATCTGGCCCCAGTGGATACGGGAGGGCTTA
[TR]_p3120_270_edge_ 13	CAATCTAAAGTATAAAAAATGAAGTTTTAA
[TR]_p3120_270_edge_ 14	GATCCTTTGATCTTAAAAAAGGATCTCAAG
[TR]_p3120_270_edge_ 15	TTCGGAAAAAGAGTCTGCTGAAGCCAGTTA
[TR]_p3120_270_edge_ 16	GGCGGTGCTACAGAAGCAGAGCGAGGTATG
[TR]_p3120_270_edge_	GTGTCGTAGACACCAGCATCTTTTACTTTGCACCCA A
1/	CTGATCTTGTGTCGTAGACAC

[TR]_p3120_270_edge_ 18	GTGTCGTAGACACTTTTTCAATATTATTGATACTCAT
	TCTTCCGTGTCGTAGACAC
[TR] p3120 270 edge	GTGTCGTAGACACAGCGTTAATATTTTGTTGCCACC
10	TA
19	AATTGTAGTGTCGTAGACAC
[TR] p3120 270 edge	GTGTCGTAGACACCACTATTAAAGAACGTGTTTGG
[[IK]_p3120_270_cdgc_ 20	AA
20	CAAGAGTCGTGTCGTAGACAC
[TR] p3120 270 edge	GTGTCGTAGACACGATTTAGAGCTTGACGCCTAAA
21	GG
21	GAGCCCCCGTGTCGTAGACAC
[TR] n3120 270 edge	GTGTCGTAGACACAATGCGCCGCTACAGGCACACC
22	CG
	CCGCGCTTGTGTCGTAGACAC
[TR] p3120 270 edge	GTGTCGTAGACACTGCAAGGCGATTAAGTCGAAAG
[1]K]_p3120_270_edge_	GG
23	GGATGTGCGTGTCGTAGACAC

Table S2.33. Core staples of p3120 equilateral triangular DNA origami tile (D = 2.75 nm).

Name	Sequence
[TR]_p3120_275_c	GCAACTGTTGGGAAGGGCGAAGCTGGCGAAAGGGGG
ore_1	CCAGGGT
[TR]_p3120_275_c ore_2	TAACGATGTGCTGCTTTTTCACGCTGCGCAGGG
[TR]_p3120_275_c ore 3	TTTCCCAGCGCGTAATACGACTCGATAAGC
[TR]_p3120_275_c ore_4	CGCTGGCAAGTTTTTTAAGTTGGG
[TR]_p3120_275_c ore_5	ATTTTGCCTCGAGGTCGACGGTATCACTATAG
[TR]_p3120_275_c ore 6	GGCGAATTGGGTTTTAGCCCCCGATT
[TR]_p3120_275_c ore_7	TTGGATGTAGGGAGGACTACATGCCATCGA
[TR]_p3120_275_c ore_8	GGTTAGCATACTCCAACGTCATCGGAACCTTTTGCCCC CCCTAAG
[TR]_p3120_275_c ore_9	CTAGTTCTCGAGCTCTGAATCAGGGCTTCAAT
[TR]_p3120_275_c ore_10	TACCTCAATTCCTGCAGCCCGGAATCATGG
[TR]_p3120_275_c ore 11	ACACGTAGAGAGCGGCCGCCACCGCCTTTAGT

[TR]_p3120_275_c ore_12	ACTATTAAAGCAGCTAAA
[TR]_p3120_275_c ore_13	AAGCATAAATTGCGCGCTTGGCGTGGGATCCA
[TR]_p3120_275_c ore 14	GTTCCGGTGGCGTTAAATTTTGTTAATTGCTTTT
[TR]_p3120_275_c ore_15	TCATAGCATTCCACACAACATACCAGTCGG
[TR]_p3120_275_c ore_16	GAGGGTTAAGTGTAAAGCCTGGGGGACATTAATTGCGTT GCCTCTTCCG
[TR]_p3120_275_c ore_17	ATTGGGCGGCTCACTGCCCGCTTTCGAGCCGG
[TR]_p3120_275_c ore_18	GATCAAAAAATAACTCTGCCTAATGATTCAAGAA
[TR]_p3120_275_c ore_19	GAAACCTGCGCGGGGGAGAGGCGGAGCGGTA
[TR]_p3120_275_c ore_20	GTAAAAAGGGAAAGAACATGTGAGGTCGTTCGGCTGC GGCGTTTGCGT
[TR]_p3120_275_c ore 21	CTTCCTCGCTATTTGGTA
[TR]_p3120_275_c ore 22	TCAGCTCTCAGGGGATAACGCAGCCGCGTT
[TR]_p3120_275_c ore_23	ACACTAGATTCGCTGCGCTCGCAAAAGGCTTTTAGACA CGAGGCT
[TR]_p3120_275_c ore_24	GCTGGCGTCACAAAAATCGACGATAAAGAT
[TR]_p3120_275_c ore_25	TTGAGTCCAACTTTTGGCCAGGAACC
[TR]_p3120_275_c ore_26	TCGCTAGGTATCTCTTTTTCGACAGGACTCTCA
[TR]_p3120_275_c ore_27	AGTCAGAGGTTTTTTTGTAGGTCGT
[TR]_p3120_275_c ore 28	ACCAGGCTCTCCTGTTCCGACCCTGCC
[TR]_p3120_275_c ore 29	CTCCTTCGGTCCTCCGATCGCTCATGGTTATGGCACCGT AAGA
[TR]_p3120_275_c ore 30	CCATGCACTGCATATTTTTGGTATGGCTTTCGT
[TR]_p3120_275_c ore 31	GGTGTCACGCTTTTTTACTGTCATG
[TR]_p3120_275_c ore 32	TGCTTTTTGAGAATAGTGTATGCACATAGC
[TR]_p3120_275_c ore 33	ATCCAGTTTCAGTGCTGCAATTCCGCCTCTTTTCGTCAA TATGAG
[TR] p3120_275_c	AGAACTTGGGCGAAAACTCTCATTTTACTT

ore_34	
[TR]_p3120_275_c	
ore_35	GOUTTACCAACCCACTCO
[TR]_p3120_275_c	
ore_36	TUCACCCAURAATUTTUAATACTCTTUAAUCA
[TR]_p3120_275_c	TCACCAGATGCCGCAAAAAGGGCGGGATAC
ore_37	
[TR]_p3120_275_c	TTTATCAGAATTGTAAGCGTTAATATTTTTGTTAAATCAG
ore_38	AAGAGTCC
[TR]_p3120_275_c	ATATTTGCCGCGCACATTTCCCTAGGCCGA
ore 39	
[TR]_p3120_275_c	TTTGGAACCTCATTTTTAACCAACGAAAAGT
ore_40	
[TR]_p3120_275_c	GCCACCTAGGTTATTGTCTCATGAGAATAAGG
ore 41	
[IR]_p3120_2/5_c	AATCGGCGATAGGGTTGAGTGTCTATCAGG
ore_42	
[IR]_p3120_2/5_c	GCGATGGTTTTGGGGTCGAGGTGACGGGGA
TD1 #2120 275 a	
$[1K]_{p5120}_{275}_{c}$	
TD1 = 2120 275 a	CUTUTICAU
$[1K]_{p3120}_{275}_{c}$	CACACCCGTCCCATTCGCCATTCAGGC
[TR] n3120 275 c	
ore 46	AAGCCGGAAAGGAGCGGGGCGCTGTAACCAC
[TR] p3120 275 c	
ore 47	GCGACACGACTGATCTTCAGCATCAGGATCTT
[TR] p3120 275 c	
ore 48	ΑΠΑΑΙΑCICIGAGIACAAICIAAAGITIICAAI
[TR] p3120 275 c	
ore_49	ACCGCIGICGGGAIAAIACCGCGCCGGCGACC
[TR]_p3120_275_c	
ore_50	
[TR]_p3120_275_c	TACCGGATACCTGTCCGCCTTCATAGCTCACGCTGTCCA
ore_51	AGCT
[TR]_p3120_275_c	GGGCTGTCGCCTTATCCGGTAAGCAGCCAC
ore_52	
[TR]_p3120_275_c	TGGTAACTACAGAGTTCTTGAACCTTCGGA
ore 53	
[TR]_p3120_275_c	TCTGCGCTAGCAGATTACGCGCAGCTTTGATC
ore_54	
[TR]_p3120_275_c	AAAAGAGGCTGGTAGCGGTGGTTGGAACGA
ore_55	
[TR]_p3120_275_c	
ore_56	TIAUGGGAG

[TR]_p3120_275_c ore_57	AAACTCAAAGGATCTTCACCTAGTGAGGCA
[TR]_p3120_275_c ore 58	AACTACGATACCAATGCTTAATCAGATCCTTT
[TR]_p3120_275_c ore 59	TAAATTAAGGGGTCTGACGCTCAGTTTTTTGT
[TR]_p3120_275_c ore_60	CCTATCTGCCTGACTCCCCGTCCGCTCACC
[TR]_p3120_275_c ore_61	GGCTCCAGGCCGAGCGCAGAAGAGCTAGAG
[TR]_p3120_275_c ore_62	TGCCGGGATGGTCCTGCAACTTTAGATACCGCGAGACC CAGTGTAGAT
[TR]_p3120_275_c ore_63	TCCGGTTATGTTGTGCAAAAAAGCGGT
[TR]_p3120_275_c ore_64	TAAGTAGCCATTGCTACAGGCACATTCAGC
[TR]_p3120_275_c ore_65	TTGCAAGCCTGCTGAAGCCAGTTAGTGGTGGC
[TR]_p3120_275_c ore_66	CTAACTACCTTATCGCCACTGGCACTATCGTC

Table S2.34. Edge staples of p3120 equilateral triangular DNA origami tile (D = 2.75 nm).

Name	Sequence
[TR]_p3120_275_edge_ 1	AAGGGAAGAAAGCGCGAACGTGGCGAGAAA
[TR]_p3120_275_edge_ 2	ACCCTAATCAAGTTCCCACTACGTGAACCA
[TR]_p3120_275_edge_ 3	AAAGAATAGACCGAAAAATCCCTTATAAAT
[TR]_p3120_275_edge_ 4	AACAAATAGGGGTTAATGTATTTAGAAAAA
[TR]_p3120_275_edge_ 5	AACAGGAAGGCAAACGTTTCTGGGTGAGCA
[TR]_p3120_275_edge_ 6	GAAAACGTTCTTCGTAAAAGTGCTCATCAT
[TR]_p3120_275_edge_ 7	CAACCAAGTCATTCCTGTGACTGGTGAGTA
[TR]_p3120_275_edge_ 8	CCGCAGTGTTATCATTGTCAGAAGTAAGTT
[TR]_p3120_275_edge_ 9	TTCAGCCCGACCGCTGGTGCACGAACCCCCGGG
[TR]_p3120_275_edge_ 10	GGTATGTAGGCGGTGCAGGATTAGCAGAGCGATC

[TR]_p3120_275_edge_ 11	CGGCAAACAAACCACCTTGGTAGCTCTTGATCCA
[TR]_p3120_275_edge_ 12	TCATGAGATTATCAAACGTTAAGGGATTTTGGTA
[TR]_p3120_275_edge_ 13	TCGTTCATCCATAGTTCAGCGATCTGTCTATTAA
[TR]_p3120_275_edge_ 14	ACCAGCCAGCCGGAAGGATTTATCAGCAATAATG
[TR]_p3120_275_edge_ 15	TTGCGCAACGTTGTTGTTCGCCAGTTAATAGTCT
[TR]_p3120_275_edge_ 16	AGTTACATGATCCCCCCCCAACGATCAAGGCGGG
[TR]_p3120_275_edge_ 17	GTGTCGTAGACACACGACGGCCAGTGAGCGTCAC GAC GTTGTAAAGTGTCGTAGACAC
[TR]_p3120_275_edge_ 18	GTGTCGTAGACACCTCTGTCCAGCTCGGACAATGG GA GATTACCAGTGTCGTAGACAC
[TR]_p3120_275_edge_ 19	GTGTCGTAGACACGACTGAGACCGTTCGAGCGTAT CG TGATCCATGTGTCGTAGACAC
[TR]_p3120_275_edge_ 20	GTGTCGTAGACACTTGTTATCCGCTCACATGTTTCC TG TGTGAAAGTGTCGTAGACAC
[TR]_p3120_275_edge_ 21	GTGTCGTAGACACTAATGAATCGGCCAACGTCGTG CC AGCTGCATGTGTCGTAGACAC
[TR]_p3120_275_edge_ 22	GTGTCGTAGACACACGGTTATCCACAGAAACTCAA AG GCGGTAATGTGTCGTAGACAC
[TR]_p3120_275_edge_ 23	GTGTCGTAGACACGCCCCCTGACGAGCATTTTC CAT AGGCTCCGTGTCGTAGACAC

Table S2.35. Core staples of p3120 equilateral triangular DNA origami tile (D = 2.85 nm).

Name	Sequence
[TR]_p3120_285_co re_1	ATCAGGGGTATTTAGAAAAATAGTAAGCGT
[TR]_p3120_285_co	CAAAAACAGGAAGGCAAAACGGAAATGTTGAATAAAG
re_2	CATTT
[TR]_p3120_285_co re_3	ATTGCTCATACTCTTTTTATCCAGTTCTCAA
[TR]_p3120_285_co	GGATCTTACCTTTTTTTCAATATT

re_4	
[TR]_p3120_285_co	
re_5	
[TR]_p3120_285_co	GGGGTTCCGCGTTTTTCAATACGGGA
[TR] p3120 285 co	AAATCCCTTTCAGCACTGCATATTGCTCTTTCCCCGAAG
re 7	GCA
[TR] p3120 285 co	
re_8	
[TR]_p3120_285_co re_9	TCAGGGCGATAGGGTTGAGTGTTGCCAATAGG
[TR]_p3120_285_co re 10	TGGAACAGTCAAAGGGCGAAAAACCCTAAA
[TR]_p3120_285_co re 11	AGACCGAGATGGCCCACTACGTGAGGGGTCGA
[TR]_p3120_285_co re 12	ATCACTCATTCAAAAGAAT
[TR]_p3120_285_co re 13	GAAAGCGAAAAGCACTAAATCGGAACCGTCTA
[TR]_p3120_285_co re 14	TTTTACCATCTGGCTTCACGCTCGTCGTCAAGTT
[TR]_p3120_285_co re 15	GGTGCCGTAAGGAGCGGGCGCTAGGCTGCGCGTAACC ACCCGCTATTA
[TR]_p3120_285_co re 16	GGGAGCCAACGTGGCGAGAAAGATGCGCCG
[TR]_p3120_285_co re 17	GGCCTCTTACACCCGCCGCGCTTAGAAGGGAA
[TR]_p3120_285_co re 18	ATCAGTAATAGGTCACGGCGCTGGCAACCACAGA
[TR]_p3120_285_co re 19	CTACAGGTGTTGGGAAGGGCGAGTAACGCC
[TR]_p3120_285_co re 20	GTCGACGGCGACTCACTATAGGGCAAGGCGATTAAGTT GGTCGGTGCG
[TR]_p3120_285_co re 21	CGCCAGCTGTTTAATGAAT
[TR]_p3120_285_co re 22	GTCGTGCCTTGGGATGTGCTGCGAATTGGTTCATACGA ACCT
[TR]_p3120_285_co re_23	AGGGTTTTGAGCGCGCGTAATATATCGATA
[TR]_p3120_285_co re_24	AGCTTGGGGATAGGGAGGACTATCAATGGC
[TR]_p3120_285_co re_25	GCTCACAATTCTTTTCCCCCCTCGAG
[TR]_p3120_285_co re 26	TCCCACCGCGGTGTTTTTGGTTAGCAACATG

[TR]_p3120_285_co re_27	CTTCAATATTTTTTCAGCTTTTGT
[TR]_p3120_285_co re 28	AGCTAAATCGATACCTCAGCGTATCG
[TR]_p3120_285_co re 29	ACGGGAGACCGCGAGACCCACGCAGTCTAT
[TR]_p3120_285_co re 30	GGCAAACAAACCACCGCTGATTACGCGCAGAAAATTC TACGG
[TR]_p3120_285_co re 31	TCTTAAAGGATCTTTTTTACACTAGAAGAAG
[TR]_p3120_285_co re 32	TGGTGGCCTATTTTGATCCTTTGA
[TR]_p3120_285_co re 33	GGTCTGATTTTGGTCATGAGATTAAATCAA
[TR]_p3120_285_co re 34	ATCTCAGCATTAAAAATGAAGTTTTATCAAAA
[TR]_p3120_285_co re 35	AGGATCTTCACTTTTACACGACTTAT
[TR]_p3120_285_co re 36	TGTCTATTTTTGTAGGTATCTCAGTCCAATTCTTTAAG ATC
[TR]_p3120_285_co re 37	TCTAAAGAATGCTTAATCAGTGACTACGAT
[TR]_p3120_285_co re 38	CTCCAGATCCCCGTCGTGTAGATAAGGCACCT
[TR]_p3120_285_co re 39	TTTCTCATATTCCATAGTT
[TR]_p3120_285_co re 40	GCCTGACTTTATCAGCAATAAACCGAAGTGGT
[TR]_p3120_285_co re 41	CCATTGCTTTTATCCGCCTCCATCCTCACCGG
[TR]_p3120_285_co re 42	TAATTGTTAATAGTTTGCGCAAGTTACATG
[TR]_p3120_285_co re 43	CCTGCAACACAGGCATCGTGGTGTCATTCAGCTCCGGT TCGCAGTGTT
[TR]_p3120_285_co re 44	ATCCCCCTCCGATCGTTGTGCCATCCG
[TR]_p3120_285_co re 45	TAAGATGCATTCTGAGAATAGTCGCCACAT
[TR]_p3120_285_co re 46	TAATACCGGTATGCGGCGACCGAGATTCTCTTACTGTCA TCAGAAGTA
[TR]_p3120_285_co re 47	CCACTCGCTTTCACCAGCGTTTCTGG
[TR]_p3120_285_co re_48	AGCAGAATCGGGGCGAAAACTCGATGTAAC
[TR]_p3120_285_co	AGTTGGCCCCAACGATCAAGGCGACGTTGTTG

re_49	
[TR]_p3120_285_co re_50	CGCAAGCCAGAACCCGTCAAGTCAGAGGGCCGAG
[TR]_p3120_285_co re_51	TTGGGCGGCTCGGTCGTTCGGCAGGCCAGC
[TR]_p3120_285_co re_52	CATGACTGAGACCGTTCGATCTAGAGCGGCCGCCTTTA GTGA
[TR]_p3120_285_co re_53	GGGTTAATTTCCTGTGTGAAATGTAAAGCC
[TR]_p3120_285_co re 54	GTCGGGAAGCCGGAAGCATAAAGTTGTTATCC
[TR]_p3120_285_co re_55	TGGGGTGTTGCGCTCACTGCCCTTTGCGTA
[TR]_p3120_285_co re_56	GCGGTATCGCGCGGGGGGGGGGGGGGGGGGCTTTCCA
[TR]_p3120_285_co re_57	CGGCCAACAGCTCACTCAAAGGCGGGGGGATAA
[TR]_p3120_285_co re_58	GACGAGCAAGAACATGTGAGCAAATGCGGCGA
[TR]_p3120_285_co re 59	AAAAGGCTTTTCCATAGGCTCCTGGAAGCT
[TR]_p3120_285_co re_60	CGCAGGAATCACAAAAATCGACGCACAGGACTATAAA GATCGTGGCGC
[TR]_p3120_285_co re_61	CCCTCGTGATACCTGTCCGCCTTTCGCTCC
[TR]_p3120_285_co re_62	AAGCTGGCGCTGCGCCTTATCCGCAGCAGC
[TR]_p3120_285_co re 63	CGCCACTGGGTAACTATCGTCTTGAGTTCGGTGTAGGT CGTTCTCCCT
[TR]_p3120_285_co re_64	TTTGGTAAAAAGAGTTGGTAGCTCTT
[TR]_p3120_285_co re_65	CACTGGTTGCTACAGAGTTCTTGGACAGTA
[TR]_p3120_285_co re_66	TCGGGAAGACCAGGCGTTTCCCCCGCCCCCT

Table S2.36. Edge staples of p3120 equilateral triangular DNA origami tile (D = 2.85 nm).

Name	Sequence
[TR]_p3120_285_edge_ 1	TTGGAAAACGTTCTCTTTAAAAGTGCTCAT
[TR]_p3120_285_edge_ 2	GTACTCAACCAAGTCTTTTCTGTGACTGGT

[TR]_p3120_285_edge3	GTTAGCTCCTTCGGATGTTGTGCAAAAAAG
[TR]_p3120_285_edge_ 4	AGTAGTTCGCCAGTTGCCGGGAAGCTAGAG
[TR]_p3120_285_edge_ 5	AGTGCTGCAATGATGGCTTACCATCTGGCC
[TR]_p3120_285_edge_ 6	GTCTGACAGTTACCTATATATGAGTAAACT
[TR]_p3120_285_edge_ 7	CTCACGTTAAGGGACGCTCAGTGGAACGAA
[TR]_p3120_285_edge_ 8	TTTGCAAGCAGCAGGTAGCGGTGGTTTTTT
[TR]_p3120_285_edge_ 9	ATCATGGTCATAGCTGTTGCGCGCTTGGCGTACA
[TR]_p3120_285_edge_ 10	ACTCACATTAATTGCGCCTAATGAGTGAGCTAGA
[TR]_p3120_285_edge_ 11	CTCACTGACTCGCTGCCTCTTCCGCTTCCTCGCG
[TR]_p3120_285_edge_ 12	GCCGCGTTGCTGGCGTCAGGAACCGTAAAAAGTA
[TR]_p3120_285_edge_ 13	ACCCTGCCGCTTACCGGCGCTCTCCTGTTCCGCC
[TR]_p3120_285_edge_ 14	CCCCGTTCAGCCCGACGCTGTGTGCACGAACCTG
[TR]_p3120_285_edge_ 15	CGAGGTATGTAGGCGGAACAGGATTAGCAGAGAA
[TR]_p3120_285_edge_ 16	GCCAGTTACCTTCGGATCTGCGCTCTGCTGAATG
[TR]_p3120_285_edge_ 17	GTGTCGTAGACACGGATACATATTTGAATTTATTGT CTC
	AIGAGCGIGICGIAGACAC
[TR]_p3120_285_edge_	AAT
18	TCGCGTGTGTCGTAGACAC
[TR] n3120 285 edge	GTGTCGTAGACACGAACGTGGACTCCAACAGAGT
19	CCA
17	
[TR]_p3120_285_edge_	TTT
20	AGAGCTTGGTGTCGTAGACAC
[TD] n2120 205 ada	GTGTCGTAGACACATTCAGGCTGCGCAACGCGCGT
[1K]_p5120_285_edge_ 21	CC
	CATTCGCCGTGTCGTAGACAC
[TR]_p3120_285_edge_	GIGICGTAGACACGTAAAACGACGGCCAGICCCA

	ACGACGTTGTGTCGTAGACAC
[TR]_p3120_285_edge_ 23	GTGTCGTAGACACCCACTCTGTCCAGCTCATGCAA TGG GAGATTAGTGTCGTAGACAC

Table S2.37. Core staples of p3120 equilateral triangular DNA origami tile (D = 3.00 nm).

Name	Sequence
[TR]_p3120_300_c ore_1	TATCAGGTGTATTTAGAAAAATTTGTAAGC
[TR]_p3120_300_c ore 2	AAAAACAGGAAGGCAAAACGGAAATGTTGAATAGAA GCATT
[TR]_p3120_300_c ore 3	TATTCTCATACTTTTTAGTTCGATGATC
[TR]_p3120_300_c ore 4	TTACCGCTGTTTTTTCAATAT
[TR]_p3120_300_c ore 5	GGCCGAAAAAAGTGCCACCTAAAAAAAAAAA
[TR]_p3120_300_c ore 6	AGGGGTTCCGTTTCGGGATAATA
[TR]_p3120_300_c ore 7	CAAAATCCTTGCATAATTCTCTTGCCCGGTTTTCCCCGT CGG
[TR]_p3120_300_c ore 8	GTTAATAATCAGCTCATTTTTTGTTCCAGT
[TR]_p3120_300_c ore 9	ATCAGGGCGATAGGGTTGAGTGTTAACCAATA
[TR]_p3120_300_c ore 10	TTGGAACCGTCAAAGGGCGAAACCCTAAAG
[TR]_p3120_300_c ore 11	TAGACCGAGATGGCCCACTACGTGGGGTCGAG
[TR]_p3120_300_c ore 12	CATGGTTATGTTTATCAAAAGAA
[TR]_p3120_300_c ore 13	AAAGCGAAAAGCACTAAATCGGAAAACCGTCT
[TR]_p3120_300_c ore 14	TTTGAACCATCTTTTCATTCACGCTCGTCGTTTTTTCAA GTTT
[TR]_p3120_300_c ore 15	GTGCCGTAAGGAGCGGGGCGCTAGGGCGTAACCACCAC ACCTTACGCCA
[TR]_p3120_300_c ore 16	GGAGCCCACGTGGCGAGAAAGGCCGCTACA
[TR]_p3120_300_c ore_17	CTTCGCTACGCCGCGCTTAATGCGAAGGGAAG
[TR]_p3120_300_c ore 18	TCAGGGTAATATTTACGCTGCGCGCTGGCAAGTTTCCA CAGAA

[TR]_p3120_300_c ore_19	GGGCGCGGGAAGGGCGATCGGTCCAGGGTT
[TR]_p3120_300_c ore_20	ACGGTATCACTATAGGGCGAATTGATTAAGTTGGGTAA CGGCGGGCCT
[TR]_p3120_300_c ore 21	GCTGGCGAAATTTCATTAATGAA
[TR]_p3120_300_c ore_22	CTGTCGTGTTTGCTGCAAGGCGGGGTACCGTTAACATAC AAAC
[TR]_p3120_300_c ore_23	TTCCCAGCGCGTAATACGACTCGATAAGCT
[TR]_p3120_300_c ore_24	TGGATGCAGGGAGGACTACATGAATGGCAG
[TR]_p3120_300_c ore_25	CGCTCACAATTTTCTCGAGGTCG
[TR]_p3120_300_c ore_26	TTCCACCGCGGTTTTTTAGCAATCCTTC
[TR]_p3120_300_c ore_27	AATATTTGTTTCAGCTTTTG
[TR]_p3120_300_c ore 28	CTAAAACCGATACCTCAGCGTATCG
[TR]_p3120_300_c ore 29	GGTCTGATTTTGGTCATGAGATTTAAATCA
[TR]_p3120_300_c ore_30	CAAACAAACCACCGCTGGTTACGCGCAGAAAAATTCT ACGG
[TR]_p3120_300_c ore_31	TCTTAAGGATCTTTTTCTAGAAGGTGGT
[TR]_p3120_300_c ore_32	GGCCTAACTTTTATCCTTTGA
[TR]_p3120_300_c ore_33	TATCTCAGAATTAAAAATGAAGTTTATCAAAA
[TR]_p3120_300_c ore 34	AGGATCTTCATTTACTTATCGCC
[TR]_p3120_300_c ore 35	CTGTCTATTTTATCTCAGTTCGACCCGGTTTCCTTTTAC GAT
[TR]_p3120_300_c ore 36	ATCTAAACAATGCTTAATCAGTACTACGAT
[TR]_p3120_300_c ore 37	CTCCAGATCCCCGTCGTGTAGATAGAGGCACC
[TR]_p3120_300_c ore 38	ACGGGAGACCGCGAGACCCACGGTCTATTA
[TR]_p3120_300_c ore 39	GCCTGACTTTATCAGCAATAAACCAGTGGTCC
[TR]_p3120_300_c ore 40	CATAGCTCACTTTATCCATAGTT
[TR]_p3120_300_c	ATTGCTACTATCCGCCTCCATCCACTCACCGG

ore_41	
[TR]_p3120_300_c	CAGAAGCCAGCTTTCGACAGGCAAGTCAGAGGTTTGC
ore_42	CGAGCG
[TR]_p3120_300_c	TGCAACTTAGGCATCGTGGTGTCAGCTCCGGTTCCCAA
ore_43	CGTTATCACT
[TR]_p3120_300_c	
ore_44	AITOTTOAIAOTTTOCOCAACOTOAICCCC
[TR]_p3120_300_c	
ore_45	CCUCAUTOAICAAOOCOAOTIACAITOTIOCC
[TR]_p3120_300_c	
ore_46	CAIOIIIOUAICOIIIOICAOAAOOIAAOAIO
[TR]_p3120_300_c	CCGCGCCAGCGACCGAGTTGCTCTTACTGTCATGCCAT
ore 47	CCTAAGTTGG
[TR] p3120 300 c	
ore_48	CITTICIAGAAIAGIGIAIGCGCAIAGCAG
[TR] p3120 300 c	
ore_49	AACTTTAGUGAAAACTCTCAAGGTAACCCA
[TR] p3120 300 c	
ore_50	
[TR] p3120 300 c	
ore 51	AGGGTTAGTTTCCTGTGTGAAAGTGTAAAG
[TR] p3120 300 c	ATGACTGAGACCGTTCGATCTAGAGCGGCCGCCCTTTA
ore_52	GTG
[TR] p3120 300 c	
ore_53	CAUTCOOOGAOCCOOAAOCATAAATTOTTATC
[TR]_p3120_300_c	COTOCOCOTTCOCOTCACTOCOTTCOCOT
ore_54	
[TR]_p3120_300_c	
ore_55	AUCOUTATCOCOCOOOAOAOOCOCCOCTITC
[TR]_p3120_300_c	
ore_56	AITOOOCCOCICOOICOITCOOOOCCAOCA
[TR]_p3120_300_c	
ore_57	
[TR]_p3120_300_c	
ore_58	ACOAOCATOAACATOTOAOCAAAACTOCOOCO
[TR]_p3120_300_c	GCAGGAAACACAAAAATCGACGCTACTATAAAGATACC
ore_59	AGCGCTTTCT
[TR]_p3120_300_c	
ore_60	
[TR]_p3120_300_c	
ore_61	
[TR]_p3120_300_c	GTGCGCTCTGTCCGCCTTTCTCCCAAGCTG
ore_62	
[TR]_p3120_300_c	ACTGGCAGTATCGTCTTGAGTCCAGTGTAGGTCGTTCG
ore_63	CTCCTTCGGG

[TR]_p3120_300_c ore_64	GGCTGTGGCCTTATCCGGTAACCAGCCACT
[TR]_p3120_300_c ore_65	GGTAACAACAGAGTTCTTGAAGACAGTATT
[TR]_p3120_300_c ore_66	TGGTATCAAGAGTTGGTAGCTCTTG

Table S2.38. Edge staples of p3120 equilateral triangular DNA origami tile (D = 3.00 nm).

Name	Sequence
[TR]_p3120_300_edge_1	AAACGTTCTTCGGGAAAGTGCTCATCATTG
[TR]_p3120_300_edge_2	ACCAAGTCATTCTGGTGACTGGTGAGTACT
[TR]_p3120_300_edge_3	TCCTTCGGTCCTCCTGCAAAAAGCGGTTA
[TR]_p3120_300_edge_4	TAGTTCGCCAGTTACCGGGAAGCTAGAGTA
[TR]_p3120_300_edge_5	AGTGCTGCAATGATGGCTTACCATCTGGCC
[TR]_p3120_300_edge_6	GGTCTGACAGTTACGTATATATGAGTAAAC
[TR]_p3120_300_edge_7	CTCACGTTAAGGGACGCTCAGTGGAACGAA
[TR]_p3120_300_edge_8	TTGCAAGCAGCAGATAGCGGTGGTTTTTTT
[TR]_p3120_300_edge_9	AATCATGGTCATAGCTATTGCGCGCTTGGCGTGA
[TR]_p3120_300_edge_1 0	TAACTCACATTAATTGTGCCTAATGAGTGAGCCA
[TR]_p3120_300_edge_1 1	GCTCACTGACTCGCTGGCTCTTCCGCTTCCTCGC
[TR]_p3120_300_edge_1 2	CCGCGTTGCTGGCGTTAGGAACCGTAAAAAGGAG
[TR]_p3120_300_edge_1 3	GCCGCTTACCGGATACCTCCTGTTCCGACCCTCC
[TR]_p3120_300_edge_1 4	TCAGCCCGACCGCTGCTGCACGAACCCCCCGTTT
[TR]_p3120_300_edge_1 5	GTATGTAGGCGGTGCTGGATTAGCAGAGCGAGAA
[TR]_p3120_300_edge_1 6	CAGTTACCTTCGGAAATGCGCTCTGCTGAAGCGT
[TR]_p3120_300_edge_1	GTGTCGTAGACACCGGATACATATTTGAAGTTATT G
,	TCTCATGAGGTGTCGTAGACAC
[TR] p3120 300 edge 1	GTGTCGTAGACACGTTAAATTTTTGTTAATTTTGTT
8	Α
	GTGTCGTAGACACAGAACGTCGACTCCAAAAGAG
[TR]_p3120_300_edge_1	T
9	CCACTATTAAGTGTCGTAGACAC

[TR]_p3120_300_edge_2	GTGTCGTAGACACCGGGGGAAAGCCGGCGACCGAT
	Т
0	TAGAGCTTGAGTGTCGTAGACAC
[TR]_p3120_300_edge_2	GTGTCGTAGACACGGCTGCGCAACTGTTGTCCCAT
	Т
1	CGCCATTCAGTGTCGTAGACAC
[TD] #2120 200 adap 2	GTGTCGTAGACACCGACGGCCAGTGAGCGTCACG
[1K]_p3120_300_edge_2 2	A
	CGTTGTAAAAGTGTCGTAGACAC
[TR]_p3120_300_edge_2	GTGTCGTAGACACTCTGTCCAGCTCGGATAATGGG
	A
3	GATTACCACGTGTCGTAGACAC

S2.7.2.2 Staple strand sequences of tiles for regular tilings *Table S2.39.* Core staples of p3120 equilateral triangular DNA origami tile (D = 2.70nm).

Name	Sequence
[TR]_p3120_core	CGCCACATAGCAGAACTTTAGGGGGCGAAAACTCTCATGTA
_1	ACC
[TR]_p3120_core _2	TTCGAAGGATCTTATTTTACTCAACCAAATGC
[TR]_p3120_core _3	CACTCGTCACCAGCGTTTCTGGACACGGAA
[TR]_p3120_core _4	TTTTCTGTGATTTTTTGAGATCCAG
[TR]_p3120_core 5	TCATGAGCAAAGGGAATAAGGGCGGTGAGCAA
[TR]_p3120_core 6	AAACAGGAAGGTTTTCAGAAGTAAGT
[TR]_p3120_core 7	ATGTTGAAAGCATTTATCAGGGCATTTCCC
[TR]_p3120_core _8	ACATATTTTGTGTCACGCTCGGTCCTCCTTCCGCAAAGGA T
[TR]_p3120_core 9	TAAATCAGATAGGGGTTCCGCGCATTATTGTC
[TR]_p3120_core _10	CGAAAAGTAAAATTCGCGTTAATTGAGTGT
[TR]_p3120_core _11	ATAAACAACTCATTTTTTAACCAACTTATAAA
[TR]_p3120_core 12	TTGCTACAGTTTAGAAAA
[TR]_p3120_core 13	AAACCGTCATAGACCGAGATAGGGATTTTTGT
[TR]_p3120_core 14	ATCCTAGGCTTCCGGAGCAATAAACCTTGGCAAA
[TR]_p3120_core _15	TGTTCCAGGACTCCAACGTCAAGCACTAAA
[TR]_p3120_core _16	TCAAAAGATATCAGGGCGATGGCCAATCAAGTTTTTTGGG GGGAAGAA
[TR]_p3120_core 17	GAAAGGAAGTCGAGGTGCCGTAAAAGGGCGAA
[TR]_p3120_core _18	GTGCCCAGTTTACCCTCACTACGTGATTCCTGTC
[TR]_p3120_core _19	TCGGAACGGGAAAGCCGGCGAAGCTGCGCG
[TR]_p3120_core	CTCTTCGCCATTCAGGCTGCGCAACAAGTGTAGCGGTCAC
_20	CGTGGCGA
[TR]_p3120_core	AGCGAAAGGCTGTGTGAA

_21	
[TR]_p3120_core 22	TAACCACGCGCGTCCCATTCGCTATTACGC
[TR]_p3120_core 23	GGTCATAGTCTAGGGCGCTGGCTGTTGGTTCCTGCAGTCA T
[TR]_p3120_core 24	CAGCTGGTGGGTAACGCCAGGGAGTGAGCG
[TR]_p3120_core 25	ACTGAGACCGTTTTTTCGGTGCGGGC
[TR]_p3120_core 26	CAATTGCTTCAATATTTTTAACGACGGCCTTTT
[TR]_p3120_core 27	CCCAGTCACGTTTTTTAAGGGTTAG
[TR]_p3120_core 28	CGCGTAACGGGCCCCCCTCGAGGTCG
[TR]_p3120_core 29	CAGCCACTGGTAACAGGATTGTTCTTGAAGTGGTGTTTGG TAT
[TR]_p3120_core 30	AGTAGCCTAACTACTTTTTTTCAGCCCGAGGGC
[TR]_p3120_core 31	CTGCGCTTGGTAGCTCTTGATCCAGATTAC
[TR]_p3120_core 32	TGTGTGCACGTTTTTCTAGAAGGAC
[TR]_p3120_core 33	GGAACGAATTTTGTTTGCAAGCAGCGGCAAAC
[TR]_p3120_core 34	AAACCACCGCTTTTTTCTCCCTTCGG
[TR]_p3120_core 35	GCGCAGATTCTACGGGGTCTGAAGATCCTT
[TR]_p3120_core 36	CACGTTAATCGCTCAAGTCAGGATACCTTTGTGGTTTAAC T
[TR]_p3120_core 37	TTACCAATAAAAGGATCTTCACCTCGCTCAGT
[TR]_p3120_core 38	TTAAATTTATGAGTAAACTTGGCGTGTAGA
[TR]_p3120_core 39	GATTATCAGCTTAATCAGTGAGGCTTTCGTTC
[TR]_p3120_core _40	AGCATCACATGGTCATGA
[TR]_p3120_core _41	CGCTCACCTTGCCTGACTCCCCGTTCTGACAG
[TR]_p3120_core 42	TCTAACCTATTGGTTATCAAAGGCGGTTGATCTG
[TR]_p3120_core 43	TAACTACCTGCAATGATACCGCATCCGCCT

[TR]_p3120_core	ATCCATAGGGCTCCAGATTTATCAAGGGCCGAGCGCAGAA
_44	TGTTGCCA
[TR]_p3120_core _45	CGCAACGTGTGGTCCTGCAACTTTGAGACCCA
[TR]_p3120_core 46	CCATCCAGTAGTTCGCCAGTTACATTCAGC
[TR]_p3120_core 47	TGGCCGCAGCGGTTAGCTCCTTCGTCGTTTGGTATGGCTT ATAGTTTG
[TR]_p3120_core 48	TCCGGTTATGTTGTGCAAAAAGTGTTATC
[TR]_p3120_core 49	ACTCATGCATGCCATCCGTAAGGTCATTCT
[TR]_p3120_core 50	GAGAATACGGCGTCAATACGGGATAAT
[TR]_p3120_core 51	TATCGATAAGCTTGGATGCAATAGGGAGGACTACACAATG GCA
[TR]_p3120_core 52	GCTAAAAACCTCAGCGTATCGTGTTCTAGA
[TR]_p3120_core 53	TGGCGTAACCCGGGGGGATCCACTAGATCCATG
[TR]_p3120_core 54	GCGGCCGTTAGTGAGGGTTAATACAACATA
[TR]_p3120_core 55	TGCGTTGCCCGCTCACAATTCCACTGCGCGCT
[TR]_p3120_core 56	CGAGCCGTGAGTGAGCTAACTCGAGAGGCG
[TR]_p3120_core 57	ATTGTTATGCTCACTGCCCGCTTTCAGCTGCA
[TR]_p3120_core 58	CTGCGGCGTCGGCCAACGCGCGGGACATTAAT
[TR]_p3120_core 59	GTTTGCGACTCGCTGCGCTCGGCATGTGAG
[TR]_p3120_core 60	TTAATGAAAGCGGTATCAGCTCACTCCACAGAATCAGGGG CCCTGACG
[TR]_p3120_core 61	CTCCGCCCATAACGCAGGAAAGAATCGTTCGG
[TR]_p3120_core 62	CAAAAGGCGTTGCTGGCGTTTTCAGGACTA
[TR]_p3120_core 63	GAAGCGTGACCCTGCCGCTTACCGAGGTGGCGAAACCCG ATCCATAGG
[TR]_p3120_core _64	TAAAGATCGCTCTCCTGTTCCGGCGCTTTC
[TR]_p3120_core 65	TCATAGCCGTTCGCTCCAAGCTCCGCTGCG
[TR]_p3120_core	CCTTATCGACACGACTTATCGCCACTG

((
66	
00	

Table S2.40. Edge staples of p3120 equilateral triangular DNA origami tile (D = 2.70 nm).

Name	Sequence
[TR]_p3120_edge_1	AATCAGGGCCATCGATCACGTAGCGAGCTCTGAT
[TR]_p3120_edge_2	CCAGCTTTTGTTCCCTCCACCGCGGTGGAGCTAG
[TR]_p3120_edge_3	AGCCTGGGGTGCCTAAGAAGCATAAAGTGTAACG
[TR]_p3120_edge_4	TTCCTCGCTCACTGTATTGGGCGCTCTT
[TR]_p3120_edge_5	AACCGTAAAAAGGCCGCCAGCAAAAGGCCAGGAT
[TR]_p3120_edge_6	TGGAAGCTCCCTCGTGACCAGGCGTTTCCCCCAA
[TR]_p3120_edge_7	TCAGTTCGGTGTAGGTTCACGCTGTAGGTATCCC
[TR]_p3120_edge_8	GTCCAACCCGGTAACGGTAACTATCGTC
[TR]_p3120_edge_9	AATTCTCTTACTGTGTTATGGCAGCACTGC
[TR]_p3120_edge_10	TTACATGATCCCCCCCAACGATCAAGGCG
[TR]_p3120_edge_11	GGAAGCTAGAGTAAGTCTATTAATTGTTGC
[TR]_p3120_edge_12	ATCTGGCCCCAGTGGATACGGGAGGGCT
[TR]_p3120_edge_13	CAATCTAAAGTATAAAAAATGAAGTTTTAA
[TR]_p3120_edge_14	GATCCTTTGATCTTAAAAAAGGATCTCAAG
[TR]_p3120_edge_15	TTCGGAAAAAGAGTCTGCTGAAGCCAGTTA
[TR]_p3120_edge_16	GGCGGTGCTACAGAAGCAGAGCGAGGTA
[TR]_p3120_edge_17	CAAGGCGATTAAGTCGAAAGGGGGGATGTGC
[TR]_p3120_edge_18	TGCGCCGCTACAGGCACACCCGCCGCGCTT
[TR]_p3120_edge_19	TTTAGAGCTTGACGCCTAAAGGGAGCCCCC
[TR]_p3120_edge_20	CTATTAAAGAACGTGTTTGGAACAAGAG
[TR]_p3120_edge_21	AGCGTTAATATTTTGTTGCCACCTAAATTGTAGA
[TR]_p3120_edge_22	TTTTTCAATATTATTGATACTCATACTCTTCCAA
[TR]_p3120_edge_23	CAGCATCTTTTACTTTGCACCCAACTGATCTTTG

Table S2.41. Core staples of p3548 equilateral triangular DNA origami tile.

Name	Sequence
[TR]_p3548_cor	AAGCAGCAGATTACGCGCATTTTCTACGGGGTCTAGGGAT
e_1	TT
[TR]_p3548_cor e_2	GTTAGACGCTCAGTTTTCAGTTACCTGGTA
[TR]_p3548_cor e_3	TCTGCGCTCTTTAAAACTCAC
[TR]_p3548_cor e_4	TGGTCATTTTTAAATTAAAAATAGTTACCA
[TR]_p3548_cor e_5	AAATCAATCTTTGCAGAGCGAG
[TR]_p3548_cor e_6	GACTCCCCGTAAACTTGGTCTGACGAAGTTTT

[TR]_p3548_cor e 7	ATGCTTAATTTCGTTCATCCATGCTGCAAT
[TR]_p3548_cor e 8	TGTAGATTGTGCACGAACTGGTAAATATGAGTCG
[TR]_p3548_cor e 9	GGGCCGAGACCATCTGGCCCCAGTAGTTGCCT
[TR]_p3548_cor e 10	GCTCCAAGCTTTTTGATACGGGAG
[TR]_p3548_cor e 11	GGCTTCGCAGAAGTGGTCCTGAGTCTATT
[TR]_p3548_cor e 12	GATACCGAGCAATAAACCAGCCAGTAGTTC
[TR]_p3548_cor e 13	ATCCCAACTTTTGCGCTGGAAGCTCTTTTCCTCC
[TR]_p3548_cor e 14	CGTTTGGTCCGGGAAGCTAGAGTAAGCCGGAA
[TR]_p3548_cor e 15	GCCAGTTAGGCATCGTGGTGTCTCGGTCCT
[TR]_p3548_cor e 16	AATTGTTGATGGCTTCATTCAGCTCCCCATGT
[TR]_p3548_cor e 17	TAATTCTCAAAGCGGTTAGCTCCTACGCTCGT
[TR]_p3548_cor e 18	GATCCCGGTTCCCAACGTTTTTAGGCCAGGA
[TR]_p3548_cor e 19	TCACATTAAGTTGGGTATTTTTGAGTTACAT
[TR]_p3548_cor e 20	TGTGCAAATTACTGTCATGCCATCACTGGTGAGTACTCAA AGTGC
[TR]_p3548_cor e 21	CCGATCGCTCATGGTTATGGCAATAGTGTA
[TR]_p3548_cor e 22	CCGCCGTATTTTTGTGCGTAAGATGTTTTACCCG
[TR]_p3548_cor e 23	ACTTTAAACCAAGTCATTCTGAGAGCACTGCA
[TR]_p3548_cor e 24	TGCGGCGATAATACCGCGCCACCTTACCGC
[TR]_p3548_cor e 25	AAGGCAAACTTTTACTTTCACCAGGAAAACTCTCAAGGAT ATAGCAGA
[TR]_p3548_cor e 26	TCATCATTGGTTTTAACCCTAAAG
[TR]_p3548_cor e 27	AGCACTATTCTTCGGGGGCCGTTTCAACGTGGTAA
[TR]_p3548_cor e 28	TGTTGAGACTGATCTTCAGCATATGCCGCA
[TR]_p3548_cor	AAAAAGGATACTCTTCCTTTTTGTCTCATG

e_29	
[TR]_p3548_cor e 30	AGAGTCCACTTTCAAAAACAGG
[TR]_p3548_cor e 31	CGAATCAGCTCATTTTTAGGGTTATTCAAT
[TR]_p3548_cor e 32	ATTATTGAATTTCCAATAGGC
[TR]_p3548_cor e 33	AGCGGATATAGGGGTTCCGCGCACAT
[TR]_p3548_cor e 34	CTTCTATCCGAAAAAAGAGGAAAAAACTCTCGTATGACC GAA
[TR]_p3548_cor e 35	ACAACAGTGGCAGTTTTCGTGTAGTCTACA
[TR]_p3548_cor e 36	CGTTAGGAATTTCGACGTGTC
[TR]_p3548_cor e_37	AGAGTTGGGTAGCGGTGGTTTTTTTG
[TR]_p3548_cor e_38	ACAGAGTAGAAGGACAGTATTTTCGGAAAA
[TR]_p3548_cor e 39	CCTTATCGACACGACTTATCGCGCGGTGCT
[TR]_p3548_cor e_40	GTATGTAGCACTGGCAGCAGCCACCCCCGTTCAGCCCGA TCAGTTCG
[TR]_p3548_cor e 41	CCTTTCTCACGCTGTAGGTATCCCGCTGCG
[TR]_p3548_cor e 42	CCGCGTTGACCAGGCGTTTCCCCCTCTCCTGTTCCGACCC CGTTC
[TR]_p3548_cor e 43	GTGTAGGTTGCCGCTTACCGGATAACAGGACT
[TR]_p3548_cor e_44	CCCCCTGAGGTGGCGAAACCCGCCTGTCCG
[TR]_p3548_cor e_45	ATAAAGATCTGGCGTTTTTCCATACCACAGAA
[TR]_p3548_cor e_46	TCGTTCGCGGTAATACGGTTATGGCTCCGC
[TR]_p3548_cor e_47	CGCTTCCTTAACGCAGGAAAGAACTAAAAAGG
[TR]_p3548_cor e_48	ACCGATGTGAGCAAAAGTTTTTTTTTCCCAG
[TR]_p3548_cor e_49	TCAGGGGACGCTCACTGACTCGCTAGCTGCAT
[TR]_p3548_cor e_50	CATTAATGAAACCTGTCGTGCCGCGCTCGG
[TR]_p3548_cor e 51	CTGGGCGGCCAACGCGCGGGGGCGCTCTTC

[TR]_p3548_cor e 52	TGGGAGAGTTTTACGTTGTACGTTCTTTTCGTAT
[TR]_p3548_cor e 53	TAATGAATGTGCCTAATGAGTGAGCAATTCCA
[TR]_p3548_cor e 54	GCTTGGCATTGTTATCCGCTCACTAACTCA
[TR]_p3548_cor e 55	TCAGCGGACTTTTTAGTGTAAAGC
[TR]_p3548_cor e 56	GCCGGAAAAAATCAACGACCTAGCTTTGTTACGA
[TR]_p3548_cor e 57	CACAACATCCCTTTAGTGAGGGTTCCGCCACC
[TR]_p3548_cor e 58	CAGTGAGCTAGTTCTAGAGCGGAATTGCGC
[TR]_p3548_cor e 59	GCGGTGGAGCTTAGCAATTATT
[TR]_p3548_cor e 60	CGAAAAGTGCCACCTAAATTAAATTTTGTTAAAATCGGC AA
[TR]_p3548_cor e 61	GGTGCAAAACGACCCATGTGTATCAA
[TR]_p3548_cor e 62	CAGTCCGCATGGTAAAACCTTGGGAAGAGT
[TR]_p3548_cor e 63	CGCAGAGAAGTTATCCATCGGGACGAAACG
[TR]_p3548_cor e 64	CGGCCAGCGCAAGATAAGCCAACGCAAATCTGCCAGGGA ACGCCGGCA
[TR]_p3548_cor e 65	TGAGCGATGGCTTAACGTGACTAAAAGATA
[TR]_p3548_cor e 66	AAAACGACGGTGAGCTCATCTGTCAGAACCAGCTCAGAA ATGGCA
[TR]_p3548_cor e 67	TCTGATACAAACAAGACTGGTGGCTAAGCTTT
[TR]_p3548_cor e 68	CTCACTAGGTCGACGGTATCGAGTGAAAAT
[TR]_p3548_cor e 69	GGTGCAATGGCCAGTGAGCGCGCGCGCAGCTGGC
[TR]_p3548_cor e 70	AGGCTGCTCTTCGCTATTACGCTAATACGA
[TR]_p3548_cor e 71	CGCCGCTAGATGTGCTGCAAGGCGGACGTTGT
[TR]_p3548_cor e 72	GAAAGGGGCAGGGCGCGTCCCATTAGGGCGCT
[TR]_p3548_cor e 73	AAGCCGGAAAGGAGCGGGCGCTCGCCATTC
[TR]_p3548_cor	GGAGCTAGCGGTCACGCTGCGGCTTAATG

e_74	
[TR]_p3548_cor e_75	GGCAAGTGCCCCGATTTAGAGCTTTTGGGGGTC
[TR]_p3548_cor e_76	ACCGTCTCCCTAATCAAGTTTTGACGGGGA
[TR]_p3548_cor e_77	GAGGTGCCGACTCCAACGTCAAAGTTGGAACA
[TR]_p3548_cor e 78	AATCCCTGAGTGTTGTTCCAGTGGCGAAAA

Table S2.42. Edge staples of p3548 equilateral triangular DNA origami tile.

Name	Sequence
[TR]_p3548_edge_1	ATCTTCACCTAGATCCGAGATTATCAAAAAGGGA
[TR]_p3548_edge_2	TCTCAGCGATCTGTCTATCAGTGAGGCACCTACC
[TR]_p3548_edge_3	TTGTTGCCATTGCTACAATAGTTTGCGCAACGGG
[TR]_p3548_edge_4	CCGCAGTGTTATCATTGTCAGAAGTAAGTT
[TR]_p3548_edge_5	CACTCGTGCACCCAATCCAGTTCGATGTAA
[TR]_p3548_edge_6	AATGTTGAATACTCGAATAAGGGCGACACG
[TR]_p3548_edge_7	TAACTACGGCTACACTTCTTGAAGTGGTGGCCAG
[TR]_p3548_edge_8	GAGTCCAACCCGGTAACGGTAACTATCGTCTTAC
[TR]_p3548_edge_9	TCGACGCTCAAGTCAGACGAGCATCACAAAAAGC
[TR]_p3548_edge_10	TCAGCTCACTCAAAGGGCTGCGGCGAGCGGTACC
[TR]_p3548_edge_11	CTGTTTCCTGTGTGAAGTAATCATGGTCATAGGA
[TR]_p3548_edge_12	CAGCCCGGGGGGATCCAACCGTCAGAATTCCTGAA
[TR]_p3548_edge_13	ACCGAGATAGGGTTTATAAATCAAAAGAAT
[TR]_p3548_edge_14	TACGTGAACCATCAATCAGGGCGATGGCCC
[TR]_p3548_edge_15	GATCGGTGCGGGCCGCAACTGTTGGGAAGG
[TR]_p3548_edge_16	GGGCCCCCCCCGATAGGGCGAATTGGGTA
[TR]_p3548_edge_17	TAGTTGGAAAAAAGAGCTCAAAATCGGGTG
[TR]_p3548_edge_18	AAAAGCAACCCTGGCTCCAACCAGGATAGG

Table S2.43. Core staples of p3548 square DNA origami tile.

Name	Sequence
[SQ]_p3548_core	CTAAATTGTAAGCGTTAAAAATCAGCTCATTTTAAAAGAA
_1	Т
[SQ]_p3548_core	TATAAATCTTAACCAATAGTTTTTTTTTTTTTGTCTCATGTCAA
_2	ТАТТ
[SQ]_p3548_core	
_3	
[SQ]_p3548_core	GACTCCAACGTCAAAGGGCTTTTCTGGGTGAGC
_4	GACTCEAACOTCAAAOOOCTTTTCT000T0AOC
[SQ]_p3548_core	AAGTGCTCCTTCAGCATCTTTTACTTTTTTTTTTTTCTATCAGG
_5	GCG
[SQ]_p3548_core	AGACCGAAGAGTCCACTATTAACCTAATCA

_6	
[SQ]_p3548_core _7	TAGAGCTTCTACGTGAACCATCACAGAACGTG
[SQ]_p3548_core _8	GGAGCGGGGAACGTGGCGATTTTTTTTTCCACATAGCAGT TGCCCGG
[SQ]_p3548_core _9	ATGGCCCAGACGGGGAAAGCCGGCCGCTAGGG
[SQ]_p3548_core _10	AGTTTTTAACCCTAAAGGGAGCTGCGCGTA
[SQ]_p3548_core _11	GCGCAACTAGTGTAGCGGTCACGCCCCGATT
[SQ]_p3548_core _12	CGTCAATACGGTTTTTTTAGAAAGCGAAA
[SQ]_p3548_core _13	CCTCTTCGCTATTTTTTTAGGACTTCTCG
[SQ]_p3548_core _14	CGCTGGCAGTTGGGAAGGGCGATCATGTGCTG
[SQ]_p3548_core _15	ACCACCAGCGTCCCATTCGCCACAGGGTTT
[SQ]_p3548_core _16	CGAATTGGTTAAGTTGGGTAACGCTTCAGGCT
[SQ]_p3548_core _17	ACGTGTCAGGAAAAAACTCTTTTTTTTGCGAAAGGGGG GGTGCGGG
[SQ]_p3548_core _18	CAAGGCGAGTACCGGGCCCCCCCCGATTTTTTGTGTAGT CGGA
[SQ]_p3548_core _19	ACCTTGTACACGTTAGGAATTTATCGATAAGC
[SQ]_p3548_core _20	TCCCAGTGCGTAATACGACTCACTCATCTG
[SQ]_p3548_core _21	TTTGGTGCAATGGTGAGCTATAGGG
[SQ]_p3548_core _22	GAGCGATTGACTTTTTTTTGCCTAGCCTCA
[SQ]_p3548_core _23	TCTGTACACAAGACTGGTGGCGGATCCCTG
[SQ]_p3548_core _24	GCGCAGCAATCGGGGCAAGTTTTTTTTTCACCAATCGATG AAAATT
[SQ]_p3548_core _25	GCTTAACGGACTACGGACAAAATCA
[SQ]_p3548_core _26	CGTAAAAAGGCCGCGTTGCGAGCATCACAAAAATAAAGA TA
[SQ]_p3548_core _27	CAGGACTATCGACGCTCAATTTTTTTTTCAAAGGCGGTTT CGGCTG
[SQ]_p3548_core 28	CGGCGAGCGGTTTTTTTTGCGAAACCCGA

[SQ]_p3548_core 29	GATACCTGTCCGCCTTTCTTTTTTTTTTTTTTTTTTTTT
[SQ]_p3548_core _30	ATTCCACACAGTCGGGAAACCTGTCGTTTTTTAGCGTGG CGCT
[SQ]_p3548_core 31	CCAGGCGTGTTCCGACCCTGCCTCTCAGTT
[SQ]_p3548_core 32	TGCGCCTTGCTCACGCTGTAGGTAGCTTACCG
[SQ]_p3548_core 33	CACTGGCACTTGAGTCCAATTTTTTTTAAATTGTTATCCG TAATCA
[SQ]_p3548_core _34	TTCTCATAATCCGGTAACTATCGTGCAGCCAC
[SQ]_p3548_core _35	CGGTGTAAACCCCCCGTTCAGCGTATGTAG
[SQ]_p3548_core _36	GGTATCTGGGATTAGCAGAGCGAGCCGACCGC
[SQ]_p3548_core 37	TGGTCATAGCTTTTTTTTCGACTTATCGC
[SQ]_p3548_core 38	CGGAAAAAGAGTTTTTTTTTTTTTTTTTTTTTTTTTTTT
[SQ]_p3548_core 39	TGGTAACACGCTCTGCTGAAGCCACAAACCAC
[SQ]_p3548_core 40	GCGGTGCGCTACACTAGAAGGATTGCAAGC
[SQ]_p3548_core 41	GACGCTCAGCGGTGGTTTTTTTTGTCAGTATTT
[SQ]_p3548_core 42	GTGTTATCTCCTCCGATCGTTTTTTTTGATCCGGCAAAGT TACCTT
[SQ]_p3548_core 43	CGCTGGTAGTGGAACGAAAACTCACGTTTTTTTGCCATT GCTA
 [SQ]_p3548_core 44	TCGCCAGTTAATAGTTTGCTTTTGGTCATGAGA
[SQ]_p3548_core 45	AGCAGATCTTTGATCTTTTCTATCACCTAG
[SQ]_p3548_core 46	TTATCAAAAGGATCTCGGGGGTCT
[SQ]_p3548_core 47	TGACAGTTACCTTTTTTTCCGGAAGGGCC
[SQ]_p3548_core 48	ATCCTTTAGTATATATGAGTAACTATCTCA
[SQ]_p3548_core 49	GAGCGCAGTATCAGCAATATTTTTTTTCAGTGAGGCACAC TTGGTC
[SQ]_p3548_core 50	GCGATCTCCCGTCGTGTAGATAACT
[SQ]_p3548_core	GCCAGGGAAAAAAGATACAAAAAGAAGTTATCCATTATT

_51	CG
[SQ]_p3548_core 52	GCCAGCAAAAAGCAACCCTGGCTTGAAGTC
[SQ]_p3548_core 53	GCCCGTAAGCAATTCGACGTCACCATGGTAAA
[SQ]_p3548_core _54	AGAGTGGTAAGGAAGCTGTACTGCCAATGACC
[SQ]_p3548_core 55	TGATGCACTATCCGAAAAAAGATGCAGCCC
[SQ]_p3548_core _56	AGTGAGGGAGACCGTCAGAATTCCGGGAGAAG
[SQ]_p3548_core _57	GAACAGTGTTAATTGCGCGCTTGGCGCTCACA
[SQ]_p3548_core _58	GGGGGATGAGCTCCAGCTTTTGAGCATAAA
[SQ]_p3548_core _59	CCGCTTTCCAACATACGAGCCGGATTCCCTTT
[SQ]_p3548_core _60	GTGTAAAATTAATTGCGTTGCGAGGCGGTT
[SQ]_p3548_core 61	GCCAACGCGCGGGGGGGGGCTCACTGC
[SQ]_p3548_core _62	TGCGTATCGCTGCGCTCGGTCGAATACGGT
[SQ]_p3548_core _63	TATCCACGAGCAAAAGGCCAGCAAA
[SQ]_p3548_core 64	GGGCTTACCATCTGGCCCCACCGGCTCCAGATTAAGTGGT C
[SQ]_p3548_core 65	CTGCAACGCCGGGAAGCTAGAGCGTTTGGT
[SQ]_p3548_core 66	CAAAAAGGTGGTGTCACGCTCGTTAAGTAGT
[SQ]_p3548_core _67	CAGGCATCCGGTTAGCTCCTTCGGACTCATGG
[SQ]_p3548_core _68	ATGGCTTGTTACATGATCCCCCTTACTGTC
[SQ]_p3548_core _69	GTGTATGCGCACTGCATAATTCTCATGTTGTG
[SQ]_p3548_core 70	TTATGGCAGGCGACCGAGTTGCTCAACTTTAA
[SQ]_p3548_core _71	ATGCCATTCAACCAAGTCATTCCTTCGGGG
[SQ]_p3548_core _72	CAACTGATATCATTGGAAAACGTTTGAGAATA
[SQ]_p3548_core 73	CGAAAACTCGATGTAACCCACTAATGCCGC
[SQ]_p3548_core _74	AAAAACAGGAAGGCAACGTGCACC
------------------------	-------------------------------
[SQ]_p3548_core _75	AAAAAGCATACTCTTCCTTTTAGCGGATA
[SQ]_p3548_core _76	CATATTTTCCGCGCACATTTCCCCG

Table S2.44. Edge staples of p3548 square DNA origami tile.

Name	Sequence
[SQ]_p3548_edge_1	GGAAATGTTGAATACTGGAATAAGGGCGACACCC
[SQ]_p3548_edge_2	GCTGTTGAGATCCAGTTCTCAAGGATCTTACCTG
[SQ]_p3548_edge_3	CCAACGATCAAGGCGACATTCAGCTCCGGTTCGA
[SQ]_p3548_edge_4	CAGTCTATTAATTGTTTTTATCCGCCTCCATCTC
[SQ]_p3548_edge_5	AACCAGGATAGGAACGAAACGCAGTCCGCT
[SQ]_p3548_edge_6	TATCAAGATACCTTCATCGAACGACCCATG
[SQ]_p3548_edge_7	GTGAGCTAACTCACGCCTGGGGTGCCTAAT
[SQ]_p3548_edge_8	CTCGCTCACTGACTTGGGCGCTCTTCCGCT
[SQ]_p3548_edge_9	GTTCCAGTTTGGAACAGATAGGGTTGAGTGTTTT
[SQ]_p3548_edge_10	TAAAGCACTAAATCGGTGGGGTCGAGGTGCCGGG
[SQ]_p3548_edge_11	GACGGCCAGTGAGCGCCACGACGTTGTAAAACCT
[SQ]_p3548_edge_12	AACCAGCTCAGAAAAAGTTCGTACCCACGTAGCC
[SQ]_p3548_edge_13	TTAAATCAATCTAATAAAATTAAAAATGAAG
[SQ]_p3548_edge_14	ATCTCAAGAAGATCTACGCGCAGAAAAAAA
[SQ] p3548_edge_15	GGGCTGTGTGCACGGGTCGTTCGCTCCAAG
[SQ]_p3548_edge_16	CTCGTGCGCTCTCCTTTCCCCCTGGAAGCT

Table S2.45. Core staples of p3548 regular hexagonal DNA origami tile.

Name	Sequence
[HE]_p3548_cor e_1	GTAAACTTGGTCCTATCTCAGCGATCAACTACGA
[HE]_p3548_cor e_2	GTGTAGATTGTCTATTTCTTTTTTTAAAAAGGATCGAAAA CTC
[HE]_p3548_cor e_3	TACGGGATACCGCGAGACCCACAATTGTTG
[HE]_p3548_cor e_4	TACAGGCACTCCATCCAGTCTATTGCTCACCGGCTCCAGA TCCCCGTC
[HE]_p3548_cor e_5	TTTGCAAGGGATTTTTTGCCTGACTTTATCAG
[HE]_p3548_cor	CAATAAACCTGCAACTTTATCCGCTCGTGGTGTCACGCTC
e_6	CAACGATC
[HE]_p3548_cor e 7	TGGTCCAGCCTTTTGGTGGGATCC

[HE]_p3548_cor e 8	CCGGGAATTGCGCAACGTTGTTGTTGTGCA
[HE]_p3548_cor e 9	GGCAAACAAACCATTTTTTTTTCCGAGCGCAGAAG
[HE]_p3548_cor e 10	TCACTCATTTACATGATCCCCCATGCCATTGC
[HE]_p3548_cor e 11	GGAAGTCACCTTTTGTTCCGTCGT
 [HE]_p3548_cor e 12	TTGGTATGGCTTCTTTTTTTTTTTGTGAGCAAAAACA
[HE]_p3548_cor e 13	AAAAAGCGAAGTAAGTTGGCCGTCATGCCATCCGTAAAA GTCATTCTG
[HE]_p3548_cor e 14	AAGGCGAGGGTTATGTTTGCTCATTCAGCATC
[HE]_p3548_cor e 15	AACGTTCTCGCCACATAGTTTTTTTTTTTTCTCTTACTGCAGTG TTA
[HE]_p3548_cor e_16	ATACCTGTCCGCATAGCTCACGCTGTGCACGAAC
[HE]_p3548_cor e 17	GGCTGTGTAGGTATCTCATTTTTTTAAGATACCAGCGCTC AAG
[HE]_p3548_cor e 18	CCCCCGTATCGTCTTGAGTCCATGGCCTAA
[HE]_p3548_cor e_19	TCGGAAAAAGAGTTCTTGAAGTGGACCCGGTAAGACACG ACCAAGCTG
[HE]_p3548_cor e 20	AGCAAAAGGGCGAAATTGTTCGCTCTTATCGC
[HE]_p3548_cor e_21	CACTGGCAATGTAGGCGGTGCTACAGAGTTGGTAGCTCTT TTTTTTG
[HE]_p3548_cor e_22	GAGGTGCAGCTTTTTGAGCAATCA
[HE]_p3548_cor e_23	CTACGGCCGCTCTGCTGAAGCCGAAAAAAA
[HE]_p3548_cor e_24	GGGGATAACGCAGTTTTTTTTTGGATTAGCAGAGC
[HE]_p3548_cor e 25	ACGTTAAGCAGCAGATTACGCGCAAGTTACCT
[HE]_p3548_cor e 26	GGATCTCGACGCTCAGTGGAACTTCACCTAGATCCTTAAG TATATATG
[HE]_p3548_cor e 27	ACTCCAACGTCCCCACTACGTGAACCATCGGAAC
[HE]_p3548_cor e_28	AGCACTAAATCACCCTAATTTTTTTAAGAATAGACCCAAT AGG
[HE]_p3548_cor e 29	CCTAAAGCCGGCGAACGTGGCGGCCGCTAC
[HE]_p3548_cor	GCCTCTTCCCGCCGCGCTTAATGCAGAAAGGAAGGAAG

e_30	ATGCCGTAA
[HE]_p3548_cor	
<u>e_31</u>	
[HE]_p3548_cor	GGAGCGGGCGCGTAACCACCACACGCTATTACGCCAGCT
<u>e_32</u>	GGGGTAACG
[HE]_p3548_cor e_33	CGCTGCGCTATTTTTTCCGATGTA
[HE] p3548 cor	
e_34	AGGGCGCGTTGGGAAGGGCGATTGTAAAAC
[HE]_p3548_cor e_35	TTTAGAAAAATAATTTTTTTTTTTAGTGTAGCGGTCA
[HE]_p3548_cor e 36	TCGAGGTCTTCCCAGTCACGACGTCGGTGCGG
[HE]_p3548_cor e_37	ATTCGAGCCATTTTAAGTTGCGAA
[HE]_p3548_cor e 38	AGGGGGATGTGCTTTTTTTTTTTCAGCGCAGCAATT
[HE]_p3548_cor e 39	GACGGCCCGAATTGGGTACCGGGCTCATCTGTCTGTAAAC AAGACTGG
[HE]_p3548_cor e 40	CCAGGGTTGACGGTATTGGCATCACCATCGGG
[HE]_p3548_cor e 41	CGGACAAACGTGACTCGCTTTTTTTGCAATGGTGAGCCC CCCC
[HE]_p3548_cor e_42	GAATAGTGTATTACGGGATAATACCGTCGGGGCG
[HE]_p3548_cor e 43	AAAACTCGATGTAACCCACTCGCACGGAAA
[HE]_p3548_cor e 44	TCTCATGAAAGGGAATAAGGGCGATGCACCCAACTGATCT CATTGGAA
[HE]_p3548_cor e 45	TTTTACTTGCAAAATGCCGCAAAAGCGGATACATATTTGA CGCACATT
[HE]_p3548_cor e_46	TGTTGAATGAAGCATTTATCAGGTAAGCGT
[HE]_p3548_cor e_47	CCGAAATCAAGTGCCACCTAAATTGGTTATTG
[HE]_p3548_cor e_48	TAATATTCAGCTCATTTTTTAACGAGATAGGGTTGAGTAAA GAACGTG
[HE]_p3548_cor e_49	CCTTTAGTGAGTAGCTGTTTCCTGTGCATAAAGT
[HE]_p3548_cor e_50_	GCCGGAAGTGAAATTGTTTTTTTTTTTTTTTCCTGCAGCCGAC GTGT
[HE]_p3548_cor e_51	GTAAAGCTAATTGCGTTGCGCTGCTTCCTC
[HE]_p3548_cor e_52	AGGCGGTATATTGGGCGCTCTTCCCACTGCCCGCTTTCCA ACATACGA

[HE]_p3548_cor e 53	ATACCTTCCCGAACATTCCACACAGTCGGGAA
[HE]_p3548_cor	ACCTGTCGGGAGAGGCGGTTTGCGATACGGTTATCCACAG
<u>e_54</u>	AAAAGGCC
[HE]_p3548_cor e_55	CGCGGTGCCATTTTCATGTCCTTG
[HE]_p3548_cor e 56	GCTCACTGCGAGCGGTATCAGCAGGCCGCG
[HE]_p3548_cor e 57	AAGTCTGATGCACTTTTTTTTGAATCGGCCAACG
[HE]_p3548_cor e_58	TCAGAGGTGCCAGGAACCGTAAAATCACTCAA
[HE]_p3548_cor e 59	TTGCTGGCATCACAAAAATCGAGCGTTTCCCCCTGGAGCC GCTTACCG
[HE]_p3548_cor e_60	GGCGTGAAAATAGATCCCTGGCTTAAATCAACGA
[HE]_p3548_cor e_61	CAAATCTATCGGGTGGATAGTTATAGGAAA
[HE]_p3548_cor e_62	GAAGAGTGGTCCGCTCCAACCAGGGGAAAAAAGAAGTT ATGCGGACTA
[IIE] #2549 asr	
e_63	AGTATCAAG
[HE]_p3548_cor e_64	AAAGCAAGGAAAAAAGCGTGCGGAGAAGGC
[HE]_p3548_cor e_65	CACAATGATATCCGAAAAAAGAGGTGTAGTCG
[HE]_p3548_cor e 66	CCGTAAAAGTGGCAGGACTTCTCCGGGGGGATCCACTACA GCTTTTGTT

Table S2.46. Edge staples of p3548 regular hexagonal DNA origami tile.

Name	Sequence
[HE]_p3548_edge_1	AAGCGTGGCGCTTTCTCCTTTCTCCCTTCGGGGA
[HE]_p3548_edge_2	GCCTTATCCGGTAACTTCAGCCCGACCGCTGCAC
[HE]_p3548_edge_3	CTTTTCTACGGGGTCTAAGAAGATCCTTTGATAG
[HE]_p3548_edge_4	GTTTTAAATCAATCTATTAAAATTAAAAATGAATC
[HE]_p3548_edge_5	ACCAGCTCAGAAAACGTTCGTACCCACGTA
[HE]_p3548_edge_6	GACTCACTATAGGGAGTGAGCGCGCGTAAT
[HE]_p3548_edge_7	CTTGACGGGGAAAGGGAGCCCCCGATTTAG
[HE]_p3548_edge_8	TATCAGGGCGATGGAAAGGGCGAAAAACCG
[HE]_p3548_edge_9	CTTAATCAGTGAGGCACTGACAGTTACCAATGCA
[HE]_p3548_edge_10	CCCAGTGCTGCAATGAGGGCTTACCATCTGGCGA
[HE]_p3548_edge_11	CCTCCGATCGTTGTCAGGTTAGCTCCTTCGGTAC
[HE] p3548 edge 12	TGGTGAGTACTCAACCGATGCTTTTCTGTGACAA

[HE]_p3548_edge_13	CCGCGGTGGAGCTCGTTCTAGAGCGGCCGC
[HE]_p3548_edge_14	AAAAACTCTCGTACAGGAAGCTGTACTGCG
[HE]_p3548_edge_15	GCAGAGAGCTCAAAGCCAGGGAAAAAAGAT
[HE]_p3548_edge_16	AAAGTCACCAATCGTGAGCGATTGACAGGA
[HE]_p3548_edge_17	GGCGTAATCATGGTCAGGTTAATTGCGCGCTTAA
[HE]_p3548_edge_18	GTGAGCTAACTCACATCTGGGGTGCCTAATGATA
[HE]_p3548_edge_19	CCGCCCCCTGACGAGCGTTTTTCCATAGGCTTG
[HE]_p3548_edge_20	CTCCTGTTCCGACCCTAGCTCCCTCGTGCGCTTC
[HE]_p3548_edge_21	CAAGAGTCCACTATTGTTGTTCCAGTTTGG
[HE]_p3548_edge_22	AATTTTTGTTAAATTTGTTAAAATTCGCGT
[HE]_p3548_edge_23	TTGAGATCCAGTTCTCAAGGATCTTACCGC
[HE]_p3548_edge_24	TTGCCCGGCGTCAAGCGGCGACCGAGTTGC

Name	Sequence
[TR]_M13_cor	GGGCGATGGCCCACTACGTGAAGAGGTGCCGTAAAGCGAG
e_1	CTTGA
[TR]_M13_cor e 2	GATTTAACTAAATCGGAATTTTTGAGTGTTGTTCCAAAAGA
[TR]_M13_cor e_3	CGGGGAAAAGCGAAAGGAGCGGCCGCGCT
[TR]_M13_cor e_4	ATAGCCCGAGTTTTTTGGGAGCCCCC
[TR]_M13_cor e_5	TCGTTAGACGTAACCACCACACCCGGCGCTA
[TR]_M13_cor e_6	GGGCGCTGGCAAGTTTTTTTCAAGCGGTCCACGCTGGTTTG TTGCCCTT
[TR]_M13_cor e_7	TAATGCGCGAGCACGTATAACGCGCCAGAA
[TR]_M13_cor e 8	CGGCCGGCCCTGAGTTTTTTCACGCTGCGATCAG
[TR]_M13_cor e 9	ATTAACCGTTAGACAGGAACGGTATGCTTTCC
[TR]_M13_cor e 10	AGCGGGAGCTTTTTTTTAATGAAT
[TR]_M13_cor e 11	TCCTGAGAAAAGAGTCTGTCCAGGTAATAT
[TR]_M13_cor e_12	AAGGGATTTTGTAGCAATACTTCTTGAGTAGA
[TR]_M13_cor e_13	TTCCACACAGTCGGGAAACCTGTCGTTTTTAGGCCGATTA
[TR]_M13_cor e_14	TGACGCTCAACTATCGGCCTTGCTTCACGCAA
[TR]_M13_cor e_15	TTTCCTGTCATCACTTGCCTTGATTATTTGTTATCCGCTG
[TR]_M13_cor e_16	CCAGAACCGCTCATGGAAATACTTCTGACC
[TR]_M13_cor e_17	AGAACTCAAATCGTCTGAAATGGAAAGGGACA
[TR]_M13_cor e 18	GAACTGATAACAGAGATAGAACCCCTACATTT
[TR]_M13_cor e 19	AGTAATAATTATTTACATTGGCAGTTGCAAGGCGATTAAGTC GCCAGCT
[TR]_M13_cor e 20	TGAAAGCATGGCTATTAGTCTTCAGCAGCA
[TR]_M13_cor e 21	TTCTGGCCAGCCCTAAAACATCGCAACACCGC
[TR]_M13_cor	GGCGAAAGGGGGTTTTTAGTCACACGACC

Table S2.47. Core staples of M13mp18 equilateral triangular DNA origami tile.

e_22	
[TR]_M13_cor e_23	GTCAGTTGGTGCCACGCTGAGAGCTAATGCGC
[TR]_M13_cor e 24	GAGGAAGGAGGCGGTCAGTATTCATTAAAA
[TR]_M13_cor e_25	ATACCGAACGAACCACCTTTTTGGGGGACGACGACAGTATCG GCCTCATGGGCGCA
[TR]_M13_cor e_26	AATGAAAATCAAACCCTCAATCCAATTCGA
[TR]_M13_cor e_27	CTGCAACAGCAAATCAACAGTTGATTTGAGGA
[TR]_M13_cor e 28	AATAGGAACGTGCATCTGCCAGTTTTTTGATAAAACAGAG GTGTTATCTA
[TR]_M13_cor e 29	TTTTGCGGTATTAGACTTTACAAAAATATCTG
[TR]_M13_cor e 30	GGAATTATCAATAGATAATACAAAGGAATT
[TR]_M13_cor e 31	AAATATCTTTATTTTTATTTTTTTTTTTTTTTTTTTTTT
[TR]_M13_cor e 32	CAACTCGTAAAAGTTTGAGTAACGTAAAAC
[TR]_M13_cor e 33	TTTAGAAGAACAAAGAAACCACCAGGTTAGAA
[TR]_M13_cor e 34	TAGAGCCGTCATCATATTCCTGATTTGTTTGGATTATACTGCT TTGAA
[TR]_M13_cor e 35	AAATTTTTGTTAAATTTTTTTTTAACAACTAATAGAT
[TR]_M13_cor e 36	CTTTTACAATCAAAATTATTTGCACATTATCA
[TR]_M13_cor e 37	CCTGATTTCTGAATAATGGAAGGAAGGAGC
[TR]_M13_cor e 38	CCTGATATCAGATGATGTTTTTTGAGATCT
[TR]_M13_cor e 39	AGAAATAAGATGAATATACAGTAAATTAAT
[TR]_M13_cor e 40	CCTACCATTCGGGAGAAACAATAAAAGAAGAT
[TR]_M13_cor e 41	GAGTAGGTAATAAGTTTTTTTTTTATATAAT
[TR]_M13_cor e_42	GTGAGTGAAAACATCAAGAAAACAAACAGTAC
[TR]_M13_cor e 43	GCTATTACAATTACCTGAGCAACGGATTCG
[TR]_M13_cor e 44	TACCAAGTTACAAAATTTTTTTCACCCTCAGAGCCGC

[TR]_M13_cor e_45	TACATTTAAACAGTACATAAATTATCAAAA
[TR]_M13_cor e 46	GATGAAACATAACCTTGCTTCTGTATTAAGAC
[TR]_M13_cor e_47	ATTCATTTATTAATTTTCCCTTTTTTTTGCACCGTAATCAGT CTCAGAAC
[TR]_M13_cor e_48	CGCCACCCTCATTTTTAGAGGCGAATT
[TR]_M13_cor e_49	AAATGCTGGAGTCAATAGTGAATTCAATATAT
[TR]_M13_cor e 50	TCACCAATGAAACCATCTTTTTCCTTGAAAAACATAGCGATA GCTTAGAAATCGTC
[TR]_M13_cor e 51	TCATAGGGGTTGGGTTATATAATGAAATAC
[TR]_M13_cor e_52	GCTGAGAAATGCAAATCCAATCGCTAATTTCA
[TR]_M13_cor e_53	AGCCTGTTCCTAAATTTAATGGTTCTATATGT
[TR]_M13_cor e 54	AACCGATTGGTTTACCAGCGCCAATTCAAATATATTTTAGTA AGACAAA
[TR]_M13_cor e 55	GAACGCGAGAAATTTTTAGGGCGACATTC
[TR]_M13_cor e 56	CGACCGTCCGGAATCATAATTACATATTA
[TR]_M13_cor e 57	TCTTCTGATAGTATCATATGCGTTACGCTCAA
[TR]_M13_cor e 58	ACCGACAACTTAATTGAGAATCGCCTAGAAAA
[TR]_M13_cor e_59	AAATTCTTGGCATGATTAATACCCAATTTAAAGCCAATAC
[TR]_M13_cor e_60	ACAACGCCCAGTAATAAGAGAAACGCGCCT
[TR]_M13_cor e_61	CAGTAGGGAAGGTAAAGTAATTCTGTTTTTCCCAATAATA
[TR]_M13_cor e_62	TGTAGAAAGTTCAGCTAATGCAGATATAAAGT
[TR]_M13_cor e_63	GTTTATCTATCCCATCCTAATTCGGGTATT
[TR]_M13_cor e_64	AACATCCAATCAATTTTTTTACAGAGAGAAACCC
[TR]_M13_cor e 65	ACAAGAATTTTTTTACAATAAAC
[TR]_M13_cor e 66	AAAAATGAAAATAGTTTTTTTTTTTCTTTCCTTATCATTCCAAGAAT ACGAGCA
[TR]_M13_cor	AAACCAATTTATTTCATCGTATATAGAAG

e_67	
[TR]_M13_cor e 68	AATTTGCAACGCTAACGATTTTTAAGCAAATCAGAGGAATC
[TR]_M13_cor e 69	ATTACCGCGCTTTTTTTCCAGAGCCT
[TR]_M13_cor e 70	GCTTATCCGAACCTCCCGACTTGCGGGAG
[TR]_M13_cor e 71	TTTGAAGCCTTAAATCAAGATTTATCCTGAATCTTACCCAGT TAC
[TR]_M13_cor e 72	AAAATAAAAACGATTTTTTGTTGAAGCGCA
[TR]_M13_cor e 73	AGAGAGATATAACATAAAAACAGGTAACGTC
[TR]_M13_cor e 74	TTAGACGGAGGGTAATTGAGCGATAGCTAT
[TR]_M13_cor e 75	CGAGGAAAAAACAATGAAATAGCACTAATATC
[TR]_M13_cor e 76	CTTACCGGAACAAAGTTACCAGAGAAAATA
[TR]_M13_cor e 77	AGAGCAAGCGCAATAATAACGGAAGACTCCTT
[TR]_M13_cor e 78	TCACAATCGTATGTTAGCAAACGTAAGGAAAC
[TR]_M13_cor e 79	CATACATCACCACGGAATAAGTTTCATTAA
[TR]_M13_cor e 80	ATTACGCAAATAGAAAATTCATATGAGGGAGG
[TR]_M13_cor e 81	TAGCACCAATATTGACGGAAATTATTATTTTG
[TR]_M13_cor e 82	AGGTGAAATTAGAGCCAGCAAACATCGGCA
[TR]_M13_cor e 83	GAAGGTAATTACCATTAGCAAGGCTTTGCCTT
[TR]_M13_cor e 84	AGAGCCACGACTGTAGCGCGTTTTATCACCAG
[TR]_M13_cor e 85	CGCCACCAGCGACAGAATCAAGCGGAAACG
[TR]_M13_cor e 86	TTTTCGGTCATAATCAAAATCAAGACGATT
[TR]_M13_cor e_87	TAGCGTCACACCGGAACCGCCTCCCCGCCAGC
[TR]_M13_cor e_88	AATTTACCGAGGTTGAGGCAGGTCCCGGAACC
[TR]_M13_cor e 89	TTTTGATCCACCAGAGCCGCTCAGAGC

[TR]_M13_cor e_90	GGCCTTGCAGAATGGAAAGCGCAAAGTATT
[TR]_M13_cor e 91	ATTGACAGGTTCCAGTAAGCGTCAGCCTATTT
[TR]_M13_cor e 92	CACCAGAAGATACAGGAGTGTACTACAGTGCCCGTATAAAG AATAGGT
[TR]_M13_cor e_93	GATAAGTGATTATTCTGAAACATGAGTCTCTG
[TR]_M13_cor e_94	TAGCCCGCAGTTAATGCCCCCTTACATGGC
[TR]_M13_cor e_95	AAGAGGCGGGGTTTTGCTCAGTTCAGGGAT
[TR]_M13_cor e 96	CGGAACCTCCGTCGAGAGGGTTGAAACCGCCA
[TR]_M13_cor e_97	ACAAACCGGAGAGGGTATTTTTTGTGCCTT
[TR]_M13_cor e_98	CGCCTGTAGCCACCACCCTCATTTACCAGGCG
[TR]_M13_cor e_99	TTAGCGTAACCGCCACCCTCAGTATAAGTA
[TR]_M13_cor e_100	GTATCACCGTACTCATTTTTTACATTATGACCCTGT
[TR]_M13_cor e 101	AGCAAGCTTCGTCACCAGTACAAACAGTTT
[TR]_M13_cor e 102	CCCTCAGAGCATTCCACAGACAGCTTTTCTGT
[TR]_M13_cor e 103	ACCCTCAGAACGATCTAAAGTTTTTTTTTTACCATTAGATACA TATAAAGCT
[TR]_M13_cor e 104	AAATCGGTTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
[TR]_M13_cor e 105	AAAATCTCTTGCTAAACAACTTTCAACTACAA
[TR]_M13_cor e 106	CTGCGAACGAGTAGATTTTTTTGTCTTTCCAGACGTTAGTA AATGAACCTCATAG
[TR]_M13_cor e 107	CAGCGGACGAATAATAATTTTTTTTGCGCCG
[TR]_M13_cor e 108	ATGGGATTCAAAAAAAGGCTCCAGGTGAATT
[TR]_M13_cor e 109	GTTAAAGGAGCTTGATACCGATAGTCACGTTG
[TR]_M13_cor e 110	GCTCCTTTCTCCAACAGGTCAGGATATCAGCTTGCTTTCGA AAAGGAGC
[TR]_M13_cor e_111	CTTTAATTGTATTTTTTGTACCTTTAATT
[TR]_M13_cor	ACAATGATCGGTCGCTGAGGCTTGAGGACT

e_112	
[TR]_M13_cor e_113	TCTTAAACCCGCTTTTGCGGGATCCGGAACGA
[TR]_M13_cor e_114	CACCAACCACGGCTACAGAGGCTTTGCAGGGA
[TR]_M13_cor e_115	CCCTCAGTTCAAAAATCAGAGAATGATTTACAGCATGTCA
[TR]_M13_cor e_116	AAAGACTAATACGTAATGCCACTACCAAGC
[TR]_M13_cor e_117	GGGTAGCATAAAACGAAAGAGGCAAATTTTTTTGCAAAA
[TR]_M13_cor e_118	CTGCTCCATGACCCCCAGCGATTATACGAAGG
[TR]_M13_cor e_119	GCGAAACTAAATTGTGTCGAAAGGGAACCG
[TR]_M13_cor e_120	ATCTTTGTTACTTATTTTTTTAGGAATAAAAAA
[TR]_M13_cor e_121	CCAAAATAGTTTTTTAAAACACTC
[TR]_M13_cor e 122	AGAAAGATTCATCATTTTTTGGCGCAGACGGTCAATCATAAT CCGCGAC
[TR]_M13_cor e_123	AACTGACAGACCAGGCGCATAGACCGGATA
[TR]_M13_cor e_124	ATTATATTACCTTATGCGTTTTTATCTTGACAAGAGCTGGC
[TR]_M13_cor e_125	TGACCTTCATTTTTTGAACTGGCTC
[TR]_M13_cor e_126	TTCATTACAGTGAATAAGGCTTGCCCTGA
[TR]_M13_cor e_127	AGAAACACCAGAACGAGTAGTATTTAATCATTGTGAACCAG TCAG
[TR]_M13_cor e_128	GACGTTGACGGAACAACATTATCAGATACA
[TR]_M13_cor e_129	ACGACGATCCACATTCAACTAATGTACAGGT
[TR]_M13_cor e_130	TAACGCCCTATCATAACCCTCGGTAAAATG
[TR]_M13_cor e_131	ATGCTTTAGCCAGAGGGGGGTAATATTTACCAG
[TR]_M13_cor e_132	TTTAGACAATATTCATTGAATCAGCGGATT
[TR]_M13_cor e_133	GAAGTTTTAACAGTTCAGAAAACGGTCTTTAC
[TR]_M13_cor e 134	AAAGCGAATTATAGTCAGAAGCAACCCCTCAA

[TR]_M13_cor e 135	GCATCAATATCGCGTTTTAATTGCTTAATT
[TR]_M13_cor e 136	CCTGACTACCAGACCGGAAGCAAATGATAAGA
[TR]_M13_cor e 137	GTTTCATTTTGCGGATGGCTTAGACGAGCTTC
[TR]_M13_cor e 138	GCTGAATCAACTAAAGTACGGTCGAGCTGA
[TR]_M13_cor e 139	GGTCATTTCCATATAACAGTTGATTAACCTGT
[TR]_M13_cor e 140	GCAAAGAAATTTTCATTTGGGGGCGGTCTGGAA
[TR]_M13_cor e 141	TCAGAGCTTCGCAAATGGTCAATCCCAATT
[TR]_M13_cor e 142	AAAGGTGATCCAATAAATCATACCTCATAT
[TR]_M13_cor e 143	TTAGCTATTTAGCAAAATTAAGCATATTTCAA
[TR]_M13_cor e 144	GACAGTCATAAAAATTTTTAGAACCAGGCAAG
[TR]_M13_cor e 145	CCGTTCTTGCGGGAGAAGCCTTATAAAGCC
[TR]_M13_cor e 146	ATTTTAATCAAAAGGGTGAGAAAACTAGCA
[TR]_M13_cor e 147	CGCAAGGAAATCACCATCAATATGCAAACAAG
[TR]_M13_cor e 148	AATACTTTAGCTGATAAATTAATGGGCTATCAGGTCATTGTT CGCATT
[TR]_M13_cor e 149	GCAAATATTGAACGGTAATCGTAAAGGCCGGA
[TR]_M13_cor e 150	GTTAAAACCTGAGAGTCTGGAGATATTCAA
[TR]_M13_cor e 151	TGTCAATCCAAAAACAGGAAGATCAACATT
[TR]_M13_cor e 152	AGAATCGATTAAATTGTAAACGTTTTCGCGTC
[TR]_M13_cor e 153	TGGGATAGCTGTAGCCAGCTTTCATTGTATAA
[TR]_M13_cor e 154	TCGTAACCGCCATCAAAAATAAAATATATTTT
[TR]_M13_cor e 155	AAATGTGAACAAACGGCGGATTCGCTTCTG
[TR]_M13_cor e 156	TGGCCTTCGTCACGTTGGTGTAGAGGAAGATC
[TR]_M13_cor	TCGGTGCGGCCAGCTTTCCGGCACGACCGTAA

e_157	
[TR]_M13_cor e_158	GTGCCGGTGCGCAACTGTTGGGTTGTAAAA
[TR]_M13_cor e_159	GCACTCCAGGCCTCTTCGCTATTATGGGTAAC
[TR]_M13_cor e_160	CTCGAATTTTTCCCAGTCACGACGAAGGGCGA
[TR]_M13_cor e_161	CGACGGCCTAGAGGATCCCCGGGCATAAAG
[TR]_M13_cor e_162	GCCAGGGTCGTAATCATGGTCATAGCTCACAA
[TR]_M13_cor e_163	CGCTTTCCAACATACGAGCCGGAAGTACCGAG
[TR]_M13_cor e_164	TGTAAAGTTAATTGCGTTGCGCCGGTTTGC
[TR]_M13_cor e_165	CACCGCCTAACGCGCGGGGGGGGGGGGGGGGGGGGGGGG
[TR]_M13_cor e_166	GTATTGGACGGGCAACAGCTGACCCCAGCA
[TR]_M13_cor e_167	GGCGAAAAATCCCTTATAAATCAGTTTGGA
[TR]_M13_cor e_168	ACAAGAGCAAAGGGCGAAAAACCGTCTAT

Table S2.48. Edge staples of M13mp18 equilateral triangular DNA origami tile.

Name	Sequence
[TR]_M13_edge_1	ACTATGGTTGCTTTGACCGCTACAGGGCGCGTTG
[TR]_M13_edge_2	AGTGAGGCCACCGAGTAAGTGTTTTTATAATCCA
[TR]_M13_edge_3	CAGACAATATTTTTGAGTAAGAATACGTGGCATT
[TR]_M13_edge_4	TTGCTGAACCTCAAATAATCTAAAGCATCACCTT
[TR]_M13_edge_5	ACCTTTTTTAATGGAACAATTTCATTTGAA
[TR]_M13_edge_6	TAACCTCCGGCTTATCTGAGAGACTACCTT
[TR]_M13_edge_7	GAGGCATTTTCGAGCAACATGTAATTTAGG
[TR]_M13_edge_8	AACAAGAAAAATAAAACAATAGATAAGTCC
[TR]_M13_edge_9	GTTCCGAAATCGGCAAATCCTGTTTGATGGTGTC
[TR]_M13_edge_10	CCTGAACAAAGTCAGGAGAATTAACTGAAC
[TR]_M13_edge_11	GTAAGCAGATAGCCAAGCCCTTTTTAAGAA
[TR]_M13_edge_12	AGTGAGCTAACTCACACCTGGGGTGCCTAATGAA
[TR]_M13_edge_13	TGAGCCATTTGGGATTATCACCGTCACCGA
[TR]_M13_edge_14	CATTCGCCATTCAGGCAAACCAGGCAAAGCGCCT
[TR]_M13_edge_15	TCGGATTCTCCGTGGGAGCGAGTAACAACCCGAG
[TR]_M13_edge_16	ATCCTCATTAAAGCATATTCACAAACAAAT
[TR]_M13_edge_17	ATGTGTAGGTAAAGATATGCAATGCCTGAGTAAA

[TR]_M13_edge_18	CCGTAACACTGAGTCCAATAGGAACCCATG
[TR]_M13_edge_19	AACTAAAGGAATTGGTGAGAATAGAAAGGA
[TR]_M13_edge_20	ACATGTTTTAAATATGATAATGCTGTAGCTCAAC
[TR]_M13_edge_21	CATTAAACGGGTAATTTTCATGAGGAAGTT
[TR]_M13_edge_22	CTGCGGAATCGTCATATGGATAGCGTCCAATATC
[TR]_M13_edge_23	CATAGTAAGAGCAACAAAAAGGAATTACGAGGTT
[TR]_M13_edge_24	GATGAACGGTGTACCAACTTTGAAAGAGGA

Table S2.49. Core staples of M13mp18 square DNA origami tile.

Name	Sequence
[SQ]_M13_core _1	GCTGAGGCTTGCAGGGAGTTAAACGAAAGACAGCATCGC ATGAGGA
[SQ]_M13_core _2	AGGCAAAAGGACTAAAGACTTTTTGAACGA
[SQ]_M13_core _3	GGGTAGCAACTTTCGAGGTGAA
[SQ]_M13_core _4	AGTTTCCAAGGCACCAACCTAAGATTTGTA
[SQ]_M13_core _5	TGAGAAGTTTATCATTTTGGCTTTGAGAATAC
[SQ]_M13_core _6	GCGCAGACAACAAAGTACAACGGAAACGAAAG
[SQ]_M13_core 7	ACTAAAACACTTTTTTTTCAGCGGAG
[SQ]_M13_core 8	TCATCGCCCATGTTACTTAGCCGTAATCTT
[SQ]_M13_core _9	AAGCGCGAGGTCAATCATAAGGGACAGGCGCA
[SQ]_M13_core _10	GATTTTGCTAAACAACTTTTTTCCCCAGCGATTATACC
[SQ]_M13_core _11	GCTTGCCCCTGACCTTCATCAAGAGGAACGAG
[SQ]_M13_core _12	GTAAATTGAACGGTGTACAGACACCGAA
[SQ]_M13_core _13	CTGACCAACTTACCGTAACA
[SQ]_M13_core _14	GACAAGAAAGCTGCTCATTCAGAAATCTAC
[SQ]_M13_core _15	TAGGCTGGTGACGAGAAACACCAGGCTCATTA
[SQ]_M13_core _16	TCAGTACCAATAGGTTTTGGACAGATGGGCTT
[SO] M13 core	TAGGAATAAGGACGTTGGGAAGAATGAATAAG

_17	
[SQ]_M13_core 18	TAACGCCCGATTTTAAGAACTGAACGAGTA
[SQ]_M13_core _19	GAGATGGTTTTTTTTTGGGGGTTTTGC
[SQ]_M13_core 20	GTTAATAAGAAAGATTCATCAGTTTAGACT
[SQ]_M13_core _21	TACCAGTCCCACATTCAACTAATGGAAGTTTT
[SQ]_M13_core 22	ACCTTATGAAAAGGAATTACGAGGAAAACCAA
[SQ]_M13_core 23	CCTCAAGAGAAGGATTTTTTTTTTTTTAATCATTGTGAATT
[SQ]_M13_core 24	TGCTTTAAGGGTAATAGTAAAATGTTGAGATT
[SQ]_M13_core 25	ATAAATCGAGGCTTTTGCAAAACAGATACA
[SQ]_M13_core 26	AGATTACCCTGACTATTATAGTTTACCAGACGACGATACAT AGT
[SQ]_M13_core 27	AAGAGCAACATGAATGGAAAG
[SQ]_M13_core _28	GGATAGCATATTCATTGAATCCGAAGCAAA
[SQ]_M13_core 29	GCCAGAGGACAGTTCAGAAAACGATTTTAATT
[SQ]_M13_core 30	AATAGCGAAAAAATCAGGTCTTTAAGAGGAAGCCCGAAA GGCTCAACA
[SQ]_M13_core 31	ACCTTTTTTTTTAGCCCCCTATCCTCATTTTTTACCCTCGT
[SQ]_M13_core _32	CGGATGGCAAAGCGAACCAGACCGCCCTCAAA
[SQ]_M13_core _33	TGCTGTAACTTCAAATATCGCGGAATGACC
[SQ]_M13_core _34	CAGAAGCATTTTTCTGTCGTGATAAATCATTTTTCAAGAAA A
[SQ]_M13_core _35	CTCCAACCTTTTGATAAGAGGTTTTGACCA
[SQ]_M13_core _36	CGAGCTTCTTAGAGCTTAATTGCTTGATTCCC
[SQ]_M13_core _37	GCTTTCCAGTTTGCATCAAAA
[SQ]_M13_core _38	TGAAAAGGGAACGAGTAGATTTAGCATTTTTG
[SQ]_M13_core 39	GCAAAGAATAGTAGTAGCATTATTCCATATAACAGTGAATA TAA

[SQ]_M13_core 40	TGTTTTAAATATGCAATTTTTTTAAGCTTGCATGCCTGC
[SQ]_M13_core 41	TTAGATAATATTTTCATTTGGGCATAAAGC
[SQ]_M13_core 42	AATTCTGCTGGCATCAATTCTACTAATTAGCAAAATTAAGG GATAAAA
[SQ]_M13_core 43	AGTTTCAACATCCATTTTCGCTTCTGGACGTT
[SQ]_M13_core 44	GTAAAACGACTTTTTTTGGTGTCTGGA
[SQ]_M13_core 45	CAACGCAACAATAAAGCCTCAGAGGCGCGAGC
[SQ]_M13_core 46	TAAATCGTTTTGCGGGAGAAGCTCAAAAGG
[SQ]_M13_core 47	CAGCCAGCTTTACAGGCAAG
[SQ]_M13_core 48	ATCTACAGCTGATAAATTAATGATGTGTAGGTAAAGATCTT TATTT
[SQ]_M13_core 49	ATTTTTAGAACCCTCATTTTTTCCCGTCGGATTCTCCG
[SQ]_M13_core 50	GTGAGAAATATTCAACCGTTCTAAAGGCTA
[SQ]_M13_core 51	TGAGTACCGGAGAGTTTTGTTAAAATTCAACA
[SQ]_M13_core 52	TTAAATGTGATTTTTTTATGCAATGCC
[SQ]_M13_core 53	TCAGGTCCGATGAACGGTAATCGTAAAACT
[SQ]_M13_core 54	TTGTAAACGTTTTTTTGAGAG
[SQ]_M13_core 55	TCCAGAGCCTAATTTGCCAGTTACAAATAAGAAACGATAC ATAAAA
[SQ]_M13_core 56	GAGCGCTACTTTACAGAGAGAATATTTTTG
[SQ]_M13_core 57	TTTAACGTCATTAGGTTTTGAA
[SQ]_M13_core 58	ACAGGGACTGAACAAAGTCAGACAATAGCT
[SQ]_M13_core 59	TTTTATCCTCCCGATTTTATAGCAGCATATCA
[SQ]_M13_core 60	ACCGAGGAAGAAACAATGAAATAGGGGTAATT
[SQ]_M13_core 61	GAGAGATAACTTTTTTAGCAAGCCGT
[SQ]_M13_core	ATCTTACCCGAACAAAGTTACCTGGCAACA

_62	
[SQ]_M13_core 63	TAAGAGCAAACGCAATAATAACGGGTTAGCAA
[SQ]_M13_core 64	ACCAAGTACCGCACTCTTTTTTGAGTTAAGCCCAATAA
[SQ]_M13_core 65	ATATGGTTAATACATACATAAAGGAGAAGGAA
[SQ]_M13_core 66	GACATTCCTTATTACGCAGTATAATACC
[SQ]_M13_core 67	CAAAAGAACTTGCAGAACGC
[SQ]_M13_core 68	TATAAAATTGTCACAATCAATAGCAAAATC
[SQ]_M13_core 69	ACGTAGAATACCAGCGCCAAAGACCACCGACT
[SQ]_M13_core 70	TACCAGCAACATGTTTTTTAAGACTCAACCGA
[SQ]_M13_core 71	CACCGTAATTGGGAATTAGAGCCAGAAAATTC
[SQ]_M13_core 72	CCTTTAGGTGAATTATCACCGTAAAAGGGC
[SQ]_M13_core 73	TTGAGGGAGGTTTTTTTACAAATTCT
[SQ]_M13_core 74	ACCAGTAACCAATGAAACCATCACCCTCAG
[SQ]_M13_core 75	TGAGCCATTCAGTAGCGACAGAATCCACCACC
[SQ]_M13_core 76	CATTAAAGCGTCAGACTGTAGCGCCTTTTCAT
[SQ]_M13_core 77	AGCCTGTTTAGTATCATTTTTTTTTTTTGACGGAAATTATT
[SQ]_M13_core _78	GAGCCGCCCTCCCTCAGAGCCGCCGATAGCAG
[SQ]_M13_core _79	CAGGTCATCACCGGAACCAGAGCAAGTTTG
[SQ]_M13_core 80	CGCAGTATTCACAAACAAATAATATTAGCGTTTGCCATGTT TTC
[SQ]_M13_core 81	ATCGGCATTTTGCTTAGGTTG
[SQ]_M13_core _82	AACCGCCAGCCGCCACCAGAACAATAAGTT
[SQ]_M13_core 83	GGAACCGCGCCAGCATTGACAGGACATGGCTT
[SQ]_M13_core 84	AATCAAAAGACGATTGGCCTTGATCTCTGAATTTACCGTTC TGAGACT

[SQ]_M13_core 85	TCGGAACCACAGGAGTGTACTGGTCACCACCA
[SQ]_M13_core 86	TAAGAGGCCAGTAAGCGTCATAGGTTGAGG
[SQ]_M13_core 87	TTAACGGACAGTTAATGCCCCCAATAGGTG
[SQ]_M13_core 88	TTGATGATTATTATTCTGAAACATCCGTCGAG
[SQ]_M13_core 89	CCCTCAGATATAAGTATAGCCCGGTGCCTATT
[SQ]_M13_core 90	CTGAGTTCAGGGATAGCAAGCCCAGGCGGATAAGTGGAA AGTAT
[SQ]_M13_core 91	TATCACCAACCGCCACCCTCAGCATTCCAC
[SQ]_M13_core 92	AGGGTTGAGCCACCACCTCATTTTTCGTCACCAGTACAA CTGTATGG
[SQ]_M13_core 93	TGAATTTTACTACAACGCCTGTAGAACCGCCA
[SQ]_M13_core 94	AGACAGCTCGTCTTTCCAGACGAAGGAATT
[SQ]_M13_core 95	TTTCTTGCCTTTAATTGTATCGTAGAAAGGAACAACTATTA GTAAA
[SQ]_M13_core 96	GCGAATAAAGGCTCCAAAAGGAAAACAGCT
[SQ]_M13_core 97	TGATACCCCCACGCATAACCGATATATTCG
[SQ]_M13_core 98	AAGAATACGTGGCACAGACAATAACTGATAGCCCTAAAAG GTGAGG
[SQ]_M13_core 99	TAAAGCATGCAGAAGATAAAACAGACATCG
[SQ]_M13_core 100	CCATTAAAAATTTTTACATTGG
[SQ]_M13_core 101	CGGTCAGGAGCCAGCAGCAAATAAGGAATT
[SQ]_M13_core 102	TCAAACCGTCTGAATTTTAACCACCACACCTT
[SQ]_M13_core 103	GATAATACGCAAATCAACAGTTGAGAAAAATC
[SQ]_M13_core 104	GCTGAACCTCTTTTTTGTAGAAGAAC
[SQ]_M13_core 105	GAGGAAGCTAATAGATTAGAGCCATTATCA
[SQ]_M13_core 106	GTCAGTTGATTTGAGGATTTAGAACCGAACGT
[SQ]_M13_core	GATTAGTAATAACATCTTTTTTCCTCAATCAATATCTG

_107	
[SQ]_M13_core _108	TGATGGCATTAAAAGTTTGAGTAACGTCAATA
[SQ]_M13_core 109	TTGGATTTATTAAATCCTTTGCGTATTA
[SQ]_M13_core _110	GACTTTACAACAGGAGGCCG
[SQ]_M13_core _111	TTTTGCGTCATCATATTCCTGATCAGATGA
[SQ]_M13_core 112	TATTAATTATTCATCAATATAATCTAAAGAAA
[SQ]_M13_core _113	AAAGGACAGAGCGGTTTTACAACTCGATACTT
[SQ]_M13_core 114	AATACCAAATTTTCAGGTTTAACGTTATCAGA
[SQ]_M13_core _115	TTATTCACACGTAAAACAGAAACTGATTGT
[SQ]_M13_core _116	CTGAATAATGTTTTTTACGTGGCGAG
[SQ]_M13_core 117	ATATACAAACGGATTCGCCTGAAATAACCT
[SQ]_M13_core _118	TTGCGTAGGTTACAAAATCGCGCAGGAAACAG
[SQ]_M13_core _119	ATTATTTGTTTCAATTACCTGAGCTAACAATT
[SQ]_M13_core _120	AGAGCTTGACGGGGAATTTTTTTAACCTACCATATCAAA
[SQ]_M13_core _121	AGCGATAGTCAATATATGTGAGTGTTGCTTTG
[SQ]_M13_core 122	TCAATAGATTACCTTTTTTAATGAGGCGAA
[SQ]_M13_core _123	GGTTATATAGGTCTGAGAGACTCAAAATTAATTACATTAAA AGA
[SQ]_M13_core 124	AGATGATGAATGCCCGAGATA
[SQ]_M13_core _125	TGCTTCTTCCCTTAGAATCCTTCAAATATA
[SQ]_M13_core _126	TACATAAACTTAGATTAAGACGCTATCGCAAG
[SQ]_M13_core 127	TCATTTGATGAATTTATCAAAATCATAACTATATGTAAATCT AGAAAA
[SQ]_M13_core _128	TAAGGCGTCGCGAGAAAACTTTTTGAAAACAT
[SQ]_M13_core 129	ATAATTAGCTGATGCAAAATCCAGAGAAGAG

[SQ]_M13_core 130	TTTTAGTTGAAATACCGACCGTTTAACAAC
[SQ]_M13_core _131	ACAAAGAATAAATAAGAATAAACACAACAGTA
[SQ]_M13_core 132	CAAAAGGTTTGAGAATCGCCATATGTGATAAA
[SQ]_M13_core _133	GCCTGTGACGACGACAATAAATATAAAGCCAACGCTCCGG AATC
[SQ]_M13_core 134	GCCAACAAATAAGAGAATATAAAAATAATAT
[SQ]_M13_core _135	GGGCTTAAAAAGTAATTCTGTCCATTATCAACAATAGATAG
[SQ]_M13_core _136	CAAGAACGAGTCCTGAACAAGAAAAGTACCGA
[SQ]_M13_core _137	CCCATCCTCGGCTGTCTTTCCTATTACCGC
[SQ]_M13_core 138	GCCTTAGAGGCGTTTTAGCGAATTTCATCGTAGGAATCTAT CATTC
[SQ]_M13_core 139	GCCCAATGTATTCTAAGAACGCAATCAAGA
[SQ]_M13_core 140	TTAGTTGATCTTACCAACGCTAACGAGCGT
[SQ]_M13_core _141	ATGTCAATCATATGTACCCCGGTTTGTATAAGCAAATATTAA ATCA
[SQ]_M13_core _142	AGCTTTCATCGCATTAAATTTTTGTTTAAA
[SQ]_M13_core _143	GCTCATTTCGCGTCTGGCCTTCTAATGGGA
[SQ]_M13_core _144	GACAGTATAACGGCGGATTGACCGCTGTAGCC
[SQ]_M13_core _145	TAGGTCAATCTGCCAGTTTGAGTGTTGGGA
[SQ]_M13_core 146	TGGGAACACGGCCTCAGGAAGATCCAAAGCGC
[SQ]_M13_core 147	GGCGATTAATTCAGGCTGCGCAACGGGACGAC
[SQ]_M13_core 148	CAGTCACGTGCCGGAAACCAGGGCACTC
[SQ]_M13_core 149	AGGGCGAGGCGAAAGGGGGGATGAGCTGTTT
[SQ]_M13_core 150	CATTCGCCAGTTGGGTAACGCCAGGGTACCGA
[SQ]_M13_core 151	TAAAGCCTTCGTAATCATGGTCATTGCTGCAA
[SQ]_M13_core	TCACATTTCTAGAGGATCCCCGGGTTTTTCC

_152	
[SQ]_M13_core 153	CCTGTGTATACGAGCCGGAAGCCAGTGAGA
[SQ]_M13_core _154	GCTCGAATGGGGTGCCTAATGAGTGTATTGGG
[SQ]_M13_core _155	AGGTCGACAATTGCGTTGCGCTCAATCGGCCA
[SQ]_M13_core _156	GGTCCACGTGGTTTTTTCTTTTCACATAAAGTG
[SQ]_M13_core 157	TCCTGTTGGAGAGGCGGTTTGCGAGCTAAC
[SQ]_M13_core 158	GGGTTGATCGGCAAAATCCCTTCCAGCTGCATTAATGACT GCCC
[SQ]_M13_core 159	CGGGCAAGCCCTGAGAGAGTTGCGAAAAAC
[SQ]_M13_core 160	CGCCAGGGCTGGTTTGCCCCAGCATATTAAAG
[SQ]_M13_core 161	ACGCGCGGTGATGGTGGTGGTTCCGAAAGTGTTGTTCCAGTTT CCCGATTT
[SQ]_M13_core 162	GGTGCCGTCTCCAACGTCAAAGGGCAGCAAGC
[SQ]_M13_core _163	GGGAGCCGGAACAAGAGTCCACGGCGAAAA
[SQ]_M13_core _164	CGTCTATCAAATCAAGTTTTTTCGGTCACG
[SQ]_M13_core _165	AACGTGGAAAAGCACTAAATCGGAAGGAGCGG
[SQ]_M13_core _166	CTTTGACGGCGCTGGCAAGTGTAGGGGGGTCGA
[SQ]_M13_core _167	ATTAAATTTCCTCGTTAGAATAGGGAAGAAAGCGAAACCC TAAA
[SQ]_M13_core _168	CTGCGCGCTACAGGGCGCGTACCTGAGAAG
[SQ]_M13_core 169	GCGCTAGGAGCACGTATAACGTGCGGGATTTTAGACAGGA ACTTCTTT
[SQ]_M13_core 170	GTAGCAATACGGTACGCCAGAATCTATGGTTG
[SQ]_M13_core 171	TGTTTTTGTCCATCACGCAAATAATATCCA
[SQ]_M13_core 172	CAGATTCATTTTGACGCTCAATTATCGGCCTTGCTGGTTAA CCGTT
[SQ]_M13_core _173	GAACAATTCATGGAAATACCTACACCAGTC
[SQ]_M13_core 174	ACACGACATAGAACCCTTCTGACCTGAAAG

Name	Sequence
[SQ]_M13_edge_1	GCATTTTCGAGCCAGTTGTAATTTAGGCAGAGCG
[SQ]_M13_edge_2	CCTAAATTTAATGGTTTAATTTCATCTTCTGACA
[SQ]_M13_edge_3	CATCGGGAGAAACAATGTAACAGTACCTTTTATA
[SQ]_M13_edge_4	AGAAGGAGCGGAATTAGAACAAAGAAACCACCCG
[SQ]_M13_edge_5	CTATTACGCCAGCTTCGGTGCGGGCCTCTT
[SQ]_M13_edge_6	CAATTCCACACAACGAAATTGTTATCCGCT
[SQ]_M13_edge_7	CGTGAACCATCACCCAGGGCGATGGCCCAC
[SQ]_M13_edge_8	CGCTTAATGCGCCGTAACCACCACACCCGC
[SQ]_M13_edge_9	CCAAATCAACGTAACAACCGGATATTCATTACGT
[SQ]_M13_edge_10	CAACATTATTACAGGTAAACGAACTAACGGAAAA
[SQ]_M13_edge_11	GTACCTTTAATTGCTCAGGTCAGGATTAGAGACA
[SQ]_M13_edge_12	AATAACCTGTTTAGCTCATTTCGCAAATGGTCAC
[SQ]_M13_edge_13	ACCGCCACCCTCAGGTACTCAGGAGGTTTA
[SQ]_M13_edge_14	CAGTGCCCGTATAAGGTCAGTGCCTTGAGT
[SQ]_M13_edge_15	AGGCCGGAAACGTCGCACCATTACCATTAG
[SQ]_M13_edge_16	GGAATAAGTTTATTGAAACGCAAAGACACC

Table S2.50. Edge staples of M13mp18 square DNA origami tile.

Table S2.51. Core staples of M13mp18 regular hexagonal DNA origami tile.

Name	Sequence
[HE]_M13_core	GGGCGATGGCCCACTACGTGAACCGCCGTAAAGCACTAA
_1	GGAAGAAA
[HE]_M13_core _2	ACCCGCCGGTGGCGAGAAAGGAAGATCGGAAC
[HE]_M13_core _3	CCTAAAGGGAGCCCCTTTTTTTTTTTAATAGCCCGAGATAG
[HE]_M13_core _4	GCGAAAGGTCACGCTGCGCGTAATTTTAGA
[HE]_M13_core _5	CGGCGAACCGCTTAATGCGCCGCTAGCGGGAG
[HE]_M13_core _6	CGGCAAAATCCCTTTTTTTTTTTGACGGGGAAAGC
[HE]_M13_core _7	GAGTCTGTGAGGCCGATTAAAGGGACCACCAC
[HE]_M13_core _8	GCAATACCCTCGTTAGAATCAGACAGGG
[HE]_M13_core	CGCGTACTATGGTTTTTGTGGTTTTTCTTTTCACCATCGGC
_9	CA
[HE]_M13_core _10	CAGGAACATCAGTGAGGCCACCGCTCAATC
[HE]_M13_core	CTAAACAGCCATCACGCAAATTAAAAAAACGC

_11	
[HE]_M13_core _12	TGCTTTTTCTTTGATTAGTAATGAACAATA
[HE]_M13_core 13	ATCCGCTCGGGAGAGGCGGTTTGCGTCACGTATAACG
[HE]_M13_core _14	TAATAAAAATACCTACATTTTGACGAGTAAAA
[HE]_M13_core _15	GAACCCTAGCCATTGCAACAGGCCGTTGTA
[HE]_M13_core 16	CGCGAAAGAATACGTGGCACATTGCTGGTAATATCCAAAC AT
[HE]_M13_core 17	CACTTGCCTGTTTTGCTGTTTCCT
[HE]_M13_core 18	GTCTGAAAGATTCACCAGTCACGAGGTGAG
[HE]_M13_core 19	TCATGGAAGGGACATTCTGGCCAATACCGAAC
[HE]_M13_core 20	TTACCGCCTCTGACCTGAAAGCGTACTGATAG
[HE]_M13_core 21	CTCGAATTCGTAATTTTTTTTCAAACTATCGGCC
[HE]_M13_core 22	CTAAAGCAAGCAGAAGATAAAACAACGACCAG
[HE]_M13_core 23	AAACCCTCATCGCCATTAAAAACAGAGATA
[HE]_M13_core _24	GACAATATTTTTGTTTTTTTTGAGAGACTACCT
[HE]_M13_core 25	GCGGTCAAGAGCCAGCAGCAAACAACTAAT
[HE]_M13_core 26	GAACCACCTCACCTTGCTGAACCTAAGGTTATCTAAAATA CTCGTATT
[HE]_M13_core 27	CCCTAAAACAATCAATATCTGGTCATACATCAAGAAA
[HE]_M13_core 28	GAATTTATCATTTTGTCTTTAATG
[HE]_M13_core 29	AACATTATACAAACAATTCGACAATCTTTAGGAGCACTAAT GAAAAAT
[HE]_M13_core 30	TGAGCAAAAGAATTTTTAGTTGAAAGGAATTGAGGCAAA TATC
[HE]_M13_core 31	AGATTAGGAAGTATTAGACTTTCATTTTGC
[HE]_M13_core 32	AAATCCTTTGCCCTTTTTTTGATTTTCAGGTTT
[HE]_M13_core 33	GGAACAATATTCCTGATTATCAGATGATGGC

[HE]_M13_core 34	GTAAAACAGAAATAATTTTTTTTTTTTTTAAAAGTTTGAGT
[HE]_M13_core 35	TCAATATAATCCTGATTGTTTGGATACCATATCAAAATTAGT ACCTT
[HE]_M13_core 36	CGCAGAGGATGAATATACAGTAACATTTGCAC
[HE]_M13_core 37	TTACATCTTGAATACCAAGTTACAGTACAT
[HE]_M13_core 38	AACGTCAGCGAATTATTCATTTCAAATTTCAT
[HE]_M13_core 39	CTTAGAATCCTTTTTTAATGGAAACAAAATCG
[HE]_M13_core 40	GATTAAGTTAATTACATTTAACATTACC
[HE]_M13_core 41	AAATCAATCGTCGCTATTAATTAGAAAACT
[HE]_M13_core 42	TTGAATTACCTTGAAAACATAGCGGATGCAAA
[HE]_M13_core 43	ACAAAAACGCTGAGAAGAGTCAAGGTTGGG
[HE]_M13_core 44	TTTGAAATCAAGACAAAGAACGCGAATTTTCC
[HE]_M13_core 45	TTAAATACTATATGTAAATGCTATAGCTTA
[HE]_M13_core 46	CTTACTCATAATTACTAGAAATTTTAACCTCCGGCTTATAGT
[HE]_M13_core 47	TTTTCAAATCTTCTGACCTAAACATGTAAT
[HE]_M13_core 48	TCCAATCGACCGACCGTGTGATAATAATTGAG
[HE]_M13_core 49	TTATATAAAGAATAAACACCGGAACAGTATAA
[HE]_M13_core 50	AATTCTGTTATTTAACAACGCCAATTTAATGG
[HE]_M13_core 51	GTTCAGCCTCAACAGTAGGGCTATAAGGCG
[HE]_M13_core 52	AAGCCTGTTTAGTTTTTTTTTTCAGTATGTTAGCA
[HE]_M13_core 53	TTAGGCAAAAGTACCGACAAAATAGAAACC
[HE]_M13_core 54	AATCGCCACCAGACGACGACAATAAAAATAATATCCCATC AACAAGCA
[HE]_M13_core 55	AGCCAACGTAATGCAGAACGCGCCTTGTAATTGAGCG
[HE]_M13_core	ATGATTAAGATTTTTATACAAATT

_56	
[HE]_M13_core	ATAGCAAGTACCGCACTCATCGAGCTAATTTACGAGCATG
_57	GGTAAAGT
[HE]_M13_core	TGAACACCCTGATTTTTGATAAGTCCTGAACAAGAAACAA
_58	CAT
[HE]_M13_core	Α ΑΤΟ Α ΑΤGGGTΑΤΤΑ Α ΑΟΟ Α ΑGO Α Α ΑΤΟ Α G
_59	
[HE]_M13_core	ΑGCCGTTTTTATTTTTTTTTACAAAATAAACA
60	
[HE]_M13_core	ATATAGATTTTAGCGAACCTCCCGACTTGCG
61	
[HE]_M13_core	CGTCTTTCCAGAGCCTTTTTTTTTTTCATTACCGCGCCCA
62	
[HE]_M13_core	TTTGAAGCCTTAAATCAAGATTAGTGAATCTTACCAACGA
63	TAAGAAA
[HE]_M13_core	CAGGGA AGATTTATCCCA ΑΤCCA ΑCTA ACGAG
64	
[HE]_M13_core	Γ Γ ΑΤΤΤΤΤΤΑ Γ Α Γ Α Γ Α Γ Α Α Α Α Α Α Α
65	Солттинасколоколимилист
[HE]_M13_core	GCCATATTCGCATTAGACGGGAGAACAAGAAT
_66	
[HE]_M13_core	
_67	AAAUTIACUCCCAAIAAIAAUAUCCAIAAAAA
[HE]_M13_core	
_68	TAATAACTCAGAGAGATAACCCATTAAC
[HE]_M13_core	
_69	AIGAAAIGAAAAGIAAGCAGAIAAICAAIA
[HE]_M13_core	
_70	IGAGI IAACAGAAGGAAACCGAGGAAAGACAC
[HE]_M13_core	
_71	CIAAIAGGAAIACCCAAAAGAAACAIAAAG
[HE]_M13_core	
_72	CUGAIIGAAAGIIIAIIIIGICACAGUUGAAU
[HE]_M13_core	
73	AAAI IAIAIAAAAGAAACGCAAACGCAA
[HE] M13 core	CAGTAATCACCGTCACCGACTAACGTAGAAAATACATCTG
74	GC
[HE] M13 core	
75	GAAAAIIAAAGACAAAAGGGCGICAGIAGC
[HE] M13 core	
76	CAUGGAAIGGGAGGGAAGGIAAAICACCAAIG
[HE] M13 core	
77	GIGGUAAUIUAIIAAAGGIGAAIIGUAUUAIT
[HE] M13 core	
78	IAGUUUUUGAIAGUAGUAUUGTAAACATTUAA

[HE]_M13_core 79	TAATCAACAAGGCCGGAAACGTATTGACGG
[HE]_M13_core 80	TGAGCCATTTGGGTTTTTTTTGAGAATAGAAAGG
[HE]_M13_core 81	GACAGAAGTTTTCATCGGCATTCCTCAGAG
[HE]_M13_core 82	AAACCATCTTATTAGCGTTTGCCAACCCTCAGAACCGCCA CTTGATAT
[HE]_M13_core 83	ACCATTAGAATCACCGGAACCAGAGTCACCACCCTCA
[HE]_M13_core 84	CTTTCAACAGTTTTGCAAAATCAC
[HE]_M13_core 85	GCAGTCTCAGGTCAGACGATTGGCCCCTCAGAGCCACCA CTTCGGTCA
[HE]_M13_core 86	CCCTCAGAACCGTTTTTGCCTCCCTCAGAGCCGCCTCTTT TCA
[HE]_M13_core 87	CCGCCACACAGGAGGTTGAGGCTGAATTTA
[HE]_M13_core 88	TCACAAACAAATATTTTTTTTGAGAAGGATTAGG
[HE]_M13_core 89	CCGTTCCGGAGTGTACTGGTAATAAGTTTTA
[HE]_M13_core 90	AAGTATTAAGAGGCTTTTTTTTTTTGCCAGAATGGAAAGC
[HE]_M13_core 91	TCAGTGCCTTGAGTAACAGTGCCCGAACCTATTATTCTGA GGCGGAT
[HE]_M13_core 92	GGTTTAGTGGTTTTGCTCAGTACCAAACATGA
[HE]_M13_core _93	AAGTGCCTAGGTGTATCACCGTGTCACCAG
[HE]_M13_core 94	ATTAGCGGACCGCCACCCTCAGAAATAGGAAC
[HE]_M13_core 95	GTTTTGTCCGTAACACTGAGTTTCACTCAGGA
[HE]_M13_core 96	ATTTTCTGGGATAGCAAGCCCACCGCCA
[HE]_M13_core 97	TACAAACCATAGTTAGCGTAACTGTATCGG
[HE]_M13_core 98	CCATGTACGTCTTTCCAGACGTTACCAAAAAA
[HE]_M13_core 99	TTTTCAGTATGGGATTTTGCTAGCGAATAA
[HE]_M13_core 100	AGTTGCGCAAAAGGAGCCTTTAATGATCTAAA
[HE]_M13_core	ACGCATATCACGTTGAAAATCTGTAAATGA

_101	
[HE]_M13_core	AGCAGGCTGAGGCTTGCAGGGAACAACTAAAGGAATTAA
_102	CAA
[HE]_M13_core 103	TTTATCATTCTTAAACAGCTTGTCATGAGG
[HE]_M13_core _104	AAGGCTCCCGACAATGACAACAACGGCTACAG
[HE]_M13_core _105	TAATTTTTACCGATATATTCGGTCCGAAAGAC
[HE]_M13_core _106	GAGGCAAAAGGACTAAAGACTTTTATACCGAT
[HE]_M13_core _107	TGACCCCAACGAGGGTAGCAACCATCGCCC
[HE]_M13_core 108	AGTTAAAGGCCGCTTTTTTTTTTTTTATTAGTCAGA
[HE]_M13_core _109	AAGTTTCGAAGGCACCAACCTAGCTCCATG
[HE]_M13_core _110	AGGCTTTGAGAATACACTAAAACACGCCTGATAAATTGTG AGATGAAC
[HE]_M13_core 111	AGCATCGGCAGCGATTATACCAAGCTCATAACCCTCG
[HE]_M13_core _112	AAAATCAGGTTTTTCGTCACCCTC
[HE]_M13_core 113	GAGTAATCAACTTTGAAAGAGGACTCGAAATCCGCGACC TAAACGAAA
[HE]_M13_core 114	CGAGGCATAGTATTTTTAACGGAGATTTGTATCATCTCATC TT
[HE]_M13_core _115	TTACTTAGGAACCGAACTGACCTTGACAAG
[HE]_M13_core _116	GGTGTACAGACCATTTTTTTTCAGGACGTTGGGA
[HE]_M13_core _117	AACCGGACTCATTCAGTGAATAAGGCTTGCC
[HE]_M13_core _118	TTTTAAGAACTGGCTTTTTTTTTTTTGCTGACCTTCATCAA
[HE]_M13_core _119	AGAAACACCAGAACGAGTAGTAAATCATTGTGAATTACCA ACTAACG
[HE]_M13_core _120	AATGCAGACTACGTTAATAAAACGTTATGCGA
[HE]_M13_core _121	GAACAACATTTAGGAATACCACTTTGCCAG
[HE]_M13_core _122	AGAAAAATTACATAACGCCAAAAGCCAAAATA
[HE]_M13_core 123	TTCATTGACTTTTGCAAAAGAAGTATTCAACT

[HE]_M13_core 124	TTCAGAAAGACGACGATAAAAAGAATTA
[HE]_M13_core 125	AGGGGGTATACTGCGGAATCGTCGAACCAG
[HE]_M13_core 126	GCGAGAGGATCCCCCTCAAATGCTTCAAATAT
[HE]_M13_core 127	TTTACCAACGAGAATGACCATATCAAAAAG
[HE]_M13_core 128	TCCTTTTGAATTCGAGCTTCAAAGCATAAATA
[HE]_M13_core 129	CTTAGAGGAAGCCCGAAAGACTTTAAACAG
[HE]_M13_core 130	GAAGTAATGCTGTAGCTCAACAGCAAAGCGGATTGCAAA TCA
[HE]_M13_core 131	ACCGGAAGATTAGAGAGTACCTTACATTTC
[HE]_M13_core 132	CGCGTTTTATAAGAGGTCATTTTTTGCGAACG
[HE]_M13_core 133	ATTAAGAGCTTAATTGCTGAATATTTCATTCC
[HE]_M13_core 134	TCAATTCTTAGTTTGACCATTAGATTAATTGC
[HE]_M13_core 135	CAATAAAGTTGATTCCCAATTCGCGGATGG
[HE]_M13_core 136	ATGTTTTAAATATTTTTTTTTTTTACCAGGCAAAGCG
[HE]_M13_core 137	GCAAATGGGGCGCGAGCTGAAATTATGACC
[HE]_M13_core 138	AGTAGATTACTAATAGTAGTAGCAAGCATAAAGCTAAATCT TAAATGC
[HE]_M13_core 139	ATATAACATCATACAGGCAAGGCAATGTAGCCAGCTTT
[HE]_M13_core 140	GGCACCGCTTTTTTACGGTGTCTG
[HE]_M13_core 141	AAAGGCCGAGAACCCTCATATATTGGTTGTACCAAAAACA AGGTGGCA
[HE]_M13_core 142	AAAATAATTCGCTTTTTTAAGCAATAAAGCCTCAGTTAAC ATC
[HE]_M13_core 143	CTGTAATAGGATAAAAATTTTTGAGACAGT
[HE]_M13_core 144	AATGCCTGAGTAATTTTTTTTTTTGTTGATAATCAGA
[HE]_M13_core 145	CAAATCATAAATTAATGCCGGAGAGGGGTAGC
[HE]_M13_core	ACTAGCATGTCAATCTTTTTTTTTTTTTTTTTCAAAAGGGTGAG

_146	
[HE]_M13_core _147	TGAGAGATCTACAAAGGCTATCAGAATCGATGAACGGTAT ATAAGCA
[HE]_M13_core _148	CTCATTTTAAAAACAGGAAGATTGATCGTAAA
[HE]_M13_core _149	AATATTTGCATTAAATTTTTGTAAACGGCG
[HE]_M13_core _150	AAAGCCCCTTAACCAATAGGAACGGAGTAACA
[HE]_M13_core _151	CAGTTTGAGATTCTCCGTGGGAACTAAATCAG
[HE]_M13_core _152	AGGAAGAACATTAAATGTGAGCCCATCA
[HE]_M13_core _153	GATTGACGCGCATCGTAACCGTGGGGGGATG
[HE]_M13_core _154	ACCCGTCGGGGGGACGACGACAGTAGGGCCTCT
[HE]_M13_core _155	CATCATCGCACTCCAGCCAGCCTGCGCAA
[HE]_M13_core _156	GTTGTAAAACGCCAGCTGGCGAAAGCATCTGC
[HE]_M13_core _157	TGCCTGCAAGGGCGATCGGTGCTCGGCCTC
[HE]_M13_core 158	GTGTGATCCCCGGGTACCGAGCCATTCGCCATTCAGGTTT CC
[HE]_M13_core 159	TGCTGCAGCCAGGGTTTTCCCAGGGTGCCT
[HE]_M13_core _160	TCGCTATTACGACGGCCAGTGCCAATACGAGC
[HE]_M13_core _161	CTGTTGGGAGGTCGACTCTAGAGGAAATTGTT
[HE]_M13_core _162	CTGTCGTGTAAAGTGTAAAGCCTGGTCACGAC
[HE]_M13_core _163	ACGCGCGACAATTCCACACAACAGCTTGCA
[HE]_M13_core _164	AATGAGTTGCCCGCTTTCCAGTCGCCTGGC
[HE]_M13_core 165	CGGAAGCACCAGCTGCATTAATGAAGTGAGACGGGCAAC ATCCGAAAT
[HE]_M13_core _166	GGTTGAGTCCTGTTTGATGGTGGTGCTGATTGCCCTTCAC CGGGAAAC
[HE]_M13_core 167	CCTGAGACCAGCAGGCGAAAATGTTGTTCC
[HE]_M13_core 168	AGTTTGGCAACGTCAAAGGGCGAAAAACCGT

Name	Sequence
[HE]_M13_edge_1	TTTTTGGGGTCGAGGTATCACCCAAATCAAGTTA
[HE]_M13_edge_2	GAGAAGTGTTTTTATAGGTACGCCAGAATCCTAT
[HE]_M13_edge_3	CAACAGTGCCACGCTGGTATTAACACCGCCTGAC
[HE]_M13_edge_4	AGCGGAATTATCATCAAGAAACCACCAGAAGGCT
[HE]_M13_edge_5	AAGAACGTGGACTCAACAAGAGTCCACTAT
[HE]_M13_edge_6	TGCGTTGCGCTCACGAGCTAACTCACATTA
[HE]_M13_edge_7	GTTGGTGTAGATGGCGTAATGGGATAGGTC
[HE]_M13_edge_8	GGAGCAAACAAGAGGTCATTGCCTGAGAGT
[HE]_M13_edge_9	TTAATTTCAACTTTAATTGGGCTTGAGATGGTCA
[HE]_M13_edge_10	GACTGGATAGCGTCCAAATAGTAAAATGTTTATA
[HE]_M13_edge_11	GCTATATTTCATTTGGTCAATAACCTGTTTATT
[HE]_M13_edge_12	CAACCGTTCTAGCTGACCATCAATATGATATTCC
[HE]_M13_edge_13	ACGTAACAAAGCTGTATTCATTACCCAAAT
[HE]_M13_edge_14	CGTAATGCCACTACCATTAAACGGGTAAAA
[HE]_M13_edge_15	CCACAGACAGCCCTTACAACGCCTGTAGCA
[HE]_M13_edge_16	CCCTGCCTATTTCGGTATAAACAGTTAATG
[HE]_M13_edge_17	AGCTACAATTTTATCCTTGCTATTTTGCACCCCT
[HE]_M13_edge_18	CCGAAGCCCTTTTTAAAGCAATAGCTATCTTAAG
[HE]_M13_edge_19	CGTCAGACTGTAGCGCTCAAGTTTGCCTTTAGAC
[HE]_M13_edge_20	GGCTTTTGATGATACAAGTAAGCGTCATACATTG
[HE]_M13_edge_21	AAGAACGCGAGGCGAGGCTTATCCGGTATT
[HE]_M13_edge_22	TAATAAGAGAATATGAGGCATTTTCGAGCC
[HE]_M13_edge_23	CTTGCTTCTGTAAATATATGTGAGTGAATA
[HE]_M13_edge_24	GAAGGGTTAGAACCTTATACTTCTGAATAA

Table S2.52. Edge staples of M13mp18 regular hexagonal DNA origami tile.

S2.7.2.3 Staple strand sequences of low-symmetry tiles for Laves tilings

Name	Sequence
[irTR]_p3548_cor	ATGAGTAAACTTGGTCTGATCTCAGCGATCTGTCTGACT
e_1	CCC
[irTR]_p3548_cor	
e_2	TOCCTATITICOCATOAOAOTTAAOOOATTITICATAOT
[irTR]_p3548_cor e_3	CGTCGTGTGGCCCCAGTGCTGCTTTATCAG
[irTR]_p3548_cor e_4	CTCCAGAAATGATACCGCGATTTTGCAGAAAAAAAGGT GTTTGC
[irTR]_p3548_cor e_5	AAGCAGCAGATTCGCTCACCGG
[irTR]_p3548_cor e_6	CAATAAAGTCCTGCAACTTTATCGCCAGTT
[irTR]_p3548_cor e_7	TATGGCTTGCTAGAGTAAGTAGTTCCGCCTCC
[irTR]_p3548_cor e_8	ATCCAGTCTATTTTTTGCTGAAGCCAG
[irTR]_p3548_cor e_9	CAGCTCCACTGGCAGCAGATTTGGTTCCGGGAACATT
[irTR]_p3548_cor e_10	AATAGTTGTGGTGTCACGCTCGCATGTTGT
[irTR]_p3548_cor e_11	TTATCACTGAGTTACATGATCCCCTCGTTTGG
[irTR]_p3548_cor e_12	GTGTAGGAAGACACGACTTATTTTTCCAACGATCAAGGC CATGGTT
[irTR]_p3548_cor e_13	GCAAAAATCAGAAGTAAGTTGGTGTGACTG
[irTR]_p3548_cor e_14	GCGTCAATCCGTAAGATGCTTTTCCCGCAGTG
[irTR]_p3548_cor e_15	ATGGCAGCACTTTTCTCAGTTCG
[irTR]_p3548_cor e_16	TCATAGCTCACGTTTTTTTTCTCTTACTGT
[irTR]_p3548_cor	CATGCCATACGGGATAATACCGCGCATCATTGGAAAAC
e_17	GTCTTTCACC
[irTR]_p3548_cor e_18	GTGAGTAGGCGACCGAGTTGCTTCTCAAGG
[irTR]_p3548_cor e_19	ATCTTTTATCTTCGGGGCGAAAACCTTGCCCG
[irTR]_p3548_cor e_20	TGCTCCACATAGTTTTCCCGACAGTCAAGTCAGAGTTAA AAG

Table S2.53. Core staples of p3548 isosceles right triangular DNA origami tile.

[irTR]_p3548_cor e_21	ATCTTACCGTGCACCCAACTGATAAGGGCG
[irTR]_p3548_cor e_22	AAAAGGCTTTTCCATAGGCTCCAGCTCCCT
[irTR]_p3548_cor e_23	GAAGCGTGGGCGTTTCCCCCTGGAGCCCCCCT
[irTR]_p3548_cor e_24	GACGAGCAGCCAGCAAAAGGCCAGAGCTCACT
[irTR]_p3548_cor e_25	AGCAAAAGTCACAAAAATCGACGCGACTATAAAGATAC CAGCGCTTTC
[irTR]_p3548_cor e_26	CGTGCGCCCTGTCCGCCTTTCTGGGCTGTG
[irTR]_p3548_cor e_27	AACCCGGTTCGTTCGCTCCAAGCTCCCTTCGG
[irTR]_p3548_cor e_28	TGCACGACCGGTAACTATCGTCTAGCAGAG
[irTR]_p3548_cor e_29	TTACCTTCACACTAGAAGGACAGTCCACTGGTAACAGGA TTTGAGTCC
[irTR]_p3548_cor e_30	CGAGGTAGGCCTAACTACGGCTGGAAAAAG
[irTR]_p3548_cor e_31	AGTTGGTTAGCGGTGGTTTTTTTATCTCAAG
[irTR]_p3548_cor e_32	AAGATCCGGAACGAAAACTCACTTATCAAA
[irTR]_p3548_cor e_33	AAGGATCTTTTAAATCAATCTAAAGT
[irTR]_p3548_cor e_34	TATTTTGTTAAAATTCGCGTTAATAGGCCGAAATCGTTG TTCCA
[irTR]_p3548_cor e_35	CTATCAGGGAGATAGGGTTGAGTGGCAA
[irTR]_p3548_cor e_36	AATCCCTTATTTTTTTTTTTTTTTTGAATGTATTTTATCAGGG
[irTR]_p3548_cor e_37	AAATTCATGATTAGACCGCGA
[irTR]_p3548_cor e_38	GTTTGGAAACGTCAAAGGGCGAAAAGCACT
[irTR]_p3548_cor e_39	CGAGAAAGGGGGTCGAGGTGCCGTAAAACCGT
[irTR]_p3548_cor e_40	TGGCCCACTATTTTTCAGGAAGGCA
[irTR]_p3548_cor e_41	AGCGTTTCTGGGTGTTTTTTTCATCACCCTAATCA
[irTR]_p3548_cor e_42	AGTTTTTTGAAGGGAAGAAAGCGATGTAGCGGTCACGC TGTGCGGGCC

[irTR]_p3548_cor e_43	AAATCGGACGGGGAAAGCCGGCCCGCCGCG
[irTR]_p3548_cor e_44	TTATTGTCGCCGCAAAAAAGGGAATCTTCAGC
[irTR]_p3548_cor e_45	ACACGGATATTATTGAAGCATTAGAAAAAT
[irTR]_p3548_cor e_46	AAACAAACCACCTAAATTGTAAGCGTTA
[irTR]_p3548_cor e_47	GGTAAAACCTTGTACACGTGGTGCAATTCGACGTGAACG ACC
[irTR]_p3548_cor e_48	CATCCACCTTGCCTCAGCATAAGCCAACTTTTGATGCA
[irTR]_p3548_cor e_49	CATGTGTGAAGGCCCGTAAAAGAGGACTTC
[irTR]_p3548_cor e_50	CAGTGGCGAAGCTGTACTGCTTTTCCAGGGAAAAAAGG GACAAA
[irTR]_p3548_cor e_51	ATCAACGACATTAACTCTCGTA
[irTR]_p3548_cor e_52	TCGACGTTTCCTGCAGCCCGGGTTCCCTTT
[irTR]_p3548_cor e_53	TATCCGCTGGAGCTCCAGCTTTTGGGATCCAC
[irTR]_p3548_cor e_54	TAGTTCTAGAGCTTTTGATTGACAGGAA
[irTR]_p3548_cor e 55	ATTCCACCCCCCCCGATGGCGTGTCCGCGGTCACA
	AGTGAGGAGCTGTTTCCTGTGTTGGGGGTGC
	AGTGAGGAGCTGTTTCCTGTGTTGGGGGTGC ACCTGTCGCATAAAGTGTAAAGCCGAAATTGT
	AGTGAGGAGCTGTTTCCTGTGTTGGGGTGC ACCTGTCGCATAAAGTGTAAAGCCGAAATTGT GATGTGCGGCGAATTGGGTACTTTTATACGAGCCGGAAG TGCCAGC
	AGTGAGGAGCTGTTTCCTGTGTTGGGGTGC ACCTGTCGCATAAAGTGTAAAGCCGAAATTGT GATGTGCGGCGAATTGGGTACTTTTATACGAGCCGGAAG TGCCAGC CTAATGAACTGCCCGCTTTCCATCTTCCGC
	AGTGAGGAGCTGTTTCCTGTGTTGGGGGTGCACCTGTCGCATAAAGTGTAAAGCCGAAATTGTGATGTGCGGCGAATTGGGTACTTTTATACGAGCCGGAAG TGCCAGCCTAATGAACTGCCCGCTTTCCATCTTCCGCCAAAGGCGTTTGCGTATTGGGCGCGTCGGGAA
	AGTGAGGAGCTGTTTCCTGTGTTGGGGTGCACCTGTCGCATAAAGTGTAAAGCCGAAATTGTGATGTGCGGCGAATTGGGTACTTTTATACGAGCCGGAAG TGCCAGCCTAATGAACTGCCCGCTTTCCATCTTCCGCCAAAGGCGTTTGCGTATTGGGCGCGCGTCGGGAATGCATTAATGTTTGCGAAAGGGG
	AGTGAGGAGCTGTTTCCTGTGTTGGGGTGCACCTGTCGCATAAAGTGTAAAGCCGAAATTGTGATGTGCGGCGAATTGGGTACTTTTATACGAGCCGGAAG TGCCAGCCTAATGAACTGCCCGCTTTCCATCTTCCGCCAAAGGCGTTTGCGTATTGGGCGCGCGTCGGGAATGCATTAATGTTTGCGAAAGGGGTCTTCGCTATTATTTTCAACGCGCGGGGG
	AGTGAGGAGCTGTTTCCTGTGTGGGGTGCACCTGTCGCATAAAGTGTAAAGCCGAAATTGTGATGTGCGGCGAATTGGGTACTTTTATACGAGCCGGAAG TGCCAGCCTAATGAACTGCCCGCTTTCCATCTTCCGCCAAAGGCGTTTGCGTATTGGGCGCGCGTCGGGAATGCATTAATGTTTGCGAAAGGGGTCTTCGCTATTATTTTCAACGCGCGGGGAGAGGCGGTAATACGGTTATCCAAACATGTG

[irTR]_p3548_cor	AAAGCAGAATCATTTTCTGGCAAGAAGGAGCGGGCACG
e_65	CAGG
[irTR]_p3548_cor	GCGATCGGCGCGTAACCACCACGAACGTGG
e_66	Georreoleocorracerecterectro
[irTR]_p3548_cor	
e_67	
[irTR]_p3548_cor	CACTATAGTGCAAGGCGATTAAGTTGGGAAGG
e_68	
[irTR]_p3548_cor	GCCAGGCAGTGAGCGCGCGTAAAGCTTTG
e_69	OCCADUCADIDAOCOCOCOTAAAOCIIIO
[irTR]_p3548_cor	AAAAGTCAGAAAAAAACAAGACTGGGGTCGACGGTATCG
e_70	ATATACGACT
[irTR]_p3548_cor	
e_71	OTOCAATCOTROARCEROCTCACCAATCOA
[irTR]_p3548_cor	GATCCCTCCATCACCCCACTACATACCCAC
e_72	UATCCTUCATCAUCOUACTACATACUCAU
[irTR]_p3548_cor	
e_73	AUAUCICAICCAICUUUCAAUUCAUCAAI
[irTR]_p3548_cor	
e_74	TATICOUTAOUAAAAAAOCAACCCTU

Table S2.54. Edge staples of p3548 isosceles right triangular DNA origami tile.

Name	Sequence
[irTR]_p3548_edge_1	GTGTAGTCGGAAGAGTTAGGAAAAAAGCGTGCTA
[irTR]_p3548_edge_2	TCCGAAAAAAGAGGGAATCAAGATACCTTCTAGG
[irTR]_p3548_edge_3	AGTGAGACCGTCAGAAGTCACAATGACCGAACAA
[irTR]_p3548_edge_4	GCGTAATCATGGTCATGTTAATTGCGCGCTTGGA
[irTR]_p3548_edge_5	TAATTGCGTTGCGCTCGTGAGCTAACTCACATGA
[irTR]_p3548_edge_6	GCTCGGTCGTTCGGCTCTCACTGACTCGCTGCTG
[irTR]_p3548_edge_7	CCGCTTACCGGATATCTCCTGTTCCGACCC
[irTR]_p3548_edge_8	CCGCTGCGCCTTATACCCCCCGTTCAGCCC
[irTR]_p3548_edge_9	GTTCTTGAAGTGGTTGTAGGCGGTGCTACA
[irTR]_p3548_edge_10	CAAACCACCGCTGGAGCTCTTGATCCGGCA
[irTR]_p3548_edge_11	GTCTGACGCTCAGTTTTGATCTTTTCTACG
[irTR]_p3548_edge_12	AATTAAAAATGAAGTTCACCTAGATCCTTT
[irTR]_p3548_edge_13	TCCGCTCCAACCAGGACCAGCACGAAACGCAGAT
[irTR]_p3548_edge_14	TTGGAAAAAAGAAGTTAAAATCGGGTGGATAGGG
[irTR]_p3548_edge_15	CCGGCATCTGATACTGGGCTTAACGTGACTCGGC
[irTR]_p3548_edge_16	TGTACGTTCGTACCCAGGTGAGCTCATCTGTCCA
[irTR]_p3548_edge_17	GTTGTAAAACGACGGCTTTTCCCAGTCACGACGG
[irTR]_p3548_edge_18	GTCCCATTCGCCATTCCGCCGCTACAGGGCGCTG
[irTR]_p3548_edge_19	CCCGATTTAGAGCTTGAACCCTAAAGGGAGCCTT
[irTR]_p3548_edge_20	AAAGAACGTGGACTCCACAAGAGTCCACTATTAC

[irTR]_p3548_edge_21	AGCTCATTTTTTAACCAAATTTTTGTTAAATCAT
[irTR]_p3548_edge_22	CAGTGAGGCACCTACAGTTACCAATGCTTA

Table S2.55. Core staples of M13mp18 rhombic DNA origami tile.

Name	Sequence
[RH]_M13_core 1	AACCCATGTACCGTAACAACAACGC
[RH]_M13_core 2	CTGTAGCATAACGATCTAAAGTTTTCTGTA
[RH]_M13_core _3	AGTACCGTTCATAGTTAGCGTTCCACAGTTTAGAACCGCG GTTT
[RH]_M13_core _4	TGGGATTTACAACTAAAGGAATTCAAAAAA
[RH]_M13_core _5	ACAGCTTGAAAAGGAGCCTTTAATGTGAGAATAGAAAGG ATGCTAAA
[RH]_M13_core _6	CAACTTTCAATCTCAGTACCA
[RH]_M13_core _7	CGTATAGCGGAGCGGATGTATCGGTTTTTTAGTGCC
[RH]_M13_core _8	AAGGCTCCATACCGATAGTTGCGACCGATA
[RH]_M13_core _9	GAGGGTAGCGCTGAGGCTTGCAGGTTTCTTAA
[RH]_M13_core _10	AAAGCGGGGTCAGTGCCTTGTTTTGCTTTCGAGGTGAA GAGTT
[RH]_M13_core _11	TATTCGGTCAACGGCTACAGAGGTTTCCAT
[RH]_M13_core _12	AAAGGCCGCTTTTGTTTTTTAATAAATCCTCATT
[RH]_M13_core _13	TACCAAGCTAAAATACGTAATGCCATCGGAAC
[RH]_M13_core _14	AAGACAGCACTACGAAGGCACCAACTCATCTTTGACCCC CAGCCGGAA
[RH]_M13_core _15	TTGGCCTTGATATTCATTTTTTCACCCTCAGCAGCGA
[RH]_M13_core _16	TAAACGGGGCGAAACAAAGTACAGTCGAAA
[RH]_M13_core _17	CTAAAACACCTAAAACGAAATTTTTTCGGAACCGCCTCAT CACCGG
[RH]_M13_core _18	CTGGCTGACTGCTCCATGTTACTTAGCGATTA
[RH]_M13_core 19	AACCAGAGCTTTTTAAGAATACA
[RH]_M13_core 20	TCCGCGACCCTTCATCAAGAGTAATCAACG
[RH]_M13_core 21	CGAGGCGCCGGTGTACAGACCAGGTAAGGCTT
[RH]_M13_core	CCAGAACAAGAGGACAGATGAAAGACGGTC
_22	
----------------------	---
[RH]_M13_core _23	AATCATAAGGGAACTTTTTAAACGTCACCAATG
[RH]_M13_core 24	TTATACCACTGCTCATTCAGTGAACGCATAGG
[RH]_M13_core _25	ATTCATTACCATTAGCATTTTTTACCAACTTTGAGAGTAG
[RH]_M13_core _26	TAACAAAGGTCAGGACGTTGGGAGAACAAC
[RH]_M13_core 27	GCCCTGACTATGCGATTTTAAGAACAGTTGAG
[RH]_M13_core 28	TTCAACTCATTGTGAATTACCTGAGAAACA
[RH]_M13_core 29	TAAATTGGGCTTTTTTCAATAGAAA
[RH]_M13_core _30	AGGCTTTTAGGTAGAAAGATTCATCTGGCTCA
[RH]_M13_core _31	ACTTTAATAATGCAGATACATAACGCAACACT
[RH]_M13_core 32	AATAAGTTTATTTTTTTGGTTTAATTTCA
[RH]_M13_core _33	ATTATTACGCAAAAGAAGTTTTGGATAGCG
[RH]_M13_core _34	ATTTAGGAGACGATAAAAACCAAAATATTCAT
[RH]_M13_core _35	GCTTTAACCTCGTTTACCAGACATACCACA
[RH]_M13_core _36	AAGAGCCAAAAGGTTTTTGCCCTTTTTTAGC
[RH]_M13_core _37	AAAGACTTTGCGGAATCGTCATAAATAGCGAG
[RH]_M13_core _38	ATCATAACACAGTTCAGAAAACGAACTATTAT
[RH]_M13_core 39	AATAGCTATTTTTAGGCATAGT
[RH]_M13_core 40	TCCAATACCAAATATCGCGTTTTCAAACTC
[RH]_M13_core 41	TGAATCCCTCAAAAAGATTAAGAGCTTTAATT
[RH]_M13_core _42	GAGGTCATTGCAAAGCGGATTGCACCTCAAAT
[RH]_M13_core _43	TATTTACCCCAAAAATTTTTTTTTTTTTTACCCTGGAATGA
[RH]_M13_core 44	CCATAAATCAAATTTCAAATAAGAAAC

[RH]_M13_core	TCAGCTAATGCAGAACGCCCTGAACAAGAAAAATATCATT
_46	ATCGTAGGATCGGCTGTCTTTCCTTAATATC
[RH]_M13_core _47	CCATCCTAATTTTTCGAGCC
[RH]_M13_core _48	CAAGAACACAAGCAAGCCGTTTGGTTTTGA
[RH]_M13_core 49	CAATAAATCATTACCGCGCCCAGGCGTTT
[RH]_M13_core _50	ACATGTAATTTTTTAGAAACCAAT
[RH]_M13_core _51	AACGCTAACTCCCGACTTGCGGGATTATTTTC
[RH]_M13_core _52	AACGCGAATAGCAAGCAAATTTTTTTTAAACACCGGAATC ATACCG
[RH]_M13_core _53	AGCCTTAACAATTTTATCCTGACGCATTAG
[RH]_M13_core 54	TAGCGAACCGAGCGTCTTTCCAGATTTACAGA
[RH]_M13_core 55	TAGCAGCCGCCTAATTTGCCAGTTATTCTAAG
[RH]_M13_core _56	ACTACCTTTAAATAAGGCGTTTTTTTTTGGCTTATCCGGTA CAAAAT
[RH]_M13_core _57	AGATAACCCATAAAAACAGGGAAGATCTTACC
[RH]_M13_core _58	AAACAGCCTTGTTTAACGTCAAAAGCAAGAAA
[RH]_M13_core _59	GATTTTATATTATTTTTTTTTTTTTTTTTTTTTTTTTTT
[RH]_M13_core _60	TAAATCGTATGCAAATCCAATCGTATATTT
[RH]_M13_core _61	AAATGCTGCGCTATTAATTAATTTCATTTGAA
[RH]_M13_core 62	AGTATCATTTCATCTTCTGACCTACTATATGT
[RH]_M13_core 63	AATCCTTGAGGTTGGGTTATATAAAATTTAAT
[RH]_M13_core _64	ACCGTGTGATTTAACCTCCGGCTTAAAACATA
[RH]_M13_core _65	AAACATCACTTAGATTAAGACGCTTCTGAGAG
[RH]_M13_core 66	TAGTTAATATGCGTTATACAAATGGGCTTA
[RH]_M13_core	GGTTTGAAATAATTACTAGAAAAACGCCA

_67	
[RH]_M13_core 68	AGTAATATCGCCATATTTAACAAGCCTGTTT
[RH]_M13_core	ATTGAGAAAGAGAATATAAAGTATCCAGACGACGACAATA
[RH]_M13_core _70	ACGGGAGGTAATTGAGCGCTAACGGAATAC
[RH]_M13_core 71	GAGAATAACACAAGAATTGAGTTAACCAGAAG
[RH]_M13_core 72	ACAAAGTTAGCCCAATAATAAGAATGAAAA
[RH]_M13_core 73	CATACATAGGAAACGCAATAATAATATCAGAG
[RH]_M13_core 74	CAATGAAAAAGAAAAGTAAGCAGACACCACGG
[RH]_M13_core 75	CCAAAAGTATGTTAGCAAACGTGGGAGGGA
[RH]_M13_core 76	GAAACCGAAAGGTGGCAACATATACAAAGACA
[RH]_M13_core 77	ACCAGCGCAAAGAAACGCAAAGATAGCCGA
[RH]_M13_core 78	TTTGGGAAACATTCAACCGATTGAAGAAAATA
[RH]_M13_core 79	AGGTAAAATCACCGTCACCGACCAAGTTTG
[RH]_M13_core 80	AAAGGGCGTTAGAGCCAGCAAAATGATAGCAG
[RH]_M13_core 81	AAACCATCCACCAGTAGCACCATATGGTTT
[RH]_M13_core 82	GTTTGCCATCAGTAGCGACAGAATTTGAGCCA
[RH]_M13_core _83	CCTTTAGTCGGTCATAGCCCCCTCAGAGCC
[RH]_M13_core 84	CACCGTAATCTTTTCATAATCAAACCTCAGAGCCGCCACC TCAGACGA
[RH]_M13_core 85	GAGGCAGGCTCAGAACCGCCACCCTTATTAGC
[RH]_M13_core 86	ACCACCCGCCGCCAGCATTGACGTCTCTGA
[RH]_M13_core 87	GTTTTAACCAGAATGGAAAGCGCAAGGAGGTT
[RH]_M13_core 88	ATTTACCATACAGGAGTGTACTCCTGCCTA
[RH]_M13_core 89	GGCGGATAGAGAAGGATTAGGATTAAACAGTTAATGCCCG GTAATAA

[RH]_M13_core _90	TTTCGGAGGCTGAGACTCCTCAAAGTGCCG
[RH]_M13_core _91	TCGAGAGTCACCGTACTCAGGACACCCTCA
[RH]_M13_core 92	GAACCGCTTCAGGGATAGCAAGCCC
[RH]_M13_core 93	GAGCTAAACAGGAGGCCGGTACGCC
[RH]_M13_core 94	AGAATCCTCACCGAGTAAAAGAGATACTTC
[RH]_M13_core 95	CCGCGCTTAATCAGTGAGGCGAGAAGTGTTTCGCTACAG ACCCG
[RH]_M13_core 96	TTTGATTATGCTGGTAATATCCAAAAACGC
[RH]_M13_core 97	CCAGTCACATACCTACATTTTGACCTCAAACTATCGGCCTG TAATAA
[RH]_M13_core 98	CATCACTTGCTGAAAGGAAGG
[RH]_M13_core 99	CATCGCGAACGAAGAAGCTCAATCGTTTTTGTGAAC
[RH]_M13_core 100	TCATGGAAACGACCAGTAATAAATCTGACC
[RH]_M13_core 101	CGCCATTATAAGAATACGTGGCACCAGATTCA
[RH]_M13_core 102	AAGAAATCAGGGCGATGGCCTTTTGATTATTTACATTGGA GACA
[RH]_M13_core 103	TGAAAGCGAAAATACCGAACGAAGTCAGTA
[RH]_M13_core 104	ATATTTTGAATGGTTTTTTCCCTTATAAATCAA
[RH]_M13_core 105	TCTGGTCAGCCTGCAACAGTGCCATAAAACAT
[RH]_M13_core 106	GATAGCCCCGCTGAGAGCCAGCAGCAAATATCAAACCCT CGAGCCGTC
[RH]_M13_core 107	GTGGTTCCGAAATCGGTTTTTCTTTAATGCGCGAACT
[RH]_M13_core 108	TTAACACCGTTGGCAAATCAACAATCTTTA
[RH]_M13_core 109	CTGAACCTCAAATGAAAAATTTTTTTCGCCAGGGTGGTGG AGAGGC
[RH]_M13_core _110	AATTTTAAAACAACTAATAGATTAAATCAATA
[RH]_M13_core 111	GGTTTGCGTTTTTTATCACCTTG
[RH]_M13_core	GGAGCACTAAGTTTGAGTAACATGGAGCGG

_112	
[RH]_M13_core 113	AATAGATATAAATCCTTTGCCCGACAGATGAT
[RH]_M13_core 114	AATCCTGTTCGACAACTCGTATATACATTT
[RH]_M13_core 115	GAGGATTTAGAAGTTTTTTCACAACATACGAGC
[RH]_M13_core 116	AAATTGCGTCATATTCCTGATTATACGTTATT
[RH]_M13_core 117	CAAGGCTATCCGCTCACTTTTTTTTTACAAACAAATTGTT
[RH]_M13_core 118	AATTATCATAGATTTTCAGGTTTTTACATC
[RH]_M13_core 119	GGCAATTCTTTGCACGTAAAACAGTGATTGCT
[RH]_M13_core 120	AAAATCGACCATATCAAAATTAATCAATAT
[RH]_M13_core 121	TGGATTATACTTTTTGGATGTGCTG
[RH]_M13_core 122	TTACCTTTCAATAACGGATTCGCCAAATAAAG
[RH]_M13_core 123	TAGAACCTCGCAGAGGCGAATTATGATGAAAC
[RH]_M13_core 124	TTACGCCAGCTGTTTTTTTTTTTTTTTTTTTTTTTTTTT
[RH]_M13_core 125	GGGAGAAATTTAATGGAAACAGTGCTTCTG
[RH]_M13_core 126	TTGAATACTTACATTTAACAATTTTCCCTTAG
[RH]_M13_core 127	GCGATAGAGAAAACAAAATTAACAAGTTAC
[RH]_M13_core 128	AGATTCATTTCAATTTTTGTGTAGATGCGTA
[RH]_M13_core 129	ATGGGATAGTTTTAGCAAAAGA
[RH]_M13_core 130	AGTCAATAGTGATTTTGTATAAGCAAA
[RH]_M13_core 131	TAAATCATACAGGCAAGGAAAGCCTCAGAGCATTTTATTT C
[RH]_M13_core _132	TAGGTAAATTTTGCGGGAGAAGCCAAAGCTA
[RH]_M13_core _133	AATCGGTTGTTAACCTGTTTA
[RH]_M13_core 134	AACGCAAAAATGCAATGCCTGATTTGAGAG

[RH]_M13_core 135	AATACGATTCAAAAGGGTGAGCTGATAAA
[RH]_M13_core 136	ATACATTTCGTTTTATGACCCTGT
[RH]_M13_core 137	GTAATCGTGGAGAGGGTAGCTATTGTAATGTG
[RH]_M13_core 138	TTCTAGAAAGGCCGGAGACTTTTTTTTTTGCTGAATATAAT GATAA
[RH]_M13_core 139	ATCTACAGCAAACAAGAGAATCTAACCAAT
[RH]_M13_core 140	TTAATGCCAAAACTAGCATGTCAAGCATTAAA
[RH]_M13_core 141	TAAAATTCTCATATGTACCCCGGATTCAACCG
[RH]_M13_core 142	AGTCAGAATTTGCGGATGGTTTTTTTTTTTATCAATATGATTT GATAAT
[RH]_M13_core 143	ATGTGAGCAAATCAGCTCATTTTTGATGAACG
[RH]_M13_core 144	CAGAAAAGAATTGTAAACGTTAATCAAACGGC
[RH]_M13_core 145	TATGCAACCAGGATTAGAGAGTACGAAGCCCG
[RH]_M13_core 146	CAACAGGTTAAAGTACGGTGTCTAATTCTG
[RH]_M13_core 147	GCTCCTTTTGCTGTAGCTCAACATATTAG
[RH]_M13_core 148	GCTATATTAGATTTAGTTTGACCGTTTTAAA
[RH]_M13_core 149	CGAACGAGTTTCATTTGGGGGCGCACTAATAGTAGTAGCAT T
[RH]_M13_core 150	AGGAACGTAGCCAGCTTTCATCTCGCACTC
[RH]_M13_core 151	TTTTTGTTGAGTAACAACCCGTCGAGGGGACG
[RH]_M13_core 152	CCAGTTTGGATTCTCCGTGGGAAATTTTGT
[RH]_M13_core 153	GGCTGCGCATCGGCCTCAGGAAGAAACATTAA
[RH]_M13_core 154	GGATTGACGGCGCATCGTAACCGTCTTCGCTA
[RH]_M13_core 155	CAGCCAGGGCAAAGCGCCATTCACGACGGC
[RH]_M13_core 156	ACGACAGTAACTGTTGGGAAGGGCCGCCAGGG
[RH]_M13_core	TTGGGTAAGATCGGTGCGGGCCTGCATCTG

_157	
[RH]_M13_core 158	TCGTAATCGTCACGACGTTGTAAAGCCATTCA
[RH]_M13_core _159	CAGTGCCATCCCCGGGTACCGAAGCTAACT
[RH]_M13_core _160	TTTTCCCAATGGTCATAGCTGTTTTAAAGTGT
[RH]_M13_core _161	CGGAAGCACCTGTGTGAAATTGTGATTAAG
[RH]_M13_core 162	ATTAATGAGGGTGCCTAATGAGTGGCTCGAAT
[RH]_M13_core 163	CACATTAGGGAAACCTGTCGTGGATTGCCC
[RH]_M13_core 164	AAAGCCTGATCGGCCAACGCGCGGTTTTCTTTCACCAGT GTTTGATG
[RH]_M13_core _165	AAAATCCTGAGACGGGCAACAGCTCCAGCTGC
[RH]_M13_core 166	TTCACCGACGCTGGTTTGCCCCTGAGTGTT
[RH]_M13_core 167	AACCGTCTTAGCCCGAGATAGGGTAGCAGGCG
[RH]_M13_core _168	GTTCCAGGACTCCAACGTCAAATTGGGGGTC
[RH]_M13_core 169	GAAGAAATTGACGGGGGAAAGCCGACCCAAATCAAGTTTT GGGCGAAA
[RH]_M13_core 170	GAGGTGCCCCCGATTTAGAGCGCGAAAGG
[RH]_M13_core _171	AGCGGGCGCGCGTAACCACCACGGCGCGTA
[RH]_M13_core _172	CTATGGTCTTTCCTCGTTAGAATCA

Table S2.56. Edge staples of M13mp18 rhombic DNA origami tile.

Name	Sequence
[RH]_M13_edge_1	TTTTGCACCCAGCTAATCAAGATTAGTTGC
[RH]_M13_edge_2	AACAAAGTCAGAGGAATTAACTGAACACCC
[RH]_M13_edge_3	ATTAAAGGTGAATTTATTGACGGAAATTAT
[RH]_M13_edge_4	TTTCATCGGCATTTCGTCAGACTGTAGCGC
[RH]_M13_edge_5	CATGGCTTTTGATGGTTCCAGTAAGCGTCA
[RH]_M13_edge_6	TGAAAGTATTAAGAACCTATTATTCTGAAA
[RH]_M13_edge_7	AGAAAACTTTTTCAAACAAGACAAAGAACGCGTA
[RH]_M13_edge_8	GTGAGTGAATAACCTTACATAAATCAATATATTG
[RH] M13 edge 9	AAAGAAACCACCAGAATATCATTTTGCGGAACTC

[RH]_M13_edge_10	GAAGGTTATCTAAAATGTTGAAAGGAATTGAGGT
[RH]_M13_edge_11	ACAGAGATAGAACCCTAGGGACATTCTGGCCATA
[RH]_M13_edge_12	AGCCATTGCAACAGGAGAACAATATTACCGCCCA
[RH]_M13_edge_13	ACGTTGAAAATCTCGCGAATAATAATTTTT
[RH]_M13_edge_14	ATCGCCCACGCATACCGACAATGACAACAA
[RH]_M13_edge_15	GCCTGATAAATTGTACGGAGATTTGTATCA
[RH]_M13_edge_16	TATTCATTACCCAAATCTTGACAAGAACCG
[RH]_M13_edge_17	AAATGTTTAGACTGCCAGAGGGGGGTAATAG
[RH]_M13_edge_18	AACCAGACCGGAAGAATTCGAGCTTCAAAG
[RH]_M13_edge_19	GGAACCCTAAAGGGAGCGTAAAGCACTAAATCTC
[RH]_M13_edge_20	ACTATTAAAGAACGTGTTTGGAACAAGAGTCCCC
[RH]_M13_edge_21	TGCCCGCTTTCCAGTCATTGCGTTGCGCTCACTC
[RH]_M13_edge_22	AGGTCGACTCTAGAGGAAGCTTGCATGCCTGCGA
[RH]_M13_edge_23	GCGTCTGGCCTTCCTGCCATCAAAAATAATTCTA
[RH]_M13_edge_24	TGCCTGAGAGTCTGGAAAGGCTATCAGGTCATCG

Name	Sequence
[KT]_M13_core	AAAGACTTTTTCATGAGGGTAAAATACGTAATAAAGAAT
_1	Α
[KT]_M13_core _2	AGGCAGCCACTACGATTTTTTTGCTTTTGCGGGGCTGA
[KT]_M13_core _3	CACTAAAAGCGCGAAACAAAGTGGAACGAG
[KT]_M13_core _4	GGCTTGCAGGGAGTTTTTTTCCTAAAACGAAAG
[KT]_M13_core _5	TGTACAGATCCATGTTACTTAGCCACAACGGAGATTTGTA
[KT]_M13_core _6	TCATCGCCTGTTTCGAGGTGAAT
[KT]_M13_core _7	GCGCAGATTTGAAAGAGGACAGGCTGCTCA
[KT]_M13_core _8	CGACCTGCCCAGGCGCATAGGCTGCGGATATT
	CGGTTTATCATTTTCGAAATCCG
[KT]_M13_core _10	TGGTTTAAAAATCAACGTAACAAAATGAACGG
[KT]_M13_core _11	AAGAACGCTGACCTTTTTTTTTTTTTTAAACAACAATGAA
[KT]_M13_core _12	TTCAGTGCGAGTAGTAAATTGGTATTACAG
[KT]_M13_core _13	CATTACCCTTTCAACTTTAATCATTACGTTAA
[KT]_M13_core _14	TTTTCTGTATGTTTTTTTTGTAATCTTGAC
[KT]_M13_core _15	CCAAAAGGACTAACGGAACAACATGCTTGAGA
[KT]_M13_core _16	CACTATCTTGGGAAGAAAAATCTGTGAATTACCTTAT
[KT]_M13_core _17	GCGATTTTAATTTTATTTTCAGGG
[KT]_M13_core _18	GTAGAAATCAACTAATGCAGATGGAATCGT
[KT]_M13_core _19	TAAAACGAAATTACGAGGCATAGTAAATGTTT
[KT]_M13_core _20	TCAGGACGATAACCCTCGTTTACCAAAAGAAG
[KT]_M13_core _21	CCTCAGAGCCTTTATTATACCAG

Table S2.57. Core staples of M13mp18 kite DNA origami tile.

[KT]_M13_core _22	AAATCAAATAGCGTCCAATACTGCACATAACG
[KT]_M13_core _23	ATAGTCAGAGGGGGTAATAGTAAAGAGCAA
[KT]_M13_core _24	TTTGCAGACGACGATTTTTTTTTGAAACATGACCCTG
[KT]_M13_core _25	CATAAATGTTCAGAAAACGAGACCAACAGG
[KT]_M13_core _26	AGACTGGAAATCAGGTCTTTACCCAGCTTCAA
[KT]_M13_core _27	TTTTGCCAGAAGCAAAGCGGATTG
[KT]_M13_core _28	CCTATTTCGGAACTTTTTTTATAGCGAGAGGCT
[KT]_M13_core _29	AATTTACGATACAGGAGTGTACCAGGCGGA
[KT]_M13_core _30	AGGTTTAGGGGTTTTGCTCAGTACTGGTAATA
[KT]_M13_core _31	AGTTTTAACCAGAATGGAAAGCGCAGAGCCGC
[KT]_M13_core _32	CATTAAAGCGGGGTCAGTGCCTTGAGGATTAG
[KT]_M13_core _33	TCAAGAGAAGTAACAGTGCCCGTATATTCACAAACAAAA GCCACCA
[KT]_M13_core 34	TGGCCTTGATAAACAGTTAATGCCAAGTATTAAGAGGCTG ACCGCCAC
[KT]_M13_core _35	TAAGTGCATAGGTGTATCACCGACCAGTAC
[KT]_M13_core _36	GATTAGCGTACCGCCACCCTCAGAGGAACCCA
[KT]_M13_core 37	ATAGCAAGCCCAATAACCGCCACCCTCAGAAGACTCC
[KT]_M13_core _38	AATAGAAACTAAAGTTTTGTCGTCAACACTGAGTTTCGTC TACTCAGG
[KT]_M13_core _39	AAACTACAGTTAGCGTAACGATGGAACAAC
[KT]_M13_core 40	TGTACCGTTTTCCAGACGTTAGTATTTCAACAGTTTCAGC AATTGTAT
[KT]_M13_core 41	ACAACATGTTCAGCTAAAGTCCTGAACAAGAAGAGCATG T
[KT]_M13_core 42	TTACAAATAATTATTTTCTGTAATTTAGGTTTCCTAAT
[KT]_M13_core 43	AGAAACCCAAGAACGGGTATTATTTCATCG

[KT]_M13_core _44	AAGAACGCAGCAAGCCGTTTTTATAACCA
[KT]_M13_core _45	AGTACCGCACTTTTTACAAATTCTT
[KT]_M13_core _46	TAGGAATATAGAAGGCTTATCCCTTAAATC
[KT]_M13_core _47	CGTTTTTTTACCTAAATTTATGTTTTTAACAGAGG
[KT]_M13_core _48	GCGTCTTTCGGGAGGTTTTGAAGCGGTATTCT
[KT]_M13_core _49	AAGATTACTGAATCTTACCAACAAACGATT
[KT]_M13_core _50	AACCTCGTTAATTTCATCTTTTTTTACCTCCCGACTTGCCA GAG
[KT]_M13_core _51	AAGCGCATTCCCAATCCAAATAAGGCTAACGA
[KT]_M13_core _52	CCTAATTTGCCATTTTTGACTACCTTTTT
[KT]_M13_core _53	TTTTGTTGAGAGAATAACATAATTGAGTTA
[KT]_M13_core _54	CCATATTATTATAGACGGGAGAATTAAAGCGCTAA
[KT]_M13_core 55	AATCATAGGTTTTTTTAAATAAACAG
[KT]_M13_core _56	AAGAAAAGAGATAACCCACAAGAAAAACAGGG
[KT]_M13_core _56 [KT]_M13_core _57	AAGAAAAGAGATAACCCACAAGAAAAACAGGG AATTGCTGAACACCCTTTTTTAAATCAATATACTTTT
[KT]_M13_core _56 [KT]_M13_core _57 [KT]_M13_core _58	AAGAAAAGAGATAACCCACAAGAAAAACAGGG AATTGCTGAACACCCTTTTTTAAATCAATATACTTTT AGCCCAAGCTATCTTACCGAAGCAGTATGT
[KT]_M13_core _56 [KT]_M13_core _57 [KT]_M13_core _58 [KT]_M13_core _59	AAGAAAAGAGATAACCCACAAGAAAAACAGGG AATTGCTGAACACCCTTTTTTAAATCAATATACTTTT AGCCCAAGCTATCTTACCGAAGCAGTATGT TATCAGAGTAAGCAGATAGCCGAAAAGAACTG
[KT]_M13_core _56 [KT]_M13_core _57 [KT]_M13_core _58 [KT]_M13_core _59 [KT]_M13_core _60	AAGAAAAGAGATAACCCACAAGAAAAACAGGG AATTGCTGAACACCCTTTTTTAAATCAATATACTTTT AGCCCAAGCTATCTTACCGAAGCAGTATGT TATCAGAGTAAGCAGATAGCCGAAAAGAACTG TTAATGGAAATTTTTTGTCAGAGGGT
[KT]_M13_core _56 [KT]_M13_core _57 [KT]_M13_core _58 [KT]_M13_core _59 [KT]_M13_core _60 [KT]_M13_core _61	AAGAAAAGAGATAACCCACAAGAAAAACAGGG AATTGCTGAACACCCTTTTTTAAATCAATATACTTTT AGCCCAAGCTATCTTACCGAAGCAGTATGT TATCAGAGTAAGCAGATAGCCGAAAAGAACTG TTAATGGAAATTTTTTGTCAGAGGGT CGGAATAAAAGACTCCTTATTACGCCCTTTTT
[KT]_M13_core _56 [KT]_M13_core _57 [KT]_M13_core _58 [KT]_M13_core _59 [KT]_M13_core _60 [KT]_M13_core _61 [KT]_M13_core _61	AAGAAAAGAGATAACCCACAAGAAAAACAGGGAATTGCTGAACACCCTTTTTTAAATCAATATACTTTTAGCCCAAGCTATCTTACCGAAGCAGTATGTTATCAGAGTAAGCAGATAGCCGAAAAGAACTGTTAATGGAAATTTTTTGTCAGAGGGTCGGAATAAAAGACTCCTTATTACGCCCTTTTTAAATTCATAACGGAATACCCAACAAAGTTACC
[KT]_M13_core _56 [KT]_M13_core _57 [KT]_M13_core _58 [KT]_M13_core _59 [KT]_M13_core _60 [KT]_M13_core _61 [KT]_M13_core _62 [KT]_M13_core _63	AAGAAAAGAGATAACCCACAAGAAAAAACAGGGAATTGCTGAACACCCTTTTTTAAATCAATATACTTTTAGCCCAAGCTATCTTACCGAAGCAGTATGTTATCAGAGTAAGCAGATAGCCGAAAAGAACTGTTAATGGAAATTTTTTGTCAGAGGGTCGGAATAAAAGACTCCTTATTACGCCCTTTTTAAATTCATAACGGAATACCCAACAAAGTTACCAGAAGGAAACTTTTTTACGGATTCGC
[KT]_M13_core _56 [KT]_M13_core _57 [KT]_M13_core _58 [KT]_M13_core _59 [KT]_M13_core _60 [KT]_M13_core _61 [KT]_M13_core _62 [KT]_M13_core _63 [KT]_M13_core _63 [KT]_M13_core _64	AAGAAAAGAGATAACCCACAAGAAAAACAGGGAATTGCTGAACACCCTTTTTTAAATCAATATACTTTTAGCCCAAGCTATCTTACCGAAGCAGTATGTTATCAGAGTAAGCAGATAGCCGAAAAGAACTGTTAATGGAAATTTTTTGTCAGAGGGTCGGAATAAAAGACTCCTTATTACGCCCTTTTTAAATTCATAACGGAATACCCAACAAAGTTACCAGAAGGAAACTTTTTTACGGATTCGCTAGCAAAATAAAAGAAACGCAAAAGGTGAAT

[KT]_M13_core _66	CAATACATCGGGAGTTTTTAACGCAATAATATG
[KT]_M13_core _67	TTACCATTGGAAATTATTCATTAAAGACACCA
[KT]_M13_core _68	GAAACCAACCGATTGAGGGAGGTCAATAGA
[KT]_M13_core _69	GTTTACCAGCTTTTTCAGATGATGG
[KT]_M13_core _70	TATCACCCAGCAAAATCACCAGTTTGCCAT
[KT]_M13_core _71	ATATTGACAGCAAGGCCGGAAACGCGGCATTT
[KT]_M13_core _72	CGACATTCATCGATAGCAGCACCGTCCTTTAGC
[KT]_M13_core _73	CATCATATTCTTTTGACAAAAGGG
[KT]_M13_core _74	CACCCTCAAGCCCCCTTATTAGCGTAGCACCA
[KT]_M13_core _75	CCCTCAGGTAGCGCGTTTTCATTCACCAAT
[KT]_M13_core _76	TTTGAATCAGTTTAGGAGCAAGGTTATCTAAATGAATCAA G
[KT]_M13_core _77	TAAAGGACTCCAAAAAAAGGCTACCGATAGTTGCGCCC GATAT
[KT]_M13_core _78	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG
[KT]_M13_core _78 [KT]_M13_core _79	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT
[KT]_M13_core _78 [KT]_M13_core _79 [KT]_M13_core _80	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT CTTTTCAGGAACCGCCTCCCTCAGTCTCTG
[KT]_M13_core _78 [KT]_M13_core _79 [KT]_M13_core _80 [KT]_M13_core _81	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT CTTTTCAGGAACCGCCTCCTCAGTCTCTG TCGGTCATGAACCGCCACCCTCAGTAAATCCT
[KT]_M13_core _78 [KT]_M13_core _79 [KT]_M13_core _80 [KT]_M13_core _81 [KT]_M13_core _82	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT CTTTTCAGGAACCGCCTCCTCAGTCTCTG TCGGTCATGAACCGCCACCAGAACCCAGAACCCAGACGAT
[KT]_M13_core _78 [KT]_M13_core _79 [KT]_M13_core _80 [KT]_M13_core _81 [KT]_M13_core _82 [KT]_M13_core _83	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT CTTTTCAGGAACCGCCTCCCTCAGTCTCTG TCGGTCATGAACCGCCACCAGAACCCAGAACCCA GTCAGACTAGCCGCCACCAGAACCCAGACGAT AGGCAGGTACCACCAGAGCCGCCGTTTCGCCATTAAAAA
[KT]_M13_core _78 [KT]_M13_core _79 [KT]_M13_core _80 [KT]_M13_core _81 [KT]_M13_core _82 [KT]_M13_core _83 [KT]_M13_core _83	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT CTTTTCAGGAACCGCCTCCCTCAGTCTCTG TCGGTCATGAACCGCCACCAGAACCCAGAACCCA GTCAGACTAGCCGCCACCAGAACCCAGACGAT AGGCAGGTACCACCAGAGCCGCCGTTTCGCCATTAAAAA TACTAATGCGC GAACTGATAGCCCTTTGACAGGAGGTTG
[KT]_M13_core _78 [KT]_M13_core _79 [KT]_M13_core _80 [KT]_M13_core _81 [KT]_M13_core _82 [KT]_M13_core _83 [KT]_M13_core _84 [KT]_M13_core _84 [KT]_M13_core _85	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT CTTTTCAGGAACCGCCTCCTCAGTCTCTG TCGGTCATGAACCGCCACCAGAAATCCT GTCAGACTAGCCGCCACCAGAACCCAGAACGAT AGGCAGGTACCACCAGAGCCGCCGTTTCGCCATTAAAAAA TACTAATGCGC GAACTGATAGCCCTTTGACAGGAGGTTG ACCAGTCAACAGAGATAGAACCCAGTGCCA
[KT]_M13_core _78 [KT]_M13_core _79 [KT]_M13_core _80 [KT]_M13_core _81 [KT]_M13_core _82 [KT]_M13_core _83 [KT]_M13_core _84 [KT]_M13_core _85 [KT]_M13_core _85	TTCTTAAACAGCTTGATCCAAAAGGAGCCTTTGGAGTGAG ATTCGGTCGATCGTCACCCTCAGACGGCTACAGAGGCTTT CTTTTCAGGAACCGCCTCCCTCAGTCTCTG TCGGTCATGAACCGCCACCAGATAAATCCT GTCAGACTAGCCGCCACCAGAACCCAGACGAT AGGCAGGTACCACCAGAGCCGCCGTTTCGCCATTAAAAA TACTAATGCGC GAACTGATAGCCCTTTGACAGGAGGTTG ACCAGTCAACAGAGATAGAACCCAGTGCCA

[KT]_M13_core _88	GTCTGAAAGTAAGAATACGTGGCAGGTGAGGC
[KT]_M13_core _89	CAACAGTAGAAGATAAAACAGACAGACAAT
[KT]_M13_core _90	ATTTTTGTACCTACATTTTGACGAAGAACT
[KT]_M13_core _91	CATGGAAAAATGGCTATTAGTCTTCGAACGAA
[KT]_M13_core _92	CGCTGAGCCTTGCTGAACCTCATTTACAAA
[KT]_M13_core _93	GGTCAGTATCAATATCTGGTCAGTATAATACA
[KT]_M13_core _94	CCACCAGCTGAAAGGAATTGAGGACTAACAACTAATAGA TCGGAATTAT
[KT]_M13_core _95	CATTATCATTTAGAAGTATTAGACAATATCAA
[KT]_M13_core _96	GAAGGAGTAGAGCCGTCAATAGTGGCAAAT
[KT]_M13_core _97	CAATTCGATTAATTTTAAAAGTAGGGTTAG
[KT]_M13_core _98	TTTGAGGATTTTGCGGAACAAAGATGATTGTT
[KT]_M13_core _99	GGTTTAACACTTCTGAATAATGGATTGAGTAA
[KT]_M13_core _100	CTGATTGCTTGTAACAGTACCTTTTTCATCAATATAATCCA ACCACCA
[KT]_M13_core _101	AACCTACTAAAGAAATTGCGTAAATTATTC
[KT]_M13_core _102	TGGATTATGTCAGATGAATATACATGAATACC
[KT]_M13_core _103	ATTTAACAAAATCGCGCAGAGGCGGATTTTCA
[KT]_M13_core _104	ATTTCAAATCAAGAAAACAAAACGCTATTA
[KT]_M13_core _105	AAGTTACAATTTCATTTGAATTACTGTGAGTGAATAACCT TGAATTTATCAA
[KT]_M13_core _106	ATTAATTCTTAGATTAAGACGCATATAACT
[KT]_M13_core _107	GTCAATAGTGCTTCTGTAAATCGTTTAATTAC
[KT]_M13_core _108	ATATTTTACGGCTTAGGTTGGGTTTGAGAAGA
[KT]_M13_core	ATATGTAAACGCGAGAAAACTTCGACCGTG

[KT]_M13_core	ACCAGAGCCTGTTTAGTATCATAATGGTTTGAAATACTTT
[KT]_M13_core	TGATAAAATAATTACTAGAAAATATAAAGCCAACGCTTTA
[KT]_M13_core	CGCCAACAGAGCCAGTAATAAGATCTGTCCAGACGACGA
_112 [KT] M13_core	<u>C</u>
	AACATCCAGGCAAAGAATTAGCAGGTTGTAC
[KT]_M13_core _114	AATCAAATTATTTTTGGGAATG
[KT]_M13_core _115	CAAAAACCCTTTATTTCAACGCGTCAAATC
[KT]_M13_core _116	CGGAGACAAAGGATAAAAATTTTTAGCATAAAGCTA
[KT]_M13_core _117	CTGGTTTATTTTTTCAGAGAA
[KT]_M13_core _118	CCCTCATATATTTTTTTTTTTTTTTTTTTAAAGTACGGTGT
[KT]_M13_core _119	ACCATCAAATGCCGGAGAGGGGTTTGTATAA
[KT]_M13_core _120	CAGGAAGAAGCTATTTTTGAGAGAAGAAGGC
[KT]_M13_core _121	TAGGTAAAGATTCAAAAGGGTGTCTACAAA
[KT]_M13_core _122	CTCAACATGTTTTTTTTTTGAGTAATGTG
[KT]_M13_core _123	GGCTATCATGATAATCAGAAAAGCTTTTTAAC
[KT]_M13_core _124	ACCCCGGTGGTCATTGCCTGAGAGTCT
[KT]_M13_core _125	GGAGCAAACATTTTTTAAAGACTTCA
[KT]_M13_core _126	GCAAATATTCGCATTAAATTTTGTTGGTGT
[KT]_M13_core _127	TAGGTCACTGTTAAATCAGCTCATCCCAAAAA
[KT]_M13_core _128	TGGGAACAACGCCATCAAAAATACATATGT
[KT]_M13_core _129	AAACTAGCATGTCAATATTCGCGT
[KT]_M13_core _130	CATCAAAAGATTTACGGTAATCGTA
[KT]_M13_core _131	AGAGCTTAAGACCGGAAGCAAACTATGACCAT

[KT]_M13_core _132	AATATCGCGTTTTAATTCGTGACTATT
[KT]_M13_core _133	TCAGGATGAGGTCATTTTTGCGAACAGTTG
[KT]_M13_core _134	AGCGAACCATTGCTGAATATAATGCTGTAG
[KT]_M13_core _135	GTCAATAACCTGAAGTTTCATTCCATATGATGGCTT
[KT]_M13_core	ATTCCCATAGATACATTTCGCAGCGCGAGCTGAAAAGAAT AGTAG
[KT]_M13_core _137	CCCTGAGAGAGTTGCAGGAAAATCCTGTTTGAAAAGAAT A
[KT]_M13_core _138	AATCATGGTGGTTCCTTTTTTTGGCGCCAGGGGGCGCG
[KT]_M13_core _139	GCCCGAGGAGTCCACTATTAAACCCAAATC
[KT]_M13_core _140	GGGAGAGGCGGTTTTTTTTTAAAATCCCTTATA
[KT]_M13_core _141	TTAGAGCTACTACGTGAACCATCAGAACGTGGACTCCAAC
[KT]_M13_core _142	GTCAAAGGGCTTTAGCTAACTCA
[KT]_M13_core _143	AAGTTTTGAACCCTAAAGGGAGCGGTCACG
[KT]_M13_core _144	GATGGCCCTGACGGGGAAAGCCGGAGGAGCGG
[IZT] M12	
[K1]_M13_core _145	CTGGGGTGCCTTTCTATCAGGGC
[KT]_M13_core _145 [KT]_M13_core _146	CTGGGGTGCCTTTCTATCAGGGC CTTTGACGGCGCTGGCAAGTGTAGCCCCCGAT
[KT]_M13_core _145 [KT]_M13_core _146 [KT]_M13_core _147	CTGGGGTGCCTTTCTATCAGGGC CTTTGACGGCGCTGGCAAGTGTAGCCCCCGAT AGCGAACGAACGTGGTTTTTTTCGACTCTAGGTGCCA
[KT]_M13_core _145 [KT]_M13_core _146 [KT]_M13_core _147 [KT]_M13_core _148	CTGGGGTGCCTTTCTATCAGGGC CTTTGACGGCGCTGGCAAGTGTAGCCCCGAT AGCGAACGAACGTGGTTTTTTTCGACTCTAGGTGCCA CTGCGCGCTACAGGGCGCGTACAGTGAGGC
[KT]_M13_core _145 [KT]_M13_core _146 [KT]_M13_core _147 [KT]_M13_core _148 [KT]_M13_core _149	CTGGGGTGCCTTTCTATCAGGGC CTTTGACGGCGCTGGCAAGTGTAGCCCCGAT AGCGAACGAACGTGGTTTTTTTCGACTCTAGGTGCCA CTGCGCGCTACAGGGCGCGTACAGTGAGGC GCGCTAGGAGCACGTATAACGTGCACGCCAGA
[KT]_M13_core _145 [KT]_M13_core _146 [KT]_M13_core _147 [KT]_M13_core _148 [KT]_M13_core _149 [KT]_M13_core _150	CTGGGGTGCCTTTCTATCAGGGC CTTTGACGGCGCTGGCAAGTGTAGCCCCGAT AGCGAACGAACGTGGTTTTTTTCGACTCTAGGTGCCA CTGCGCGCTACAGGGCGCGTACAGTGAGGC GCGCTAGGAGCACGTATAACGTGCACGCCAGA AGCTTGCATGCTTTTTTTGAAGGGAAGAA
[KT]_M13_core _145 [KT]_M13_core _146 [KT]_M13_core _147 [KT]_M13_core _148 [KT]_M13_core _149 [KT]_M13_core _150 [KT]_M13_core _151	CTGGGGTGCCTTTCTATCAGGGC CTTTGACGGCGCTGGCAAGTGTAGCCCCGAT AGCGAACGAACGTGGTTTTTTTCGACTCTAGGTGCCA CTGCGCGCTACAGGGCGCGTACAGTGAGGC GCGCTAGGAGCACGTATAACGTGCACGCCAGA AGCTTGCATGCTTTTTTTGAAGGGAAGAA GTAATAACAAGTGTTTTTATAATCTATGGTTG
[KT]_M13_core _145 [KT]_M13_core _146 [KT]_M13_core _147 [KT]_M13_core _148 [KT]_M13_core _149 [KT]_M13_core _150 [KT]_M13_core _151 [KT]_M13_core _152	CTGGGGTGCCTTTCTATCAGGGC CTTTGACGGCGCTGGCAAGTGTAGCCCCGAT AGCGAACGAACGTGGTTTTTTTCGACTCTAGGTGCCA CTGCGCGCTACAGGGCGCGTACAGTGAGGC GCGCTAGGAGCACGTATAACGTGCACGCCAGA AGCTTGCATGCTTTTTTTGAAGGGAAGAA GTAATAACAAGTGTTTTTATAATCTATGGTTG CAAACTATTAGACAGGAACGGTTTTCCTCGTTAGAAT

[KT]_M13_core _154	CACCGAGTTGTAGCAATACTTCGCAGATTC
[KT]_M13_core _155	ATCCTGAGATCACTTGCCTGAGTAGCTCAATC
[KT]_M13_core _156	AAGGGATTTCGGCCTTGCTGGTAAAAAACGCT
[KT]_M13_core _157	AAACCAGGCATTTAGGCCGATTA
[KT]_M13_core _158	CAGGATATCCAGAACTTTTTTTATGTGAGCGACCTGT
[KT]_M13_core _159	AGCCAGCTTTCATTTTTTTCCAGCCATTGCAA
[KT]_M13_core _160	CAATAGGAAACGGCGGATTGACCGGCACTCCA
[KT]_M13_core _161	CTGGCCTTGTAACAACCCGTCGGAGGTGCCGG
[KT]_M13_core _162	AGATGGGGGACGACGACAGTATTTACGCCA
[KT]_M13_core _163	CTTCGCTACGGCCTCAGGAAGATCTAATGGGA
[KT]_M13_core _164	GGCTGCGCAACTGTTTCCGGCACCGCTTCTTTCTCCG
[KT]_M13_core _165	GCCAGCTTGGGAAGGGCGATCGGTTGTAAAAC
[KT]_M13_core _166	GCTGGCGGGTAACGCCAGGGTTTCATGGTC
[KT]_M13_core _167	ATTCGTAATTCCCAGTCACGACGTGCGGGCCT
[KT]_M13_core _168	GACGGCCAAGGATCCCCGGGTACCTGTAAAGC
[KT]_M13_core _169	ATAGCTGTCCACACAACATACGCTCACTGCCCGCTTTAAT GAAT
[KT]_M13_core _170	CATTAATTGCGTTGCGAGCCGGAAGCATAAAGGAGCTCG A
[KT]_M13_core _171	CGGCCAACTGGTTTTTCTTTTCAAGCTGATTGCCCTTCAC

Table S2.58. Edge staples of M13mp18 kite DNA origami tile.

Name	Sequence
[KT]_M13_edge_1	AACCGAACTGACCAACCGGTCAATCATAAGGG
[KT]_M13_edge_2	ACGAGAAACACCAGAAAATAAGGCTTGCCCTG
[KT]_M13_edge_3	TAGGAATACCACATGATTCATCAGTTGAGA
[KT]_M13_edge_4	TCAAATGCTTTAAACAATTCATTGAATCCCCC

[KT]_M13_edge_5	TTGCTCCTTTTGATAATAGAGAGTACCTTTAA
[KT]_M13_edge_6	GTTATCCGCTCACAATTTTCCTGTGTGAAATT
[KT]_M13_edge_7	CAAGGCGATTAAGTTGAAAGGGGGGATGTGCTG
[KT]_M13_edge_8	ATCTGCCAGTTTGAGGCGCATCGTAACCGTGCTT
[KT]_M13_edge_9	TAATATTTGTTAAAATTTAAATTGTAAACGT
[KT]_M13_edge_10	TTCTAGCTGATAAATTATATGATATTCAACCG
[KT]_M13_edge_11	AGCAAGCAAATCAGATCATTACCGCGCCCAATAA
[KT]_M13_edge_12	CAGCTACAATTTTATCGTTGCTATTTTGCACCCA
[KT]_M13_edge_13	CAATGAAATAGCAATATAATAAGAGCAAGAAAAG
[KT]_M13_edge_14	ATAAAGGTGGCAACATCGTAGAAAATACATACGC
[KT]_M13_edge_15	AACCAGAGCCACCACCTAATCAAAATCACCGGAA
[KT]_M13_edge_16	ATACATGGCTTTTGATCGTTCCAGTAAGCGTCAA
[KT]_M13_edge_17	CACAGACAGCCCTCATAACGCCTGTAGCATTCCG
[KT]_M13_edge_18	TTTTCACGTTGAAAATATTGCGAATAATAATTGT
[KT]_M13_edge_19	TAAACACCGGAATCTAAGGCGTTAAATAAG
[KT]_M13_edge_20	ATCGCAAGACAAAGAATGCTGATGCAAATC
[KT]_M13_edge_21	ATGATGAAACAAACTTACCTGAGCAAAAGA
[KT]_M13_edge_22	ACGTAAAACAGAAACATATCAAAATTATTT
[KT]_M13_edge_23	AATCTAAAGCATCAAGCCAGCAGCAAATGA
[KT]_M13_edge_24	GGGACATTCTGGCCACACGACCAGTAATAA
[KT]_M13_edge_25	CGCTTAATGCGCCGTAACCACCACACCCGC
[KT]_M13_edge_26	AAAGCACTAAATCGTTGGGGGTCGAGGTGCC

Table S2.59. Core staples of M13mp18 prismatic pentagonal DNA origami tile.

Name	Sequence
[PT-prism]_M13_core_1	ACTGAACACCCTGAACAAAGTCAGAGGGCAAGAA
	TTGAGTTAATAAGAAAA
[PT-prism]_M13_core_2	ACCCAAAATTACCGAAGCCCTTTTGCCCAATA
[PT-prism]_M13_core_3	ATAAGAGCAAGAATTTTTTTGATTTTTGTTTA
[PT-prism]_M13_core_4	GTAAGCAAGGAAACGCAATAATATATAAAA
	TATTTTGCTATCCCAATCCAATTTTTTTAGCAATAGC
[PT-prism]_M13_core_5	Т
	ATCGAACTGGC
[PT-prism]_M13_core_6	TTACCAGCACATAAAGGTGGCAACAACGGAAT
	ATGATTAAAACGTAGAAAATACATGCCAAAGACAA
[PT-prism]_M13_core_7	A
	AGGGGGTGAATT
[PT-prism]_M13_core_8	TTAGCAGACTCTTCAAGAGGAGG
[PT-prism]_M13_core_9	GAAACGCAATCAATAGAAAATTTTGGGAAT
[PT-	
prism]_M13_core_10	
[PT-	AAACCATCCACCGACTTGAGCCATCATATGGT

prism]_M13_core_11	
[PT-	
prism]_M13_core_12	UACAUAAAAAI IAI ICAI IAAACUACAI IC
[PT-	AACCGATTGAGGTTTTTTTAGTACCGCACTCATCGA
prism] M13_core_13	GAAGTCTTTCC
[PT-	
prism]_M13_core_14	
[PT-	ATCACCGTGATAGCAGCACCGTAATGCCATCT
prism]_M13_core_15	
[PT-	GACGGTCAAGTTTGCCTTTAGCATTTTCG
prism M13_core_16	
[PT-	TAAAGTAATCCAAGAACGGGTTTTTTTTTAAATATT
prism]_M13_core_17	
[P]-	CTCAGAGCTCAAAATCACCGGAACCACCAATG
prism M13 core 18	
[PI-	CGCCGCCCCCTTATTAGCGTTTCAGTAGC
prismW13_core_19	
[PI- prigm] M12 core 20	ATCGGCGTCATTTTACCGCCAGT
[FI- prism] M13 core 21	CCACCGGCCGCCACCCTCAGAGACAGGAGT
prisml M13 core 22	TTTCATAACGCCACCAGAACCACCTCCAGTAA
[PT-	
prism] M13 core 23	GTCATAGCAGCATTGACAGGAGGTGAATGGAA
[PT-	
prism] M13 core 24	AATAAGAGTTTTGCGTTTTC
[PT-	
prism] M13 core 25	AIGCCCCCCAIGGCITTIGAIGAICCACCACC
[PT-	
prism]_M13_core_26	IGAAACACICIGAAIIIACCGIACCAGAGC
ГРТ	GGCGGATACTGAGACTCCTCAAGAATCCTCATTAA
IF I- prism] M13 core 27	Α
	GCCATGAGGCAG
[PT-	<u> GTC Δ G Δ C G Δ T T G G T T T T T T T T Δ Δ T G G T T T G Δ Δ</u>
prism]_M13_core_28	
[PT-	GTACTGGAACAGTGCCCGTATATTTAGTAC
prism]_M13_core_29	
[PT-	GCGTCATATGCCTATTTCGGAACCCCCGGAAT
prism] M13_core_30	
LPT-	AGCGCAGTTGAAAGTATTAAGAGGAGTGCCGT
prism] M13_core_31	
[PT-	
prism] M13 core 32	
· · ·	GUAITITTTUAAGCAAA

[PT- prism] M13 core 33	CAAAATCGCTTAGGTTGGGTTAGTTTAGTA
[PT-	AGAATCGCTTACTAGAAAAAGCCTTATAACTA
prism] M13_core_34 [PT-	
prism] M13 core 35	
prism]_M13_core_36	AAGACGCTTGCTGATGCAAATCCAAACACCGG
[PT- prism] M13 core 37	ATTTAGGCGTTAAATAAGAATAATCGCAAG
[PT- prism] M13 core 38	ACAAAGAAAAACATAGCGATAGTAATGGAA
[PT- prism] M13 core 39	AATCCTTGACGCGAGAAAACTTTTCGTGTGAT
[PT- prism] M13 core 40	ATACCGACTCAAATATATTTTAGTCGCTATTAAT
[PT- prism] M13 core 41	ACTTGCACCCTTCTGACCTGAAAGTTTAAATCGTTA ATT
[PT- prism] M13 core 42	TCATATGCGCTCAACAGTAGGGCGCGCCTG
[PT- prism]_M13_core_43	AATCATAACATATTTAACAACGCCGACAATAA
[PT- prism]_M13_core_44	AAATAAGGCAGAGGCATTTTCGAGACAAAAGG
[PT- prism]_M13_core_45	GTAGAAACTTCAGCTAATGCAGAACTTAATTG
[PT- prism]_M13_core_46	TTATCATTTCTGTCCAGACGACAACATGTA
[PT- prism]_M13_core_47	TTTATCAATCCCATCCTAATTTTCATTACC
[PT- prism] M13 core 48	ACAACATGCAATCAATAATCGGCTCAAGCAAG
[PT- prism]_M13_core_49	TTTTAGCGATTTTCATCGTAGGAAACGAGCAT
[PT- prism]_M13_core_50	GCGCCCACGGTATTCTAAGAACATCCTGAA
[PT- prism]_M13_core_51	CCGTTTTTAACCTCCCGACTTGCGTTAGTTGC
[PT- prism]_M13_core_52	ACGTCAAAAAACAGCCATATTATTACCCAGCTACAA T TTTGCGAGGCG
[PT- prism]_M13_core_53	TCTTACCTGCCAGTTACAAAATAATGAAAA
[PT- prism] M13 core 54	TAGCAGCATAAAAACAGGGAAGCGCATTAGACGGG

[PT-	ACGGTAATCGTAAAACTAGAGAAAAGCCCCAA
prism]_M13_core_55	AACAITAAAI
[PT- prism] M13 core 56	CCTTCCTGATTTTGTTAAAATTCGACAGGAA
[PT-	
prism]_M13_core_57	GALIGIAIAALIAGUTALITTIGAGAGAIGATATIU
[PT-	
prism]_M13_core_58	
[PT-	
prism] M13_core_59	
[PT-	ΔΤΔΤΤΤΤΔΤΔ GCTG ΔΤΔ Δ ΔΤΤΔ ΔΤΤΤΤΤΔΤΤGTΔ Δ Δ CG
prism]_M13_core_60	
[PT-	GATCGCACGGGATAGGTCACGTTGGCGTCTGG
prism] M13 core 61	
[PT-	TCTGGTGCCGTGGGAACAAACGACATT
prism]_M13_core_62	
[PT-	AAATGTGATTTTTTTTAAAAATTTTTAGAATACTTTT
prism]_M13_core_63	
	GGGCGCAGACGACAGTATCGGCTTGGGTAA
prism]_M13_core_64	
[P]-	ACCGTAATTCCAGCCAGCTTTCCGGCGAAAGG
prism]_M13_core_65	
[PI-	ATTCTCCGGAAACCAGGCAAAGGTGCGGG
prismj_W13_core_66	
$[\Gamma I - nright] M12 core 67$	AGCTGAAAAAGCCTTTATTTTTTTTTTTTTCCGTCGG
prism] M13 core 68	CAGGTCGACTGCAAGGCGATTAAGCTCAGGAA
[PT-	
prisml M13 core 69	GCTCGAACTATTACGCCAGCTGGCACCGCT
[PT-	
prism] M13 core 70	CGATCGCGCCATTCTTTTTTTTTTTTTTTTTATACAT
[PT-	
prism] M13 core 71	CGCCAGGCCAGIGCCAAGCIIGAAIIGCGI
[PT-	
prism] M13_core_72	GUGAIGIGUIUIAGAUGAIUUUUGIGUGUIGU
[PT-	
prism]_M13_core_73	CETETTEOTTEOTAATCATOOTEACATACOAO
[PT-	CTCCAGTCAATATTTCGCAACTGTTGGGAAGGGGT
prism] M13 core 74	TTCC
[PT-	ΑΑΤGCTGTACGGTGTCTGGAΔGTCΔTΔCΔG
prism]_M13_core_75	
[PT-	TACCAAAAATTAACATCCAATAAATTTCATTC
prism] M13_core_76	
[PT-	CATATAACGCTTAGAGCTTAATTGAGAAGCAA

prism]_M13_core_77	
[PT-	
prism]_M13_core_78	
[PT-	GCGGGAGAGGTGGCATCAATTCTGCGAACG
prism]_M13_core_79	
[PT-	AGTAGATTCCTTTTGATAAGAGGAGGAAGC
prism]_M13_core_80	
[PI-	TTAATTGCTTAGTTTGACCATTAGGGGGGCGCG
prismj_N115_core_81	
prism] M13 core 82	TTCGCAAATGACAGGTCAGGATTAGATTTAATTC
[PT-	
prism] M13 core 83	GCAAGGCAGAGCATAAAGCTAAAATGTGTA
[PT-	
prism] M13 core 84	GIAGIAGCACALIAIGACCCIGIAACCCICAL
[PT-	
prism]_M13_core_85	AACCOTICAAIOCAAIOCCIOAOIAICOOTIO
[PT-	GGTA A A GA A ATC A CC ATC A ATATCTA C A A A
prism]_M13_core_86	
[PT-	GGCTATCCTGGAGCAAACAAGAGAAT
prism]_M13_core_8/	
[PI-	GGGATAGCCACCGTACTCAGGAGGAACAGTTA
prism] M13 core 89	CGCCACCCAGAGCCACCACCCTATGAATTT
[PT-	
prism] M13 core 90	AGGTGTATAAGCCCAATAGGAACCTAAAGTTT
	AGCGAAAGATGCCACTACGAATTTTTTTTTTGAAA
[PI-	G
prisinj_wi15_core_91	AGGATAACAAAG
[PT-	<u>Γ<u>G</u>GCTACGGA AGTTTCCATTA A A ΑΤΑCACT</u>
prism]_M13_core_92	
[PT-	CATAAGGGAACCGTTTTTTTTTTAAAACGAAAGA
prism]_M13_core_93	
[PI-	AAAACACCGAAACAAAGTACAACGGAGATTTGTAT
prismj_W15_core_94	
[PT-	GGC
prism]_M13_core_95	GCAGAAGACCAGG
[PT-	
prism] M13 core 96	AATCAACGCAGATGAACGGTGTACCGGTCAAT
[PT-	
prism]_M13_core_97	UGUAIAGAAGAAUUGGAIAI IUGAIGGI I I
[PT-	GTCAGGACAGTAAATTGGGGCTTGAATTACCCA
prism]_M13_core_98	UTCAUUACAUTAAATTUUUCTTUAATTACCCA

[PT-	
prism] M13 core 99	AA
prisinj_ivi15_core_//	ATCTTGAGATT
[DT]	TGCCAGAGATAGCGTCCAATACTGACTTCAAATATC
LP1-	GC
prism]_M13_core_100	GTGAGTACCT
[DT]	GIGAGIACCI
	TAGGAATAAAAAACCAAAATAGCGTATTCATT
prism]_M13_core_101	
[PT-	
prism] M13 core 102	GAAICCCCCCAICAAAAAGAI IAAGICAIIII
[PT-	
prism] M13 core 103	AAACGAGCTGACTATTATAGTCCTGAATAT
[P1-	AGCGGATTCTCAAATGCTTTAAACTTTACCAG
prism]_M13_core_104	
[PT-	
prisml M13 core 105	TAACGUCUTATCATAACUCTUGAGTTUAGA
[PT_	
$[1 1^{-}]$	CCGAAAGCGGAATCGTCATAAAAGAGGCTT
prising_wits_core_100	
LPT-	GAGCTTCAAAGCGTTTTTTTTTTGCTCAGTACCA
prism]_M13_core_107	Sheerrentingeerrentingerentententente
[PT-	
prisml M13 core 108	ACGACGATCCACATTCAACTAATGTTATACCA
[PT	
[1 1-	AATTTCATTAAGAACTGGCTCACAGATACA
prismj_W13_core_109	
LPT-	TTGCAAAAGAAAGATTCATCAGTACGTTAA
prism]_M13_core_110	
[DT]	TAAAACGAACTATTTTTTTTTTAAAGGAGCCTTTAATTG
[PI-	ТА
prism]_M13_core_111	
[DT	
	TGTCGTCTGAATTGCGAATAATAACGGTTTAT
prism]_M13_core_112	
[PT-	ΛΛ <u>ΩΤΛΛΛ</u> ΩΤΤΩΩΛ <u>G</u> ΛΩΩΤΤΛ <u>Ω</u> ΤΛΛΩΤΑΤΤΤΩΛ
prism]_M13_core_113	Me iMMorreenoneor ino iMchirren
[PT-	
prisml M13 core 114	GIAACACITGAIAIAAGIAIAGIAITAITC
[1 1- 	CGAGAGGGTGAGTTTCGTCACCAGACAGACAG
prism]_M13_core_115	
[PT-	
prism]_M13_core_116	синсововтонов инистенени тентовето
[PT-	
prisml M13 core 117	GCGCCAGATAAAGTGTAAAGCCGGTACCGA
[PT_	
$[1 1^{-}]$	CTGAGTTGTAGCAATTTTTTTTCCACACAATAGCT
prismj_M15_core_118	
[PT-	<u> GGA ACA ATCA A AGGGCGA A A A ACCGT</u>
prism] M13 core 119	

ГРТ-	GGGCGATGGCCCACTACGTGAGGTGCCGTAAAGCC
prism] M13 core 120	GT
	GGCGA
[PT-	CTGCGCGTGGGGAAAGCCGGCGAAACTAAAT
prism] M13 core 121	
[PT-	CGGAACCCTATATAGGGTTGAGTGTTGTCGAAATCG
prism]_M13_core_122	
[PT-	CTTCACCGCCTTATAAATCAAAATTTTTGATTTAGA
prism] M13_core_123	GC
[PT-	ΤΤGACAACCACCACCCCCCTATAACGT
prism]_M13_core_124	Полениескененееевеетнимеет
[PT-	
prism]_M13_core_125	UAAOUACUC IUUCAAUIUIAUUUAUCIAA
[PT-	
prism]_M13_core_126	TIAIAATUUTIAGAATUAGAGUGUGUTUAUG
[DT	CGAGCACGGCGCTTAATGCGCTTTTTTTGACGGG
[PI-	CAA
prism]_M13_core_12/	CAGCCGTATTGG
	AAGGGACATCGGCCTTGCTGGTAAAAGAGTCTGTC
[P]-	CA
prism]_M13_core_128	GCTTTGA
	CCGGAAGCGGTGGTTTTTTTTTTTTTTTTCGTACTAT
	GG
prism]_M13_core_129	TTTCACGCAA
	ATTAACCGTAGAAGAACTCAAACTATTCTGGCCAA
[PT-	CA
prism]_M13_core_130	GAGTATTTTTG
[PT-	
prism] M13 core 131	AAAACGCGTCTGAAATGGATTAAATACCGA
[PT-	
prisml M13 core 132	ACAGGAGCGCCAGAATCCTGAGCAACAGGA
[PT-	
prism] M13 core 133	GGCAGATTTTACCGCCAGCCATTGAAGTGTTT
[PT-	
prism] M13 core 134	GAACAATACACCAGTCACACGACCCGAACTGA
[PT_	
prism] M13 core 135	GCTTTCCTAGTGAGGCCACCGAGTAATATCCA
[PT_	
prism] M13 core 136	TGTGTGAAATTGTTTAGTAATAACATC
[DT	
[F 1-	CTAATGAGGGGGGAGAGGCGGTTTGTGATTGCC
[[] - miana] M12 anna 129	TGCGCTCGCCAGCTGCATTAATTTGCAGCA
prising_ivito_core_158	
[r]-	GCAAAATCCCTGGCCCTGAGAGAGGAATCGGC
prism M13 core 139	

[PT- prism] M13 core 140	AGCGGTCGTTTGATGGTGGTTCTCCAGTTT
[PT- [PT-	GTGCCACGAAACATCGCCATTAAATTTACATT
[PT-	ATCTAAATTAGTCTTTAATGCGAGTAATAA
Prism M13 core 142 [PT-	
prism]_M13_core_143	
prism] M13 core 144	TTAAATCGAGTAACATTATCATTTTG
[PT- prism] M13 core 145	AAAGAAACCACCAGAAGGATGATTATCAGATGA TGAACCTAC
[PT- prism] M13 core 146	CGTCAGATAATAATGGAAGGGTTAGGCAATT
[PT- prism] M13 core 147	CATCAATATATTTTACAAACAATTCGACGCCGTCAA
[PT- prism] M13 core 148	TGGTCAGTACATTTGAGGATTTATTTTTGGATTATA C
[PT- prism] M13 core 149	TTCTGGAATATACAGTAACAGCCAAGTTA
[PT- prism] M13 core 150	CATATCAATTGCGTAGATTTTCTCATTTCA
[PT- prism] M13 core 151	CAATTTCACGCAGAGGCGAATTATAGGTTTAA
[PT-	TTTGAATATACCTTTTACATCTTTTTTTTTATCAAACC
prism]_M13_core_152	СААААТGAAAA
[PT- prism]_M13_core_153	AGCGATAGTAATGGAAACAGTACTGATTGC
[PT- prism]_M13_core_154	AATGGCTAGCATCACCTTGCTTTTTTTTAACGGAT TC GCCATAAATCA
[PT- prism]_M13_core_155	ATTACCTAAAACAAAATTAATTGAATTTAT
[PT- prism]_M13_core_156	CAAAATCGTTTGAATTACCTTTTTCTTAGATT
[PT- prism] M13 core 157	TAGCCCTACTGAGAGCCAGCAGCATCAATATC
[PT- prism] M13 core 158	ACGAACCCAGTATTAACACCGCGAAAGGAA
[PT- prism]_M13_core_159	TAGATAATTGGCAAATCAACAGTTCTGCAACA
[PT- prism]_M13_core_160	TTGAGGAAACTAATAGATTAGAAACTCGTA
[PT-	TCGTCATAAAGGCCGCTTTTTTTTTGCCCTGAC

prism]_M13_core_161	GAGTCAGTT
[PT-	TATTCCTACAAACTACAACTTTTATGTTTAGACT
prism]_M13_core_162	GGGGGGTT
[PT-	TTACCGCCAGTAATAAGAGTTTTGCGTTTTCATC
prism] M13_core_163	GGCGTCAT
[PT-	TCAAGAGGAGGTTTTGAAGTTTTCAGTATGTTA
prism]_M13_core_164	GCAGACTCT

Table S2.60. Edge staples of M13mp18 prismatic pentagonal DNA origami tile.

Name	Sequence
[PT-prism]_M13_edge_1	TGAAACAAACATCAAGGAGCAAAAGAAGATGATA
[PT-prism]_M13_edge_2	ACCTTTTTAACCTCCGATAGGTCTGAGAGACTAA
[PT-prism]_M13_edge_3	GAACAAGAAAAATAATACAATAGATAAGTCCTCA
[PT-prism]_M13_edge_4	ATATAGAAGGCTTATCATAGCAAGCAAATCAGAT
[PT-prism]_M13_edge_5	AGCAATAAAGCCTCAAAGAATTAGCAAAAT
[PT-prism]_M13_edge_6	ATATGCAACTAAAGTAGCTCAACATGTTTT
[PT-prism]_M13_edge_7	TAGTAAGAGCAACAAAAAGGAATTACGAGG
[PT-prism]_M13_edge_8	TACCTTATGCGATTACTTTAATCATTGTGA
[PT-prism]_M13_edge_9	CGCCACCCTCAGAAAACCGCCTCCCTCAGA
[PT-prism]_M13_edge_10	ACCATTACCATTAGAGCAAAATCACCAGTA
[PT-prism]_M13_edge_11	GGGGTCAGTGCCTTGAGTTAATAAGTTTTAAC
[PT-prism]_M13_edge_12	TCAGAACCGCCACCCTCTCAGAACCGCCACCCGC
[PT-prism]_M13_edge_13	ACTTTCAACAGTTTCAGGGATTTTGCTAAACAGC
[PT-prism]_M13_edge_14	AGACAGGAACGGTAGCCGATTAAAGGGATT
[PT-prism]_M13_edge_15	AGCGGGCGCTAGGGAGGGAAGAAAGCGAAA
[PT-prism]_M13_edge_16	ACAGAGGTGAGGCGGTACCAGCAGAAGATAAATT
[PT-prism]_M13_edge_17	CTTTAGGAGCACTAACAGGTTATCTAAAATATGG
[PT-prism]_M13_edge_18	CAGTTTGAGGGGACTCGTAACCGTGCATCT
[PT-prism]_M13_edge_19	ACCAATAGGAACGCAAATCAGCTCATTTTT
[PT-prism] M13_edge_20	TCGGGAAACCTGTCGTACTGCCCGCTTTCCAGGC
[PT-prism] M13 edge 21	AGCAGGCGAAAATCCTCACGCTGGTTTGCCCCTA

Name	Sequence
[PT-	AAACAAATAAATCCTCATTTACCGTTCCAGTAAGGCC
Cairo] M13_core_1	TTGA
[PT-	ΑΤG Α Α Α GTTTTTΑ Α CGGGGTC Α GTCGTC ΑΤΑ C
Cairo] M13_core_2	
[PT-	ATGGCTTTTGTTCCCTCAGAGCCGCCACCACTCAGAG
Cairo]_M13_core_3	С
[PT-	GTAACAGTTTCGGAACCTATTATCCCGGAA
Cairo]_M13_core_4	
[PT-	
Cairo] M13 core 5	
	GALIAAGAG
[PI- Coirol M12 coro 6	CGCCACCCGTTGATATAAGTATAGTCTGAAAC
Cairol M13 core 7	GCTGAGACAAGTGCCGTCGAGAGGTCAGAGCC
	AGGCGGATTCCTCAAGAGAAGTTTTTTTTTTTGTAGCG
[PT-	CGTT
Cairo]_M13_core_8	TTTCAGTAGC
[PT-	
Cairo] M13 core 9	TAGGIGIACICAGAACCGCCACCCCAGACG
[PT-	
Cairo] M13 core 10	CUTCATAGCATTTTCAGGGATAGCTCAGTACC
[PT-	TATTGACGCAAGTTTGCCTTTTTTTTGGGGGTTTTGCA
Cairo]_M13_core_11	AGCCCAA
[PT-	<u>G Δ ΔΤΔ G Δ Δ Δ Δ G ΤΤΤΤGTC G Τ C ΤΤΤCΤC Δ G Δ Δ C</u>
Cairo]_M13_core_12	
[PT-	ACCACCCTTTAGCGTAACGATCTAAGGAACAA
Cairo] M13_core_13	
[PT-	TAGGAACGCCTGTAGCATTCCATTTTCACGT
Cairo_M13_core_14	
[PT-	ACTACAACCCATGTACCTTTTTTAGGGAGGGAGGGAAGCGC
Cairo]_M13_core_15	
	ACAAAAACAAAGII
Cairol M13 core 16	TTAGTAAATTTCAACAGTTTCAGCGCCCAC
Cairol M13 core 17	GCTTGATAATTGCGAATAATAATTCAGACAGC
[PT-	
Cairol M13 core 18	CAGCTTGCTCTCCAAAAAAAGGCCAGTACAA
	CGGAATTTAGCCGAGGGCGATTCGTCACTCCAAAAG
[P] -	GAGCTT
Carroj_W13_core_19	TTTTTTAAGCCT
[PT-	GTATGTTAAACATATAAAAGAAATTGGGAA

Table S2.61. Core staples of M13mp18 Cairo pentagonal DNA origami tile.

Cairo]_M13_core_20	
[PT- Cairo]_M13_core_21	AAACCATCCACCGACTTGAGCCATCGCAAAGA
[PT- Cairo] M13 core 22	CACCACGGTGATTAAGACTCCTTATGAGTTAA
[PT- Cairo]_M13_core_23	AAGAAACACCCAAAAGAACTGGCAAATAAGTTTATT TTG TGGTGAATT
[PT- Cairo]_M13_core_24	GACAGAATGAAATTATTCATTAAACACAATCAATAGA AA ACAATAATA
[PT- Cairo]_M13_core_25	CGAAGCCGAAACCGAGGAAACGTTCATATGGTTTAC CA GGTAAA
[PT- Cairo]_M13_core_26	TTAGAGCCCAAGGCCGGAAACGTGCGTTTG
[PT- Cairo]_M13_core_27	ATCACCGTGATAGCAGCACCGTAACATCGGCA
[PT- Cairo]_M13_core_28	CGCCACCCCATAGCCCCCTTATTACACCAATG
[PT- Cairo] M13 core 29	CCATCTTTACCGGAACCGCCTCCGAACCAC
[PT- Cairo]_M13_core_30	CACCAGAGGTCAGACGATTGGCCTTGA
[PT- Cairo]_M13_core_31	AATACCACATTCAACTAATGCAGATAAGAGCAACACT AT CAAAAAGAAG
[PT- Cairo] M13 core 32	TCATAAATAGCGAGAGGCTTTTGCTAACCCTC
[PT- Cairo]_M13_core_33	GTTTACCAGACTTTTTTTTTATACCAGTCAGGACGTTTG AATTAC
[PT- Cairo]_M13_core_34	TTTTGCCTAGCGTCCAATACTGTACCCTGA
[PT- Cairo]_M13_core_35	CAGTGAATATTTTAAGAACTTTTTTTTTAAAACCAAA A TATTCATTG
[PT- Cairo]_M13_core_36	CAAATATCTCAAAAATCAGGTCTTCGGAATCG
[PT- Cairo]_M13_core_37	AATCCCCCTCATTTTTTTTAGCTGCTCATT
[PT- Cairo]_M13_core_38	CTATTATTTAAGAGGAAGCCCGTTGCGGAT
[PT- Cairo]_M13_core_39	ACCATAAAGCGTTTTAATTCGAGCCTTTAATT
[PT-	CGGATATTCATTACCCAAATTTAGTTCAGAAAACGAG

Cairo]_M13_core_40	AATG
[PT-	
Cairo]_M13_core_41	
[PT-	CAGTTGATCAGGATTAGAGAGTACTTCAAAGC
Cairo] M13 core 42	
[PT-	GAACCAGACCGTTTTTTTTTTTACTTAGCCGG
Cairoj_M13_core_43	
[PI- Coirol M12 coro 44	GGCTTAGACATGTTTTAAATATTGGCATCA
$Callo]_WI15_Core_44$	
Li 1- Cairol M13 core 45	GCTCCTTTGTCTGGAAGTTTCATTTATATTTT
	CCATTAAATCCGCGACCTGTTTTTTTTTCTCCAACAGGT
[PT-	T
Cairo]_M13_core_46	CCCAATTC
[PT-	
Cairo]_M13_core_47	AAAAI IAAUUUUUAUU IUAAAAUUUUAAU IAA
[PT-	
Cairo]_M13_core_48	
[PT-	TGCGAACGAGTTTTTTTTGAGGAAGTTT
Cairo]_M13_core_49	
[PI- Coirol M12 corr 50	ATTCTACTACAGGCAAGGCAAAAGGGTGAG
Carroj_W13_core_50	
[r 1- Cairo] M13 core 51	CATTTGGGGCAATAAAGCCTCAGAATGCCTGA
[PT-	CATTTCGCAAATGGTGTTGTACCAAAAACAATTTTTA
Cairo] M13 core 52	G
[PT-	
Cairo]_M13_core_53	CITIGAGGACIAIGACCATIAGAIA
[PT-	
Cairo]_M13_core_54	
[PT-	TACAAAGGATATATTTTAAATGCAGCATAAAG
Cairo] M13_core_55	
[PT- Colored M12 57	CTGGAGCACAACGCAAGGATAAAATTATGACC
Cairoj MI13 core 56	
[FI- Cairo] M13 core 57	CTGTAATACTTTTTTTTTTTGTATCGGTTTAT
[PT-	
Cairol M13 core 58	AAAGGCCCAACCGTTCTAGCTGTTGTATAA
[PT-	
Cairo] M13 core 59	GTAATGTGGAGGGTAGCTATTTTTTGATAATC
[PT-	
Cairo] M13 core 60	AAUU IU IAIUAGUIUAI IGUAAAU IAG
[PT_	TTATTTAACAAGTTTGAGACGAAAAACCGTCTTTTTT
Cairol M13 core 61	T
	TTGAGTCAATAGTG
	269

[PT- Cairo] M13 core 62	TCACCCTCCAATGACAACAACCATCGGAGTGA
[PT- Cairo] M13 core 63	CTAAAGGACCGATAGTTGCGCCGAAGCAGCGA
[PT- Cairo] M13 core 64	TGAAAATTTCGAGGTGAATTTCAACGGCTACAGAGG
[PT- Cairo]_M13_core_65	GCATAACCTAAAGGCCGCTTTTGGAGGCAA
[PT- Cairo] M13 core 66	ATACGTAAATCGGAACGAGGGTAGCTTAAACA
[PT- Cairo] M13 core 67	AACGGAGACCAACCTAAAACGAAACGGGATCG
[PT- Cairo] M13 core 68	AAGACAGCTGCCACTACGAAGGCATTTGTATC
[PT- Cairo]_M13_core_69	AAGAATACATACCAAGCGCGAAACCAACTT
[PT- Cairo]_M13_core_70	AACGAGGCATAAATTGTGTCGAAACGGGTAAA
[PT- Cairo]_M13_core_71	TAATCTTGAAGGGAACCGAACTGACAAAGTAC
[PT- Cairo]_M13_core_72	ATCGCCTGGCAGACGGTCAATCATACAAGAAC
[PT- Cairo]_M13_core_73	TGAAAGAGGGCTGGCTGACCTTCAGAAACA
[PT- Cairo]_M13_core_74	CTTATGCGAAGGCTTGCCCTGACGATCAAGAG
[PT- Cairo]_M13_core_75	CCAGAACGCAACTTTAATCATTGGGGGAAGA
[PT- Cairo] M13 core 76	AAAATCTATTACAGGTAGAAAGATTCATCAGTTG
[PT- Cairo] M13 core 77	CTTATCCGGTATTCTAAGACGGGAGGTTTTGAAGACG CTAA
[PT- Cairo] M13 core 78	TCCAAATAATCCTGAATCTTACCACCTTAAAT
[PT- Cairo] M13 core 79	CAAGATTAGTTTTACCGCACTCATCGAGAAGGCTGTC T
[PT- Cairo] M13 core 80	CGAGCGTCAACAGCCATATTATTACACCCT
[PT- Cairo] M13 core 81	CCTGTTTACATTCCAAGAACGGGTTTTTTCCCAGCTA CAATTTAGAAACGA
[PT- Cairo] M13 core 82	GCCCAATACGGGAGAATTAACTGATATCCCAA
[PT- Cairo] M13 core 83	TTTTTTGTAGGGAAGCGCATTAGAATAAGAGC
[PT-	ATAAAAACTTAACGTCAAAAATTTTTTTTTTTTGTTCAGC

Cairo]_M13_core_84	TAATGCGTAAAGTA
[PT-	<u>GA ACA A AGATA ACCCACA AGA ATTTACGCA</u>
Cairo]_M13_core_85	of the full of the
[PT-	ACGGAATAATGAAATAGCAATAGCAGAATAAC
Cairo M13 core 86	
[PI- Cairol M13 core 87	
Cairol M13 core 88	AGA
[PT-	
Cairo] M13 core 89	AATCCAAAAATATATTTTAGTTAATTGAGA
[PT-	
Cairo]_M13_core_90	GAGAAIAICICAACAGIAGGGCIIAAIIICAI
[PT-	
Cairo] M13 core 91	
[PT-	GGGTTATACTA A ATTTA ATGGTTTCA GTATA A
Cairo]_M13_core_92	
[PT-	ATTCTGTCTTATACAAATTCTTACGAAATACC
Cairo] M13_core_93	
[PI- Coincl M12 cone 04	GACCGTGTCCTTTTTAACCTCCGGTTAATTTT
Cairo M13_core_94	
[FI- Cairo] M13 core 95	GAGACTAGATAAATAAGGCGTTTTAGTAT
[PT-	
Cairo] M13 core 96	ATAAACACAATTTATCAAAATCATGCGATAGC
[PT-	
Cairo]_M13_core_97	AICGCCAAGGCAIIIICGAGCCCCIGAACA
[PT-	
Cairo] M13_core_98	AUCCAACUAAAUIACCUACAAAAUAUAAAUUCU
[PT-	ΤΤΟ Ο ΤΤΑΤΤΟ Α Α Ο Α ΑΤΑ G ΑΤΑ Α GTA GTA ΑΤΑ Α
Cairo] M13_core_99	
	AGAAAAAAACCAATCAATAATCCAAGCAAG
Cairo]_M13_core_100	
[PI- Coiro] M12 corre 101	CCGTTTTATAGCAAGCAAATCAGATA
Cairo_N15_core_101	
[FI- Cairo] M13 core 102	
[PT-	AACOACO
Cairol M13 core 103	TTCGTAATAGTCACGACGTTGTAAGATGTGCT
[PT-	GCAAGGCGATTTGTATCGGCCTCAGGAAGACGCATC
Cairo] M13 core 104	GT
[PT-	
Cairo] M13 core 105	
[PT-	GTGAGCGAATCTGCCAGTTTGAGTTTTTTCGCCAGG
Cairo]_M13_core 106	GTTTTCCCCATGGTCA

[PT- Cairo] M13 core 107	CTGCATTACCTGGGGTGCCTAATGAGCTCGAA
[PT- Cairo] M13 core 108	TAGCTGTTAGCATAAAGTGTAAAGATGAATCG
[PT- Cairo] M13 core 109	GAGCCGGATCCTGTGTGAAATTTTTTTTTTCAGCTT TCATCAAACGCCATC
[PT- Cairo]_M13_core_110	TAACTCACAGTCGGGAAACCTGTCGAAAAT
[PT- Cairo] M13 core 111	GAGTTGCAGCGGGGGAGAGGCGGTTCAACATAC
[PT- Cairo] M13 core 112	CATGTCAATTCGCGTCTGTTTTTTTTTTCAATTCCA CATGCGTATT
[PT- Cairo] M13 core 113	AGGGTTGAGGTTTGCCCCAGCAGGCGTGCCAG
[PT- Cairo]_M13_core_114	GCCAACGCGCAAGCGGTCCACGCTGTGTTGTT
[PT- Cairo]_M13_core_115	GGGCGCCCCCTTCACCGCCTGGTTAAAGAAC
[PT- Cairo]_M13_core_116	GCTGATTGAGGGTGGTTTTTTTTTTGTAATCGTACTGAG AGT
[PT- Cairo]_M13_core_117	CCTGTTTGAAATCAAAAGAATAGGAGCCCC
[PT- Cairo]_M13_core_118	GGTCGAGGGAACAAGAGTCCACTACCCTGAGA
[PT- Cairo]_M13_core_119	CGTGAACCTCCAACGTCAAAGGGCGGGCAACA
[PT- Cairo]_M13_core_120	CAGCTCATCCCAAAAACAGGAAGAATAAATTA
[PT- Cairo]_M13_core_121	AAAAATAATCATATGTACCCCGGTGAGAGATC
[PT- Cairo]_M13_core_122	GCAAATATTCGCATTAAATTTTTTTCTCCGT
[PT- Cairo]_M13_core_123	AGAAAAGCTTTTTAACCAATAGGACATTAAAT
[PT- Cairo]_M13_core_124	AACCGTGCGTAACAACCCGTCGGATGTTAAAT
[PT- Cairo]_M13_core_125	GGGAACAGTTGGTGTAGATGGGTCGCACTC
[PT- Cairo] M13 core 126	CAGCCAGGGCAAAGCGCCATTCGCCA
[PT- Cairo] M13 core 127	GCCTGCAACAGTGCCACGCTGAGAGCTGCTGAACC TCAAATTTGAGGAA
[PT- Cairo] M13 core 128	ACATTTGACAACAGTTGAAAGGAAATCAAACC
[PT-	CTCAATCAATATTTTTTTTTTTTTTTTTTTTTTTTTTTT

Cairo] M13 core 129	TGGCACAG
Cairo] M13 core 130	GGTTATCGATTAGAGCCGTCAATAAAAGTT
[PT-	GATTCACCTTTGAATGGCTTTTTTTTTTTTAGTTGGC
Cairol M13 core 131	AAATGGATTTAG
[PT-	
Cairol M13 core 132	TTCCTGATCGAACGTTATTAATTTTAGATAAT
[PT-	
Cairo] M13 core 133	AAGTATTAGACTTTTTTTTTTTACATTGGCA
[PT-	
Cairo] M13 core 134	IGAGIAAGAAGGAGCGGAAIIAAAACAGAA
[PT-	
Cairo] M13 core 135	CCTTTGCCTATCAGATGATGGCAAAGAACCTA
IPT-	TTTTGACGCTCAATCGTCTTTTTCGACAACTCGTATTA
Cairo] M13 core 136	AAT
[PT-	
Cairo] M13 core 137	IACAICGGAAAITAITIGCACGIAICAICAIA
[PT-	
Cairo] M13 core 138	ALIGULIIGAAIAAIGGAAGGGILIICAICAA
[PT-	
Cairo] M13 core 139	IAIAAICUIGAIIIIIIIAGUAAIAUII
[PT-	
Cairo]_M13_core_140	AIAAAGAGAAIAIACAGIAACAACAAIIIC
[PT-	
Cairo]_M13_core_141	CUATATUAUAUAAAUAATAAUUUAAAAUATUA
[PT-	TACTATGGTCACGCAAATTTTTTTTTTTTATTATACTT
Cairo]_M13_core_142	CTGAATACCAA
[PT-	<u>ΘΟΤΤΟΤΩΤΑ Α ΑΤΤΑ ΑΤΤΑ Ο ΑΤΤΤΑ ΩΤΑ Ο Ο ΤΤΤ</u>
Cairo]_M13_core_143	
[PT-	
Cairo]_M13_core_144	
[PT-	GTTACAAAATTTTTTTTTACAGGGCGCG
Cairo]_M13_core_145	
[PT-	ATTTGAAAAATATATGTGAGTGACTGATGCA
Cairo]_M13_core_146	
[PT-	A G A A A C A A A ATCGTCGCTATTA A CTTA GGTT
Cairo]_M13_core_147	
[PT-	CAATTACCTGAGCAAATCCTTGAAAACATAAGGTCTG
Cairo]_M13_core_148	A
[PT-	
Cairo] M13_core_149	
[PT-	TTAGATTAAGACTTTTTTTGATGGCCCACTA
Cairo] M13_core_150	
[PT-	GGAGCGGGATCGGAACCCTAAAGGCCCGAGAT
Cairo] M13 core 151	

[PT-	CCAGTTTGTGCCGTAAAGCACTAACGCTAGGG
Cairo]_M13_core_152	
[PT- Cairo] M13_core_153	GTGGACATCACCCAAATCAAGTGCGCGTAACCACCA
[PT- Cairo] M13 core 154	CGATTTAGGAAAGGAAGGGAAGAGGGAGCT
[PT- Cairo] M13 core 155	ACGAGCACAGTGTAGCGGTCACGCTTTTTTGG
[PT- Cairo] M13 core 156	TTTATAATTCGTTAGAATCAGAGCAAGCGAAA
[PT- Cairo] M13 core 157	CGCTGGCAGTATAACGTGCTTTCCCAGTGAGG
[PT- Cairo] M13 core 158	AAACAGGAACGCCAGAATCCTGATCAAACT
[PT- Cairo]_M13_core_159	CTTTGATTTAAAAGAGTCTGTCCATTGCTTTG
[PT- Cairo]_M13_core_160	CATGGAAAGCCTGAGTAGAAGAACGAAGTGTT
[PT- Cairo]_M13_core_161	CCACCGAGAGTAATAACATCACTTTACCTACA
[PT- Cairo]_M13_core_162	ATCGGCCTGCCATTGCAACAGGAATAAAAG
[PT- Cairo]_M13_core_163	ACAATATTAGTCACACGACCAGTAAAAACGCT
[PT- Cairo]_M13_core_164	GGACATTCAAGCGTAAGAATACGGCCCTAA
[PT- Cairo] M13 core 165	AACATCGCGATAAAACAGAGGTGAGGCGGTCAGT

Table S2.62. Edge staples of M13mp18 Cairo pentagonal DNA origami tile.

Name	Sequence
[PT-Cairo]_M13_edge_1	AATGCCCCCTGCCTATGCCCGTATAAACAGTTTA
[PT-Cairo]_M13_edge_2	GATTTTGCTAAACAACTGAATTTTCTGTATGGCC
[PT-Cairo]_M13_edge_3	TACGCTAATATCAGAGAGTCAGAGGGTAATTGAG
[PT-Cairo]_M13_edge_4	GCACCATTACCATTAGAGCAAAATCACCAG
[PT-Cairo]_M13_edge_5	GACGAACCTCCCGACTTGACGCGAGGCGTTTTAG
[PT-Cairo]_M13_edge_6	CAGGAGGTTGAGGCAGCCGCCGCCAGCATT
[PT-Cairo]_M13_edge_7	ATGTTTAGACTGGAAGAGGGGGGTAATAGTA
[PT-Cairo]_M13_edge_8	TGAGATGGTTTAATTTAGTAGTAAATTGGGCTAA
[PT-Cairo]_M13_edge_9	AATGCTGTAGCTCAAGCTTAATTGCTGAAT
[PT-Cairo]_M13_edge_10	TTGACCCCCAGCGATTACTAAAACACTCATCTAT
[PT-Cairo]_M13_edge_11	ATCAATATGATATTGGAGACAGTCAAATCA
[PT-Cairo] M13 edge 12	CGAGAAAACTTTTTCTCGCAAGACAAAGAACCG

[PT-Cairo]_M13_edge_13	TTTACGAGCATGTAGATAATATCCCATCCTAACA
[PT-Cairo]_M13_edge_14	GGTCGACTCTAGAGCAAGCTTGCATGCCTG
[PT-Cairo]_M13_edge_15	GCAAAATCCCTTATATGGTGGTTCCGAAAT
[PT-Cairo]_M13_edge_16	ATGGGATAGGTCACAACGGCGGATTGACCG
[PT-Cairo]_M13_edge_17	GCACTAACAACTAATATAAAATATCTTTAGGAAA
[PT-Cairo]_M13_edge_18	AGGTTTAACGTCAGATAATTGCGTAGATTTTCTT
[PT-Cairo]_M13_edge_19	TAGACAGGAACGGTGGCCGATTAAAGGGAT
[PT-Cairo]_M13_edge_20	CCCTTCTGACCTGATGGCCAACAGAGATAG

Table S2.63. Core staples of p8064 floret pentagonal DNA origami tile.

Name	Sequence
[PT-	ATCATTACCGCGCCCAATATATTCTAAGAACGCGCGGG
floret]_p8064_core_1	AGGT
[PT-	
floret]_p8064_core_2	
[PT-	TTTGAAGCAGCTACAATTTTATGCCAGTTA
floret]_p8064_core_3	
[PT-	ATCGGCTGTTTACCTCCCG
floret]_p8064_core_4	
[PT-	AAAAATGATTCCAGAGCCTAATTTCCTGAATC
floret_p8064_core_5	
[PT-	TTACCAACGTGCCTGTTTA
floret_p8064_core_6	
[PT-	CAAAATAGAAACGATTTTTTGTAGACGGGA
floret]_p8064_core_/	
	AGGCATAATGCGCGTCTAAATAGCAGCTTTTAATTT
floret]_p8064_core_8	
	CCCACAAGAACAGGGAAGCGCATTTTAACGTC
floret p8064 core 9	
[PI-	
floretj_p8064_core_1	GAATTAAGAGUGUTAATATUAGUTTTTTAA
[r]- florat] n8064 core 1	TCATAATTTATTTAACAACGCCATTTTAGAGAATAACAT
	AAAAATTGAGT
ГРТ	
[1 1- floret] n8064 core 1	<u>GGA ΑΤΑ CCCTATCTTA CCGA Α GCC Α GA GATA Α</u>
2	
 [PT-	
floret] p8064 core 1	TAAGCCCAAATGAAATAGCAATAGCAAAAGAACTGGC
3	ATGTAGAAAAT
IPT-	
floret] p8064 core 1	ΑΑΑCΑΙΑΑΙΤΙΤΙΑΑΑGΤΙΑΑΑΙΑΤΙΤΙΤΙΤΟΑΑG

4	
[PT- floret]_p8064_core_1 5	GAAAAGTAACCGAGGAAACGCAAAAAGAAA
[PT- floret]_p8064_core_1 6	CAGCGCCAAAAGGTGGCAACATATATAATAAC
[PT- floret]_p8064_core_1 7	AAACGATTAAGACTCCTTTTTTTATAACTATATGTACCT CC
[PT- floret]_p8064_core_1 8	CGCAAAGAATAGAAAATTCATAGGGAATTA
[PT- floret]_p8064_core_1 9	ACATACATAAGACAAAAGGGCGACTGAATTAT
[PT- floret]_p8064_core_2 0	GGCTTAGGTTGGTTTTTTCAGTATGTTAGC
[PT- floret]_p8064_core_2 1	ACCATCGACCGACTTGAGCCATTTTGGTTTAC
[PT- floret]_p8064_core_2 2	CAGAATCATTATTCATTAAAGGATTCAACC
[PT- floret]_p8064_core_2 3	GATTGAGGGAGGGATTTTTAGTGAATAACCTTG
[PT- floret]_p8064_core_2 4	GAGCCAGAGGCCGGAAACGTCAAAATCACC
[PT- floret]_p8064_core_2 5	CACCGTCATAGCAGCACCGTAATCCCTTATTA
[PT- floret]_p8064_core_2 6	TTCGCCATAAATCAATTTTTTTTTTTTTGACGGAAAAGTT
[PT- floret]_p8064_core_2 7	ACCGCCACCATCTTTTCATAATCACCAATGAA
[PT- floret]_p8064_core_2 8	CGCCACCTTTCGGTCATAGCCCAGTAGCGA
[PT- floret] p8064 core 2	TGCCTTTAGCGTTTTTTACAATAACGGA

9	
[PT- floret]_p8064_core_3 0	GGAACCACCCTCAGAGCCGCCAAGCGCAGT
[PT- floret]_p8064_core_3 1	GCGTTTGCCCTCAGAGCCACCACCACAAATAA
[PT- floret]_p8064_core_3 2	ATCGGCATAGAACCACCACCAGAGCAGGTCAG
[PT- floret]_p8064_core_3 3	GTACCTTTTACATTTTTTGTAGCGCGTTTTC
[PT- floret]_p8064_core_3 4	TAATAAGTTAAAGCCAGAATGGAACCCTCAGA
[PT- floret]_p8064_core_3 5	AACAGTGCCTTGATATTCACAACTCAGAGC
[PT- floret]_p8064_core_3 6	TGAGGCCGCCGCCATTTTTTTCATATTCCACCAG
[PT- floret]_p8064_core_3 7	CTCTGAATTGATGATACAGGAGGGATAAGT
[PT- floret]_p8064_core_3 8	ATCCTCATTTTAACGGGGTCAGTGTAGGATTA
[PT- floret]_p8064_core_3 9	ACGATTGGCCCGTATAAACAGTTATTAAGAGG
[PT- floret]_p8064_core_4 0	AAGGAGCGGTTTTTACAGGAGGT
[PT- floret]_p8064_core_4 1	TAGTACCGTTGCTCAGTACCAGGCTGTACTGG
[PT- floret]_p8064_core_4 2	GAACCGCCCTCAAGAGAAGGATCCTTGAGT
[PT- floret]_p8064_core_4 3	TTTCAGGGCTGAAACATGAAAGTAATGCCCCC
[PT- floret] p8064 core 4	TGCCTATTTCTTTTGTTGAAAGGA
4	
-----------------------------------	---
[PT- floret]_p8064_core_4 5	GCCGTCGTGTATCACCGTACTCAGTTTTGT
[PT- floret]_p8064_core_4 6	GCGGGGTTCCACCCTCAGAACCGCAGACAGCC
[PT- floret]_p8064_core_4 7	CTGAGACTCACCCTCAGAGCCACCAGTACAAA
[PT- floret]_p8064_core_4 8	AATATGTTGGCATTTTATTATTATAGCAAGCCCTACAGA C
[PT- floret]_p8064_core_4 9	GTTTCAGCTAGCGTAACGATCTAAAGGAGGTT
[PT- floret]_p8064_core_5 0	TAAAGGACCTGTAGCATTCCACCACCCTCA
[PT- floret]_p8064_core_5 1	TTGAAAATACTGAGTTTCGTCACCACCCTCAT
[PT- floret]_p8064_core_5 2	CGTCTTTATTTTGCTAAACAACTGCGCCGA
[PT- floret]_p8064_core_5 3	CTCATAGTGGAGTGAGAATAGAAAGTGAATTT
[PT- floret]_p8064_core_5 4	CTACAACGATTGCGAATAATAATTAATTGTAT
[PT- floret]_p8064_core_5 5	CCGTAACCTCCAAATTTAGTAAGA
[PT- floret]_p8064_core_5 6	GAAATTGTTTAGTAATACTGAAAGCGTAAGAATTACCC ATGTA
[PT- floret]_p8064_core_5 7	AAAACGCGTCTGAAATGGATTAGCAGAAGA
[PT- floret]_p8064_core_5 8	CAGCAAATACCGAACGAACCACCATTTACATT
[PT- floret] p8064 core 5	GGCAGATTTTACCGCCAGCCATTGAAGTGTTT

9	
[PT- floret]_p8064_core_6 0	GAACAATACACCAGTCACACGACCCATCGCCA
[PT- floret]_p8064_core_6 1	TGAACCTCTGATAGCCCTAAAAAGTAATAA
[PT- floret]_p8064_core_6 2	AAGGGACATCGGCCTTGCTGGTAAAAGAGT
[PT- floret]_p8064_core_6 3	CTCAAACTATTCTGGCCAACAGAGGTCTTTAA
[PT- floret]_p8064_core_6 4	GGCTATTAATAGAACCCTTCTGACACATCACT
[PT- floret]_p8064_core_6 5	TAAAACAAACAGTGCCACGCTGACATTTGA
[PT- floret]_p8064_core_6 6	ТТАААААТGAAAAATCTAAAGCATCAACTAAT
[PT- floret]_p8064_core_6 7	TGCGCGAACAAATATCAAACCCTCAGGTTATC
[PT- floret]_p8064_core_6 8	ATTGAGGAAATCAATATCTGGTCATTTTGAAT
[PT- floret]_p8064_core_6 9	CGTTATTAGCCGTCAATAGATAATAGAGCCAG
[PT- floret]_p8064_core_7 0	TCATTTTCTTTAGGAGCACTAACACCTTGC
[PT- floret]_p8064_core_7 1	GGATTTATCGTATTAAATCCTTATGGAAGG
[PT- floret]_p8064_core_7 2	AGATTAGAATTTTAAAAGTTTGAGAATCCTGA
[PT- floret]_p8064_core_7 3	TAAAATATGCGGAACAAAGAAACCTGATTATCAGATG ATGCAGTAACA
[PT- floret] p8064 core 7	AATTGCGTATTATACTTCTGAATATGCCCGAA

4	
[PT- floret]_p8064_core_7 5	GAATATAGCAATTCATCAATATTAACATTA
[PT- floret]_p8064_core_7 6	GTTAGAATGCACGTAAAACAGATTCATTTC
[PT- floret]_p8064_core_7 7	TTGTTTGGAGATTTTCAGGTTTAAACCAAGTT
[PT- floret]_p8064_core_7 8	ACAATTTCGCGCAGAGGCGAATTAAATAAAGA
[PT- floret]_p8064_core_7 9	CTTCTGTATTAATGGAAACAGTACTGATTGCTTTGAAT CGTCAGAT
[PT- floret]_p8064_core_8 0	AATTACCGAAAACAAAATTAATTCCTTGAA
[PT- floret]_p8064_core_8 1	ACAAAATCATTTGAATTACCTTTTAATCGTCG
[PT- floret]_p8064_core_8 2	AGGTCTGATAATTTTCCCTTAGAATACATTTA
[PT- floret]_p8064_core_8 3	AACATAGAATAGTGAATTTATCAACGCGAG
[PT- floret]_p8064_core_8 4	CTATTAATGAGACTACCTTTTTAAAATGCTGA
[PT- floret]_p8064_core_8 5	TACCGACCCAATCGCAAGACAAAGAAAATCAT
[PT- floret]_p8064_core_8 6	AAAACTTGACCTAAATTTAATGTTAGTATC
[PT- floret]_p8064_core_8 7	TGCAAATCGTGTGATAAATAAGGCCACCGGAA
[PT- floret]_p8064_core_8 8	AATCGCCAACTAGAAAAAGCCTGTGTTTGAAA
[PT- floret] p8064 core 8	ATATGCGCTCAACAGTAGGGCTAGTAATAA

9	
[PT- floret]_p8064_core_9 0	TCAACAATAAACAACATGTTCAGCGAGGCATTTTCGA GCCTAATTGAG
[PT- floret]_p8064_core_9 1	GAGAATACCAGACGACGACAATAGATAAGT
[PT- floret]_p8064_core_9 2	CCTGAACCATGTAGAAACCAATCAAGAACG
[PT- floret]_p8064_core_9 3	GGTATTAGCCGTTTTTATTTTCATCG
[PT- floret]_p8064_core_9 4	CTTCACCGCCTTATAAATCAAAATTTTTGATTTAGAGC
[PT- floret]_p8064_core_9 5	TAATGCGCTTTTTTTGACGGGCAACAGCCGTATTGG
[PT- floret]_p8064_core_9 6	TGCCTGAGTTGTAGCAATTTTTTTTTCCACACAATAGCT GTT
[PT- floret]_p8064_core_9 7	CGTTTTCTGCCTGTTCTTCGCGAATTGCGT
[PT- floret]_p8064_core_9 8	CAACGCGCTGAGCTAACTCACATTTCCGTGAG
[PT- floret]_p8064_core_9 9	CCTCCTCATGCTGCGGCCAGAATGAAGGTTTC
[PT- floret]_p8064_core_1 00	CTCTGTGGCAGTTGAGGATCCCCGTGGGGTGC
[PT- floret]_p8064_core_1 01	GCGCCAGATAAAGTGTAAAGCCGGTACCGA
[PT- floret]_p8064_core_1 02	CCGGAAGCGGTGGTTTTTTTTTTTTTTTTTTCGTACTA
[PT- floret]_p8064_core_1 03	GCTCGAACAGTGTCACTGCGCGCACTGGTG
[PT- floret]_p8064_core_1	TAACGGCAATCAGACGATCCAGCGTTCGTAATCATGG TCACATACGAG

04	
[PT-	TCCTGTGTTGCCGGTGCCCCCTGCTCAGATGCCTTTTT
floret]_p8064_core_1	Т
05	TGAAGATCGCCTGCCAGT
[PT-	
floret] p8064 core 1	CTAATGAGGGGGGGGGGGGGGGGGTTTGTGATTGCC
06	
[PT-	
floret] p8064 core 1	TGCGCTCGCCAGCTGCATTAATTTGCAGCA
07	
[PT-	
floret] p8064 core 1	GCAAAATCCCTGGCCCTGAGAGAGGAATCGGC
08	
[PT-	
floret] p8064 core 1	AGCGGTCGTTTGATGGTGGTTCTCCAGTTT
09	
[PT-	
floret] n8064 core 1	ATCGGA ACCCTATATA GGGTTG AGTGTTGTCGA A ATCG
10	
[1 1- floret] n806/ core 1	GGA ACA ATCA A AGGGCGA A A A ACCGT
11	UUAACAAI CAAAUUUCUAAAAACCUI
ΓΡΤ	
[1 1- floret] n8064 core 1	
101ctj_p0004_cotc_1	
[1 1- floret] n8064 core 1	CTGTCCAGCTTTGACGAGCACGCGCT
12	
$\begin{bmatrix} \Gamma & \Gamma \\ \Gamma & \Gamma \end{bmatrix}$	
1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	TOACAACCACCACCACCOCCTATAACOT
$[\Gamma I - f]$	
15	
[P]-	GGGCGATGGCCCACTACGTGAGGTGCCGTAAAGCCGT
floretj_p8064_core_1	GGCGA
10 [DT	
floret]_p8064_core_1	GAAAGGACGCIGGCAAGIGIAGGGAGCIAA
floret]_p8064_core_l	TIAIAAICUGTTAGAAICAGAGCGCGGTCACG
18	
[P'f-	GCTTTCCTAGTGAGGCCACCGAGTAATATCCA
floret]_p8064_core_1	

19	
[PT- floret]_p8064_core_1 20	ACAGGAGCGCCAGAATCCTGAGCAACAGGA
[PT- floret]_p8064_core_1 21	TTCAGAGGTTTCTCCGTGGTGAATTTTTTTCGTCTCG
[PT- floret]_p8064_core_1 22	GTGGTGCCTTTTTTTTAACGACGGCCAGTTTGGGTAA
[PT- floret]_p8064_core_1 23	ATCAACACTCCGTGGGAACAAATCAGGCTG
[PT- floret]_p8064_core_1 24	GGGATGTGAAGCGCCATTCGCCATCGGCGGAT
[PT- floret]_p8064_core_1 25	TGACCGTACTGGCCTTCCTGTAGCCCCGGTTG
[PT- floret]_p8064_core_1 26	ATTCGCGTATGGGATAGGTCACGTTGCCGGAA
[PT- floret]_p8064_core_1 27	CGCCAGGCGGCACCGCTTCTGGTGGTGTAG
[PT- floret]_p8064_core_1 28	CAGCTTTCGTTTTCCCAGTCTTTTTTTTTCAGCTTACG GCTCAAATCGT
[PT- floret]_p8064_core_1 29	ATGGGCGCAATAGGAACGCCATGGAAGATT
[PT- floret]_p8064_core_1 30	TAAATTGTCAGCTCATTTTTTAACCATCGTAACCGTGC ATACTCCAGC
[PT- floret]_p8064_core_1 31	CCTGACTTTTTTCGCATACGACGATTTCCAGCGG
[PT- floret]_p8064_core_1 32	TTGAGGGGTAAATTTTTGTTAAATAAACGTTAATTTTT T TAAAGCGGATAAAATCAG
[PT- floret]_p8064_core_1 33	ACCAGGCACTGCAAGGCGATTAAGGCCAAGCT
[PT- floret] p8064 core 1	CGCAACTCTATTACGCCAGCTGACGGATAA

34	
[PT- floret]_p8064_core_1 35	AGATAGACTGGAGCCGCCACGGGAGCGAAAGG
[PT- floret]_p8064_core_1 36	CCTCACCTTACCAGTCCCGGAAGAAACAGC
[PT- floret]_p8064_core_1 37	CGTTCCGGCAAATACGGAAAAAGAGACGCATTTGTGA G
[PT- floret]_p8064_core_1 38	GGATCAATGGGCGGTTGTGTACATCG
[PT- floret]_p8064_core_1 39	TGTTCAGGGAGGTGTCCAGCATCGTCG
[PT- floret]_p8064_core_1 40	TCGCTATGCCAACGGCAGCACCAGCGGGG
[PT- floret]_p8064_core_1 41	CCGCAAGAGGCAGCCTCCGGCCAGATTGC
[PT- floret]_p8064_core_1 42	AAAAATCCCGTAAAAAAAGAGTTAAACGATGCTGAG CACATC
[PT- floret]_p8064_core_1 43	CTCATAAGGTGCTGGTCTGGTCATCCGCCG
[PT- floret]_p8064_core_1 44	TTTGCTCGGGCGCTTTCGCACTCAAGCAGCAA
[PT- floret]_p8064_core_1 45	TCATTGCATCATAAACATCCCTTACCTGTGCA
[PT- floret]_p8064_core_1 46	GGCGCGGGGCTGGTAATGGGTACGGCGGGC
[PT- floret]_p8064_core_1 47	GTACGGTGACCTGTTTAGCTATATTTTTCGCAAGGATA
[PT- floret]_p8064_core_1 48	TCTAGCTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
[PT- floret] p8064 core 1	GTAATAGGCGGAATCGTCATAAAAAGCGAA

49	
[PT- floret]_p8064_core_1 50	TAAGAGGTTTTTAATTCGAGCTTCATATTCAT
[PT- floret]_p8064_core_1 51	TGAATCCCGCAAAAGAAGTTTTGCAGGTAGAA
[PT- floret]_p8064_core_1 52	AGGCTTTTCCTCAAATGCTTTAAAGACTTCAA
[PT- floret]_p8064_core_1 53	TAATTGCAGAGGAAGCCCGAAACAGTTCAG
[PT- floret]_p8064_core_1 54	AAAGATTATGAATATAATGCTTTTTTTTTCGGAGAGGG TAGCAAATATT
[PT- floret]_p8064_core_1 55	AAAACGAACGATAAAAACCAAAATACCACA
[PT- floret]_p8064_core_1 56	TACATAACCCTCGTTTACCAGACGGAATGACCATAAAT CATGCATCAA
[PT- floret]_p8064_core_1 57	GTCTTTACGCAACACTATCATAACGCCAAAAGGTTTTT TTGGAGCCTTTTTTCACG
[PT- floret]_p8064_core_1 58	ATATCGCGCATTTTTGCGGATGGCCAACTAAA
[PT- floret]_p8064_core_1 59	CCAGACCGTACCTTTAATTGCTCATATAAC
[PT- floret]_p8064_core_1 60	GGTCAATATCTGGAAGTTTCATTCCCTTTTGA
[PT- floret]_p8064_core_1 61	AGTTGATACCATTAGATACATTGGCATCAA
[PT- floret]_p8064_core_1 62	TTGCGGGAGAAGTGCGCGAGCTGAAAAGGTTCGCAA AT
[PT- floret]_p8064_core_1 63	TTCTACTACAGGCAAGGCAAAGAATT
[PT- floret] p8064 core 1	GTATAAGCTATTTTTGAGAGATACCGT

64	
[PT- floret]_p8064_core_1 65	AAAATATCAATATGATATTCACTACAAAG
[PT- floret]_p8064_core_1 66	AAATCACCTTTTAGAACCCTCATATACTT
[PT- floret]_p8064_core_1 67	ATTAAGCAATAAAGCCTCAATTATGACCCTGTAATATTT TAA
[PT- floret]_p8064_core_1 68	ATGCAATGGTGAGAAAGGCCGGCTGGAGCA
[PT- floret]_p8064_core_1 69	ATAATCAGGTCATTGCCTGAGAGTAGACAGTC
[PT- floret]_p8064_core_1 70	GCTATCAGAAAAGCCCCCAAAAACACAAAAATA
[PT- floret]_p8064_core_1 71	AACAAGAGTCAATCATATGTACCAGCTTTC
[PT- floret]_p8064_core_1 72	AGGACTAACTAAAACACTCATCTTTTTTGGCTGGCTG A
[PT- floret]_p8064_core_1 73	TGGGCTTGTTTTTTTGCAACGGCTACAGTCACCCTC
[PT- floret]_p8064_core_1 74	TTAAAGGCGCTTGATACCGATAGTTTTCAACA
[PT- floret]_p8064_core_1 75	AGCAGCGCAGCTTGCTTTCGAGGGAACAAC
[PT- floret]_p8064_core_1 76	CGGTTTATAAAGACAGCATCTTTTTTTTTTTCAACTTTA ATAATGCAGA
[PT- floret]_p8064_core_1 77	CTTAAACACGCTTTTGCGGGGATCGAGGCTTTG
[PT- floret]_p8064_core_1 78	CAATGACCGGTCGCTGAGGCTTAAGTTTCC
[PT- floret]_p8064_core_1	AGAATACAAGACTTTTTCATGAGGGCAGGGAG

79	
[PT-	
floret]_p8064_core_1	ATTAAACCAACCTAAAACGAAAAACAAAGT
80	
[P]-	AACGGTGTACAGTGATTATACCAAGCGCGAGAGGCAA
110retj_p8064_core_1	A
floret] n8064 core 1	ACAACGGAAATCCGCGACCTGCTCCA
82	
[PT-	
floret] p8064 core 1	TTCAACTCATTGTGAATTACCTTAAAT
83	
[PT-	
floret]_p8064_core_1	CCTTCACACCAGAACGAGTAGTATGCGAT
84	
[PT-	
floret]_p8064_core_1	GACGAGAAATCAAGAGTAATCTTGAGATG
[PI- florat] n8064 core 1	TTAGCCGGAACGAGGCGCAACTTTGAAAGAGGACAC
86	AAGAAC
бо ГРТ-	
floret] p8064 core 1	CGGATATATTCAGTGAATAAGGGTCAGGAC
87	
[PT-	
floret]_p8064_core_1	AGATTCATCTGGCTCATTATACCACTTGCCCT
88	
[PT-	
floret]_p8064_core_1	TTTAAGAACAGTTGAGATTTAGGAATAGCGAG
89	
[PT-	
floret]_p8064_core_1	GTTGGGAGAACAACATTATTACCAGAGGGG
90	

Table S2.64. Edge staples of p8064 floret pentagonal DNA origami tile.

U	
Name	Sequence
[PT-floret]_p8064_edge_1	TGCTATTTTGCACCCCTTAAATCAAGATTA
[PT-floret]_p8064_edge_2	GTCAGAGGGTAATTCTGAACACCCTGAACA
[PT-floret]_p8064_edge_3	ATTTTGTCACAATCACACCACGGAATAAGT
[PT-floret]_p8064_edge_4	CATTACCATTAGCACAAAATCACCAGTAGC
[PT-floret]_p8064_edge_5	GTCATACATGGCTTTTTACCGTTCCAGTAA
[PT-floret] p8064 edge 6	TAGCCCGGAATAGGAGAGGGGTTGATATAAG

[PT-floret]_p8064_edge_7	ATAACCGATATATTAACAACCATCGCCCAC
[PT-floret]_p8064_edge_8	GATAAATTGTGTCGAGATTTGTATCATCGC
[PT-floret]_p8064_edge_9	CATCCTAATTTACGAGAAGAAAAATAATATCCGT
[PT- floret]_p8064_edge_10	CAGTATAAAGCCAACGTTATACAAATTCTTACAA
[PT- floret] p8064 edge 11	GACGCTGAGAAGAGTCCGATAGCTTAGATTAATT
[PT- floret] p8064 edge 12	ATGAAACAAACATCAATGAGCAAAAGAAGATGA C
[PT- floret] p8064 edge 13	CAAACAATTCGACAACGAAGTATTAGACTTTAGC
[PT- floret] p8064 edge 14	TATTAACACCGCCTGCGAGGTGAGGCGGTCAGTA
[PT- floret] p8064 edge 15	TTAGACAGGAACGGTAGCCGATTAAAGGGATTGC
[PT- floret] p8064 edge 16	CAAGTTTTTTGGGGTCGAACCATCACCCAAATCT
[PT- floret] p8064 edge 17	GTTGTACCAAAAACGAGCATAAAGCTAAAT
[PT- floret] p8064 edge 18	CGTAAAACTAGCATGAATCGATGAACGGTA
[PT- floret] p8064 edge 19	TGCGGGCCTCTTCGGTTGGGAAGGGCGATC
[PT- floret] p8064 edge 20	TTGCCGCCAGCAGTACTTAAATTTCTGCTC
[PT- floret]_p8064_edge_21	ACATCCAATAAATCATAATAGTAGTAGCATTACG
[PT- floret]_p8064_edge_22	AGGTCAGGATTAGAGAGGAAGCAAACTCCAACA T
[PT- floret]_p8064_edge_23	ATAAAACGAACTAACGAGAAAAATCTACGTTAGG
[PT- floret]_p8064_edge_24	GGAACCGAACTGACCAGACGGTCAATCATAAGAT
[PT- floret]_p8064_edge_25	GTGATGAAGGGTAACCGCACAGGCGGCCTT
[PT- floret]_p8064_edge_26	AACGTGGACTCCAACGGAGTCCACTATTAAAGTA
[PT- floret]_p8064_edge_27	CACTGTTGCCCTGCTTGCGGTATGAGCCGG
[PT- floret]_p8064_edge_28	TCGGGAAACCTGTCGTACTGCCCGCTTTCCAGGT

2.8 References

1 Qi, X. *et al.* Programming molecular topologies from single-stranded nucleic acids. *Nat. Commun.* **9**, 4579, (2018).

2 Snodin, B. E. *et al.* Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. *J. Chem. Phys.* **142**, 234901, (2015).

3 Ouldridge, T. E., Louis, A. A. & Doye, J. P. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. *J. Chem. Phys.* **134**, 085101, (2011).

4 Sulc, P. *et al.* Sequence-dependent thermodynamics of a coarse-grained DNA model. *J. Chem. Phys.* **137**, 135101, (2012).

5 Suma, A. *et al.* TacoxDNA: A user-friendly web server for simulations of complex DNA structures, from single strands to origami. *J. Comput. Chem.* **40**, 2586-2595, (2019).

6 SantaLucia, J., Jr. & Hicks, D. The thermodynamics of DNA structural motifs. *Annu. Rev. Biophys. Biomol. Struct.* **33**, 415-440, (2004).

7 Kilchherr, F. *et al.* Single-molecule dissection of stacking forces in DNA. *Science* **353**, (2016).

APPENDIX B

SUPPLEMENTAL INFORMATION FOR CHAPTER 3

S3.1 Materials and Methods

S3.1.1 Synthesis of customized DNA scaffold strands

Three customized DNA scaffold strands (p2820 and p3548) were synthesized and utilized in this study. The phagemid vector with 2820 base pairs (bp) was synthesized by deleting a DNA fragment of 141 bp from pBlueScript II SK(+) vector using Q5 sitedirected mutagenesis kit (New England Biolabs). For p3120 and p3548, customized DNA fragments were synthesized and inserted into pBlueScript II SK(+) vector by Bio Basic Inc. (biobasic.com) to form phagemid vectors with 3210 bp and 3548 bp, respectively. To synthesize DNA scaffold strands, the phagemid vector (2820 bp, or 3548 bp) was cotransformed into *E. coli* DH5α competent cells with a helper plasmid pSB4423, a kind gift from Dr. Stanley Brown (Niels Bohr Institute, Denmark). The DNA scaffold strands were amplified and purified as described previously¹. The mass concentration of each strand was measured by NanoDropTM 2000 spectrophotometer (Thermo Scientific) and converted to molar concentration using the average molecular weight of a DNA nucleotide (330 g/mol). Sequences of these scaffold strands are summarized in Section S3.5.1.

S3.1.2 Sample preparation

The M13mp18 single-stranded DNA was purchased from Bayou Biolabs (P-107, 1 $\mu g/\mu L$). The p8064 single-stranded DNA was purchased from tilibit nanosystems (M1-51, 100 nM). Both DNA strands were used as received without further purification. Sequences of both scaffold strands are summarized in Section S3.5.1. Staple strands were categorized based on their positions and functions within the DNA origami tiles: core staples fold the scaffold strand into the designed geometry; edge staples present sticky ends and base stackings that "glue" monomer DNA origami tiles together into higher-order assemblies. All staple strands were purchased from Integrated DNA Technologies (idtdna.com) at 100 μ M in RNase-free water and were used as received without further purification. Sequences of staple strands are summarized in Section S3.5.2.

The multimeric complexes assembled from p3120 equilateral triangular tiles were prepared by mixing the p3120 scaffold strand (5 nM) and corresponding staple strands (50 nM/each) in $1 \times TAE/Mg^{2+}$ buffer (Tris base 40 mM, acetic acid 20 mM, EDTA·Na₂·12H₂O 2 mM, (CH₃COO)₂Mg·4H₂O 12.5 mM) and annealing the mixture from 80 °C to 20 °C in ~101 h. The annealing procedure was controlled using DNA Engine Tetrad® 2 Thermal Cycler (Bio-Rad). The samples were heated up to 80 °C, held at 80 °C for 10 min, cooled from 80 °C to 40 °C at -1 °C/min, held at 40 °C for 10 min, cooled from 40 °C to 20 °C at -0.1 °C/30 min, and held at 15 °C until use. The lattices assembled from a single tile species were prepared by mixing the scaffold strand (25 nM), core staple strands (250 nM/each), and edge staple strands (375 nM/ea) in $1 \times TAE/Mg^{2+}$ buffer. The samples were annealed following the same procedure used for multimeric complexes.

The lattices assembled from two or more tile species were prepared in two steps. Firstly, different tile species were prepared in separate tubes by mixing the scaffold strand (25 nM), core staple strands (250 nM/each), and edge staple strands (375 nM/ea) in $1 \times TAE/Mg^{2+}$ buffer. The mixtures were heated up to 80 °C, held at 80 °C for 10 min, cooled from 80 °C to 40 °C at -1 °C/min, and held at 40 °C until Step 2. In Step 2, different tile species were mixed in one tube preheated to 40 °C, held at 40 °C for 30 min, annealed from 40 °C to 20 °C at -0.1 °C/30 min, and held at 15 °C until use.

S3.1.3 AFM imaging

For multimeric complexes imaging, the samples were diluted to 3 nM using $1 \times$ TAE/Mg²⁺ buffer. 5 µL of the diluted sample was deposited onto a freshly cleaved mica surface (Ted Pella) and incubated for 5 min. Then, 60 µL $1 \times$ TAE/Mg²⁺ buffer was added onto the mica surface and removed by compressed air. This step was repeated twice to minimize the imaging background from excess staples. Subsequently, the mica surface was covered by 60 µL $1 \times$ TAE/Mg²⁺ buffer, and 10 µL NiCl₂ solution (100 mM) was added to assist adsorption. The samples were imaged in "ScanAsyst in Fluid" mode with a ScanAsyst-liquid+ tip on the MultiMode 8 AFM (Bruker).

For the imaging of lattices, the samples were diluted to 5 nM (scaffold concentration) using $1 \times TAE/Mg^{2+}$ buffer. 10 µL of the diluted sample was deposited onto a freshly cleaved mica surface and incubated for 5 min. The rest steps were the same as the imaging of multimeric complexes.

S3.2 Designs of DNA Origami Tiles

S3.2.1 Design parameters of DNA origami tiles

Design name	[TR]_p2820
Rise per base pair, r (nm)	0.34
Interhelical distance, D (nm)	2.75
Number of helices per subunit	18
Minimum helix length (bp)	31
Maximum helix length (bp)	68
Lengths of helices (bp)	31/36/40/45/50/54/59/64/68
Lengths of scaffold loops (nt)	6/8/7/7/8/7/6/4
Length of the scaffold bridge (nt)	5
Lengths of staple bridges (nt)	3/5/5/5/5/4/4/5

Table S3.1. Design parameters of p2820 equilateral triangular DNA origami tile.

Table	S3.2.	Design	parameters	of M13m	p18	scaffold s	quare E	DNA of	rigami t	ile.
Iuvic	00.2.	Design	purumeters	or minom	pro.	beariora b	quare L		iisuiii t	.IIC.

Design name	[SQ]_M13
Rise per base pair, <i>r</i> (nm)	0.34
Interhelical distance, D (nm)	2.69
Number of helices per subunit	22
Minimum helix length (bp)	39
Maximum helix length (bp)	118
Lengths of helices (bp)	39/47/55/63/71/79/ 86/94/102/110/118
Lengths of scaffold loops (nt)	9/11/8/10/8/ 8/9/8/10/8
Length of the scaffold bridge (nt)	3
Lengths of staple bridges (nt)	2/4/7/6/0/ 4/7/7/1/5

Design name	[hHE]_M13
Rise per base pair, <i>r</i> (nm)	0.34
Interhelical distance, D (nm)	2.75
Number of helices per subunit	14
Minimum helix length (bp)	40
Maximum helix length (bp)	68
Lengths of helices (bp)	40/45/50/54/59/64/68
Lengths of scaffold loops (nt)	8/7/7/8/7/6
Length of the scaffold bridge (nt)	5
Lengths of staple bridges (nt)	5/5/5/4/4/5

Table S3.3. Design parameters of M13mp18 half hexagonal DNA origami tile.

Table S3.4. Design parameters of p8064 scaffold square DNA origami tile.

Design name	[SQ]_p8064
Rise per base pair, <i>r</i> (nm)	0.34
Interhelical distance, D (nm)	2.69
Number of helices per subunit	18
Minimum helix length (bp)	76
Maximum helix length (bp)	139
Lengths of helices (bp)	76/84/92/100/108/116/ 123/131/139
Lengths of scaffold	11/8/10/8/8/
loops (nt)	9/8/10
Length of the scaffold bridge (nt)	6
Lengths of staple bridges	7/6/0/5/6/
(nt)	7/1/5

Design name	[PT-prism]_M13		
Rise per base pair, <i>r</i> (nm)	0.	34	
Interhelical distance, \boldsymbol{D} (nm)	2.	69	
Composing subunit	Subunit 90 °	Subunit 60°	
Number of helices per subunit	22	14	
Minimum helix length (bp)	44	35	
Maximum helix length (bp)	123	117	
Lengths of helices (bp)	44/52/60/68/76/83/ 91/99/107/115/123	35/48/62/76/ 90/103/117	
Lengths of scaffold loops (nt)	10/9/9/9/10/ 10/9/9/8/9	12/12/13/15/12/12	
Length of the scaffold bridge (nt)	7	6	
Lengths of staple bridges (nt)	7/7/2/4/7/ 7/3/4/7/7	1/5/8/9/7/3	

Table S3.5. Design parameters of M13mp18 prismatic pentagonal DNA origami tile.

Design name	[PT-Cair	ro]_M13
Rise per base pair, r (nm)	0.3	34
Interhelical distance, D (nm)	2.0	59
Composing subunit	Subunit 90 °	Subunit 60°
Number of helices per subunit	22	14
Minimum helix length (bp)	42	35
Maximum helix length (bp)	122	116
Lengths of helices (bp)	42/50/58/66/74/82/ 90/98/106/114/122	35/49/62/76/ 89/103/116
Lengths of scaffold loops (nt)	7/12/8/12/8/ 8/12/8/12/7	12/13/14/14/13/12
Length of the scaffold bridge (nt)	9	7
Lengths of staple bridges (nt)	6/9/8/3/7/ 8/7/1/7/8	2/6/9/9/6/2

Table S3.6. Design parameters of M13mp18 Cairo pentagonal DNA origami tile.

Table S3.7. Design parameters of p8064 floret pentagonal DNA origami tile.

Design name	[PT-floret]_p8064			
Rise per base pair, r (nm)	0.34			
Interhelical distance, D (nm)	2.69			
Composing subunit	Subunit 120°	Subunit 60°		
Number of helices per subunit	42	14		
Minimum helix length (bp)	35	35		
Maximum helix length (bp)	126	117		
Lengths of helices (bp)	35/39/44/48/53/57/62/67/71/76/80/85/ 89/94/99/103/108/112/117/121/126	35/48/62/76/ 90/103/117		
Lengths of scaffold loops (nt)	6/7/8/6/6/7/7/6/6/7/ 7/8/8/8/7/5/4/6/7/8	12/12/13/ 15/12/12		
Length of the scaffold bridge (nt)	5	6		
Lengths of staple bridges (nt)	4/3/1/0/4/4/4/6/5/6/ 5/6/6/5/6/5/4/3/1/1	1/5/8/9/7/3		

S3.2.2 Tiamat designs of DNA origami tiles

Figure S3.1. Tiamat² designs of DNA origami tiles for regular tilings. (a) p2820 equilateral triangular tile, (b) M13mp18 square tile, (c) M13mp18 half hexagonal tile. The scaffold strand (gray) is folded by core staple strands (blue) into the target shape.

Figure S3.2. Tiamat designs of low-symmetry tiles for Laves tilings. (a) M13mp18 prismatic pentagonal tile, (b) M13mp18 Cairo pentagonal tile, and (c) p8064 floret pentagonal tile. The scaffold strand (gray) is folded by core staple strands (blue) into the target shape.

S3.3 Additional AFM Images

Figure S3.3. Additional AFM images of 2D lattices assembled from p2820 equilateral triangular DNA origami tiles.

Figure S3.4. Additional AFM images of 2D lattices assembled from M13mp18 half hexagonal DNA origami tiles.

S3.4 Thermodynamic Analysis of Tile Interactions

S3.4.1 Nearest-neighbor parameters for the thermodynamic analysis

We exploited the nearest neighbor model³ to analyze the thermodynamic free energy of tile-tile interaction. 2-nt sticky end hybridization and blunt end stacking are the two types of interactions holding tiles together. Typically, each edge staple strand presents one 2-nt sticky end and one blunt end, whose binding free energy (ΔG_{bond}) can be calculated from the nearest-neighbor parameters for DNA hybridization and stacking adapted from the literature^{3,4} (Table S3.8) and further summed up to obtain the total binding free energy for each pair of complementary edges (ΔG_{edge}).

Specifically, the sequence of a 2-nt sticky end can be read from the Tiamat design from 5' to 3' as "NNN/N" or "N/NNN" (N = A, T, C, or G), where the first and fourth "N"s are the coaxial stacking bases flanking the 2-nt sticky end and the slash represents the two nucleotides lacking backbone linkage. Therefore, "NNN/N" corresponds to a 2-nt sticky end presented at the 3'-end of an edge staple, while "NNN/N" corresponds to a 2-nt sticky end at the 5'-end. The thermodynamic free energy of either case can be calculated by adding up the nearest-neighbor free energy of each pair of neighboring dinucleotides (ΔG_{NN}). Similarly, the sequence of a blunt end can be read from 5'- to 3'end as "N/N", whose free energy (ΔG_{stack}) can be found in the literature⁹. Further, ΔG_{bond} can be calculated by adding the contributions from these two portions.

Depending on the matching rule, a tile's edge can either be complementary to another edge or self-complementary. The complementarity in the former case is denoted by "n & n*" (n = 1, 2, 3, ...), whose ΔG_{edge} is the sum of each involved ΔG_{bond} . Selfcomplementary edge is denoted by "n/n*", where half of the edge staple strands possess ΔG_{bond} identical to the other half. Therefore, its ΔG_{edge} is the sum of each unique ΔG_{bond} multiplied by 2.

Nearest-neighbor	Nearest-neighbor free energy	Stacking free energy
sequence (from 5' to	(ΔG_{NN}) converted to 20 mM	(ΔG_{stack}) in 20 mM MgCl ₂
3')	MgCl ₂ (kcal/mol)	(kcal/mol)
AA	-1.80	-1.36
AC	-2.32	-2.03
AG	-2.09	-1.60
AT	-1.64	-2.35
CA	-2.33	-0.81
CC	-2.63	-1.64
CG	-3.23	-2.06
СТ	-2.09	-1.60
GA	-2.16	-1.39
GC	-3.21	-3.42
GG	-2.63	-1.64
GT	-2.32	-2.03
TA	-1.37	-1.01
TC	-2.16	-1.39
TG	-2.33	-0.81
TT	-1.80	-1.36

Table S3.8. Nearest-neighbor parameters adapted from the literature⁴.

S3.4.2 Thermodynamic analysis of DNA origami tiles

S3.4.2.1 Thermodynamic analysis of DNA origami tiles for regular tilings

rangular the (D = 2.70 nm).						
Complementarity	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}	
complementarity	Dona	2-nt sticky end	blunt end	(kcal/mol)	(kcal/mol)	
	#1	GAT/A	C/A	-5.89		
	#2	TAG/T	G/C	-9.20		
1 & 1*	#3	ACG/G	C/A	-8.99	-49.35	
	#4	GAT/C	A/A	-7.32		
	#5	CAA/G	G/T	-8.25		
	#6	CCC/T	A/T	-9.70		
2/2*	#7	TTG/C	C/C	-8.98	15.60	
	#8	CAA/T	T/T	-7.13	-45.62 (-22.81×2)	
	#9	AGA/T	C/A	-6.70		

Table S3.9. Thermodynamic analysis of complementary edges in p3120 equilateral triangular tile (D = 2.70 nm).

Table S3.10. Thermodynamic analysis of complementary edges in p3548 equilateral triangular tile.

Complementarity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
	#1	GAA/A	G/C	-9.18	
	#2	GGA/T	G/C	-9.85	
1 & 1*	#3	ACC/G	A/T	-10.53	-55.90
	#4	AGC/G	G/T	-10.56	
	#5	TAC/T	C/G	-7.84	
	#6	CAG/A	T/T	-7.94	
2/2*	#7	GGA/A	G/A	-7.98	55 40
	#8	ACC/C	A/T	-9.93	-55.48
	#9	GGG/C	T/T	-9.83	(-27.74×2)

Complementa	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}
rity	Dona	2-nt sticky end	blunt end	(kcal/mol)	(kcal/mol)
	#1	TTT/T	G/G	-7.04	
1 & 1*	#2	GGG/A	A/T	-9.77	-34.98
	#3	CCT/G	G/G	-8.69	
	#4	GCC/C	T/A	-9.48	
2 & 2*	#5	CCC/A	T/G	-8.40	
	#6	CTG/T	G/G	-8.38	22.02
	#7	CGA/G	T/C	-8.87	-33.92
	#8	CTC/C	T/C	-8.27	

Table S3.11. Thermodynamic analysis of complementary edges in p3548 square tile.

Table S3.12. Thermodynamic analysis of complementary edges in p3548 regular hexagonal tile.

Complementa	Bond	Sequence of 2-nt sticky end	Sequence of	ΔG_{bond}	ΔG_{edge}
IIty					(KCal/III01)
	#1	GCA/C	C/C	-9.50	
1 & 1*	#2	CGA/A	G/C	-10.61	36.70
1 & 1	#3	TAC/G	T/C	-8.31	-30.70
	#4	CAA/A	A/T	$\begin{array}{c c} \Delta G_{bond} \\ \hline & (kcal/mol) \\ \hline & -9.50 \\ \hline & -10.61 \\ \hline & -8.31 \\ \hline & -8.28 \\ \hline & -7.95 \\ \hline & -8.69 \\ \hline & -10.09 \\ \hline & -7.53 \\ \hline & -7.13 \\ \hline & -5.62 \\ \hline & -8.09 \\ \hline & -7.69 \\ \end{array}$	
	#5	GGA/A	A/A	-7.95	24.06
2 8- 2*	#6	CAC/G	T/G	-8.69	
1 & 1* 2 & 2* 3 & 3*	#7	TAG/C	G/C	-10.09	-34.20
	#8	ATC/T	G/G	-7.53	
	#9	TAA/C	G/G	-7.13	00.52
2.0.0*	#10	ATA/A	T/G	-5.62	
5 & 5 ⁺	#11	TTG/T	C/C	-8.09	-20.33
	#12	TTC/T	C/C	-7.69	

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
1 6 1*	#1	GTT/G	T/C	-7.84	
	#2	ATC/C	T/C	-7.82	
	#3	AAC/A	A/A	-7.81	
	#4	ATA/C	G/T	-7.36	62.52
1 & 1	#5	GAG/C	T/T	-8.82	-05.55
	#6	CCT/T	A/C	-8.55	
	#7	GAA/G	A/A	-7.41	
	#8	TAC/C	C/T	ΔGbond (kcal/mol) -7.84 -7.82 -7.81 -7.36 -8.82 -8.55 -7.41 -7.92 -7.10 -8.44 -6.63 -7.61	
	#9	TTG/A	C/A	-7.10	
2/2*	#10	CCA/G	G/A	-8.44	-59.56
212.	#11	ATT/T	T/C	-6.63	(-29.78×2)
	#12	CTT/A	A/T	-7.61	

Table S3.13. Thermodynamic analysis of complementary edges in M13mp18 equilateral triangular tile.

Table S3.14. Thermodynamic analysis of complementary edges in M13mp18 square tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
1 & 1*	#1	CGT/A	A/C	-8.95	
	#2	AAA/C	T/C	-7.31	22.04
	#3	ACA/A	G/G	-8.09	-33.04
	#4	CAC/G	C/A	-8.69	
	#5	GCG/C	T/G	-10.46	
	#6	ACA/C	T/C	-8.36	25.67
$Z \propto Z^{*}$	#7	ATA/C	C/C	-6.97	-33.07
	#8	CCG/C	C/A	-9.88	

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
	#1	TTA/A	T/T	-6.33	
1 9-1*	#2	TAT/T	A/G	-6.41	20.72
$1 \propto 1^{+}$	#3	GAC/G	C/C	-9.35	-30.75
	#4	GCT/G	T/A	-8.64	
	#5	TCA/A	T/T	-7.65	22.62
<u>२</u> ₽ २*	#6	ATA/C	A/G	-6.93	
2 & 2*	#7	ATT/C	A/G	-7.20	-52.02
	#8	TCC/C	G/C	-10.84	
	#9	CCT/A	T/A	-7.10	
Complementa rity 1 & 1* 2 & 2* 3 & 3*	#10	AAG/T	C/C	-7.85	-32.45
	#11	GAC/C	A/C	-9.14	
	#12	TTG/G	A/G	-8.36	

Table S3.15. Thermodynamic analysis of complementary edges in M13mp18 regular hexagonal tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
	#1	ATA/A	T/T	-6.17	
	#2	ATG/A	G/G	-7.77	
1 & 1*	#3	TCT/T	C/A	-6.86	11 36
1 & 1	#4	AAG/A	C/G	-8.11	-44.30
	#5	TTC/T	G/C	-9.47	
	#6	TTA/A	T/A	-5.98	
	#7	C/TGT	G/A	-8.13	50.66
2/2*	#8	G/GAG	C/T	-8.48	-30.66 (-25.33×2)
	#9	T/GGA	A/G	-8.72	(-23.33×2)

Table S3.16. Thermodynamic analysis of complementary edges in p2820 equilateral triangular tile.

Table S3.17. Thermodynamic analysis of complementary edges in M13mp18 half hexagonal tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
1 /1 *	#1	TAT/A	A/T	-6.73	-33.38
1/1*	#2	GCG/A	A/A	-9.96	(-16.69×2)
2/2*	#3	CCC/G	A/C	-10.52	-37.60
2/2**	#4	CGT/A	A/A	$\begin{array}{c} \Delta G_{bond} \\ (kcal/mol) \\ -6.73 \\ -9.96 \\ -10.52 \\ -8.28 \\ -8.18 \\ -7.60 \\ -6.41 \\ -6.17 \\ -6.59 \\ -7.36 \end{array}$	(-18.80×2)
2/2*	#5	TCA/G	A/G	-8.18	-31.56
5/5	#6	AAC/T	G/A	$\begin{array}{r} \Delta G_{bond} \\ (kcal/mol) \\ \hline -6.73 \\ -9.96 \\ \hline -10.52 \\ -8.28 \\ \hline -8.28 \\ -8.18 \\ \hline -7.60 \\ \hline -6.41 \\ \hline -6.17 \\ \hline -6.59 \\ \hline -7.36 \end{array}$	(-15.78×2)
	#7	A/TAA	A/G	-6.41	
1 0- 1*	#8	A/ATA	A/A	-6.17	26.52
$4 \propto 4^{\circ}$	#9	A/CTA	C/A	-6.59	-20.33
	#10	T/TTC	C/T	-7.36	

S3.4.2.2 Thermodynamic analysis of DNA origami tiles for Laves tilings

Complementarity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG _{bond} (kcal/mol)	ΔG _{edge} (kcal/mol)
	#1	AGG/G	G/T	-10.13	
	#2	CAA/C	A/A	-7.81	07.50
1/1*	#3	GGA/G	A/G	-7.70	-8/.50 (-43 75×2)
	#4	TGA/C	C/T	-9.17	(15.75*2)
	#5	CTG/C	C/G	-8.94	
	#6	GGG/G	C/T	-9.49	
	#7	GGC/C	G/C	-11.89	
<u>२</u> ₽- २*	#8	CCA/T	C/T	-8.20	51 10
2 & 2*	#9	CTG/A	C/G	-8.64	-34.40
	#10	CTT/C	G/C	-9.47	
	#11	TAC/T	T/A	-6.79	

Table S3.18. Thermodynamic analysis of complementary edges in p3548 isosceles right triangular tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
1 & 1*	#1	CCA/T	A/A	-7.96	
	#2	ATA/C	A/A	-6.69	
	#3	GGT/T	C/G	-8.81	15 51
	#4	CTC/A	T/A	-7.59	-45.54
	#5	TTG/A	C/G	-8.35	
	#6	GTA/T	C/A	equence of blunt end ΔG_{bond} (kcal/mol)A/A-7.96A/A-6.69C/G-8.81T/A-7.59C/G-8.35C/A-6.14G/T-9.58G/G-6.90G/A-8.42A/T-9.83A/A-8.95T/G-7.39	
	#7	TCG/A	G/T	-9.58	
	#8	CTA/A	G/G	-6.90	
⊃ &) *	#9	CGA/T	G/A	-8.42	51.07
$2 \propto 2^{1}$	#10	CTC/G	A/T	-9.83	-51.07
	#11	CCC/A	A/A	-8.95	
rity 1 & 1* 2 & 2*	#12	CTC/A	T/G	-7.39	

Table S3.19. Thermodynamic analysis of complementary edges in M13mp18 rhombic tile.

Complementa	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}
nty		2-m sucky end	biunt end	(Kcal/III0I)	(KCal/III0I)
	#1	TAA/T	G/A	-6.20	
	#2	CCA/A	C/C	-8.40	
	#3	AAG/A	A/C	-8.08	
2 & 2*	#4	CGC/A	T/A	-9.78	65 40
	#5	GAA/A	A/A	-7.12	-03.49
	#6	CAA/G	A/A	-7.58	
	#7	CCG/C	C/C	-10.71	
	#8	TGT/A	C/T	-7.62	
	#9	N/A	T/A & G/G	-2.65	
	#10	N/A	G/A & G/C	-4.81	
2 & 2*	#11	CTT/T	A/A	-7.05	-21.85
	#12	N/A	T/T & C/T	-2.96	
	#13	N/A	G/T & A/T	-4.38	

Table S3.20. Thermodynamic analysis of complementary edges in M13mp18 kite tile.

Table S3.21. Thermodynamic analysis of complementary edges in M13mp18 prismatic pentagonal tile.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
1 /1 //	#1	TGG/A	A/C	-9.15	-29.94
1/1*	#2	ATT/A	T/A	-5.82	(-14.97×2)
2/2*	#3	CTA/A	T/A	-6.27	-32.20
2/2**	#4	GGC/C	T/T	-9.83	(-16.10×2)
	#5	ATA/A	T/T	-6.17	
2 & 2*	#6	TAA/A	T/A	-5.98	26.88
5 & 5	#7	TCA/T	G/G	-7.77	-20.00
	#8	GAT/T	A/A	-6.96	
	#9	AGC/A	A/A	-8.99	57.00
4/4*	#10	CGC/C	A/T	-11.42	-57.80 (-28.90×2)
	#11	C/GGG	N/A	-8.49	(20.90/2)

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
	#1	AAA/C	G/G	-7.56	
1 0-1*	#2	CTT/T	T/A	-6.70	20.22
$1 \propto 1^{*}$	#3	CCG/G	T/G	-9.30	-32.33
	#4	ACA/G	G/T	-8.77	
	#5	TTA/A	G/A	-6.36	
2 % 2*	#6	GCC/A	A/G	-9.77	20.10
$2 \propto 2^{+}$	#7	TAT/A	T/T	-5.74	-29.19
	#8	TAA/A	A/T	uence of int end ΔG_{bond} (kcal/mol)G/G-7.56T/A-6.70T/G-9.30G/T-8.77G/A-6.36A/G-9.77T/T-5.74A/T-7.32G/G-7.65G/C-10.23	
2 /2/	#9	G/TAC	G/G	-7.65	-35.76
5/ 5**	#10	T/GAC	GCC/A A/G -9.77 TAT/A T/T -5.74 TAA/A A/T -7.32 G/TAC G/G -7.65 T/GAC G/C -10.2	-10.23	(-17.88×2)

Table S3.22. Thermodynamic analysis of complementary edges in M13mp18 Cairo pentagonal tile.

Table S3.23. Thermodynamic analysis of complementary edges in p8064 floret pentagonal tile.

Complementa	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}
rity		2-nt sticky end	blunt end	(kcal/mol)	(kcal/mol)
	#1	CGT/T	A/C	-9.38	
	#2	CAA/G	A/C	-8.25	
1 & 1*	#3	ATT/A	T/G	-5.62	
	#4	GAC/C	C/A	-7.92	66 70
	#5	AGC/G	A/C	-10.56	-00.78
	#6	GTA/T	G/T	-7.36	
	#7	TGC/A	C/T	-9.47	
	#8	TCT/G	C/C	$\begin{array}{r} \Delta G_{bond} \\ (kcal/mol) \\ -9.38 \\ -8.25 \\ -5.62 \\ -7.92 \\ -10.56 \\ -7.36 \\ -9.47 \\ -8.22 \\ -9.19 \\ -7.49 \\ -7.85 \\ -7.66 \\ -6.79 \\ -9.14 \end{array}$	
_	#9	ACG/G	T/A	-9.19	
⊃ &) *	#10	CAT/C	A/A	-7.49	22.10
2 & 2	#11	AGG/T	C/A	-7.85	-32.19
	#12	GAT/T	C/G	$\begin{array}{r} \Delta G_{bond} \\ (kcal/mol) \\ -9.38 \\ -8.25 \\ -5.62 \\ -7.92 \\ -10.56 \\ -7.36 \\ -9.47 \\ -8.22 \\ -9.19 \\ -7.49 \\ -7.85 \\ -7.66 \\ -6.79 \\ -9.14 \end{array}$	
2/2*	#13	GTA/G	T/A	-6.79	-31.86
5/ 5**	#14	GGT/C	G/T	-9.14	(-15.93×2)

S3.4.3 Square tiles with imbalanced bond interactions

Interaction.					
Complementa	Bond	Sequence of	Sequence of	ΔG_{bond}	ΔG_{edge}
rity	Donu	2-nt sticky end	blunt end	(kcal/mol)	(kcal/mol)
1 & 1*	#1	CCC/A	T/G	-8.40	-27.34
	#2	CGG/C	C/T	-10.67	
	#3	CTC/C	T/C	-8.27	
2 & 2*	#4	G/CTA	G/C	-10.09	-33.01
	#5	A/AGG	C/C	-8.16	
	#6	A/AAT	G/G	-6.88	
	#7	A/AGG	T/T	-7.88	

Table S3.24. Thermodynamic analysis of p3548 square tile with imbalanced bond interaction.

Table S3.25. Thermodynamic analysis of M13mp18 square tile with imbalanced bond interaction.

Complementa rity	Bond	Sequence of 2-nt sticky end	Sequence of blunt end	ΔG_{bond} (kcal/mol)	ΔG_{edge} (kcal/mol)
1 & 1*	#1	ACC/A	C/G	-9.34	-31.92
	#2	TCA/A	A/A	-7.65	
	#3	GGT/A	A/C	-8.35	
	#4	CAA/T	C/A	-6.58	
2 & 2*	#5	TGC/A	G/C	-11.29	-37.37
	#6	TCC/T	A/C	-8.91	
	#7	CCA/T	A/T	-8.95	
	#8	CAG/A	C/C	-8.22	
S3.5 DNA Sequences

S3.5.1 Sequences of scaffold strands

S3.5.1.1 Sequence of the customized p2820 scaffold

GTGGCACTTTTCGGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTCTAA ATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCA ATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTT ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTG GTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCG AACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACG TTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCC GTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAA TGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGG CCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTT GCACAACATGGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTG AATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGG CAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGC GCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAG CGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCC GTATCGTAGTTATCTACACGACGGGGGGGGGCAGTCAGGCAACTATGGATGAACGAAA TAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCA GACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAACTTCATTTTTAATTT AAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTA ACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCCGTAGAAAAGATCAAAGGA ACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTT TTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCT AGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACA TACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTC GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCT ACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCC CGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGG AGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCT GTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGG GGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTG GCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCT GTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCC GAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAA TACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCAC GACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGA

S3.5.1.2 Sequence of the M13mp18 scaffold

TGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGG ACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTG ATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCC TGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGC GGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACC CTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAAT GCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACG CAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATG CTTCCGGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAATTTCACACAGG AAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCT AGAGTCGACCTGCAGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACGT CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATC CCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTC CCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCA CCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATA CTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTAC ACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAA TCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGG AAGGCCAGACGCGAATTATTTTGATGGCGTTCCTATTGGTTAAAAAATGAG CTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAACGTTTACAAT TTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGGCTTTTCTGATTATCAAC CGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGATTCTC TTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGATCTCTCA AAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATATCA TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACC TACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTT ATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAAT GTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTT GCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTAATGCTACTACTATT AGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTA AACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACT CGTTCGCAGAATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACC GTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGCATTATATTCAGCAA TTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAA AGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTG AAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTT TTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGAT TTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGGA TTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAAC ATTTTACTATTACCCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATT TTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTTACT ATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATT CCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTT

CGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCC AGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAAC CATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCT TATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGT TCTTGTCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGT ACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTG ACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCG ACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTT GGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCT TTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGTTTAATG GAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCT ACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGC GGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGG CGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAA TTCACCTCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGA GCCTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTA GTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAA ATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTA GATCGTTACGCTAACTATGAGGGCTGTCTGTGGAATGCTACAGGCGTTGTAGT TTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTG CTATCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGG CGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTC CGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAG CAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATAC TTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACTGTTT ATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTAC ACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCA AAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCT GGTGGTGGTTCTGGTGGCGGCTCTGAGGGTGGCTCTGAGGGTGGCGGTT CTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGG TGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGGCTATGACCGAA AATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTG TCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGC CTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAAT GGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAAT ATTTACCTTCCCTCCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCGCTG GTAAACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGT CTAACATACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTC CGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGC TTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTC TTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTA GCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTA ATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTT

GTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGG TAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGAT TTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCG GCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACAGCCGAT TATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGT TCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATG TTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTACTTTAT ATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTT GTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATAC TGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATT TCAAACCATTAAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAA AAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTACATA TAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACC TATGATTTTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTAT CGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATTTACA GAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAA AAGGTAATTCAAATGAAATTGTTAAATGTAATTAATTTTGTTTTCTTGATGTTT GTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGC GATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCC CGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATC TACGCAATTTCTTTATTTCTGTTTTACGTGCAAATAATTTTGATATGGTAGGTT CTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGAT GAATTGCCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGG TGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATA ACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTT AGTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGAT TTGCCAACTGACCAGATATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGG TGATGCTTTAGATTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAG GCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATCTTCTGCTGGTGGTTCGT TCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACT AATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCA GAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGA CTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAA TTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGT GATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGG ACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGATT CTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCC GCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCAT AGTACGCGCCCTGTAGCGGCGCGCATTAAGCGCGGGGGGGTGTGGTGGTTACGCG

CAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCT TCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAA CTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCC

S3.5.1.3 Sequence of the p8064 scaffold

TGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATA GTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCT TTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTT CGCCTGCTGGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCC AGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAAC CACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCAT TAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCA ACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTT ATGCTTCCGGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAATTTCACAC AGGAAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCC TCAACTGTGAGGAGGCTCACGGACGCGAAGAACAGGCACGCGTGCTGGCAG AAACCCCCGGTATGACCGTGAAAACGGCCCGCCGCATTCTGGCCGCAGCACC ACAGAGTGCACAGGCGCGCAGTGACACTGCGCTGGATCGTCTGATGCAGGGG GCACCGGCACCGCTGGCTGCAGGTAACCCGGCATCTGATGCCGTTAACGATT TGCTGAACACCAGTGTAAGGGATGTTTATGACGAGCAAAGAAACCTTTAC CCATTACCAGCCGCAGGGCAACAGTGACCCGGCTCATACCGCAACCGCGCCC GGCGGATTGAGTGCGAAAGCGCCTGCAATGACCCCGCTGATGCTGGACACCT CCAGCCGTAAGCTGGTTGCGTGGGATGGCACCACCGACGGTGCTGCCGTTGG CATTCTTGCGGTTGCTGCTGACCAGACCAGCACCACGCTGACGTTCTACAAGT CCGGCACGTTCCGTTATGAGGATGTGCTCTGGCCGGAGGCTGCCAGCGACGA GACGAAAAAACGGACCGCGTTTGCCGGAACGGCAATCAGCATCGTTTAACTT TACCCTTCATCACTAAAGGCCGCCTGTGCGGCTTTTTTTACGGGATTTTTTTAT GTCGATGTACACAACCGCCCAACTGCTGGCGGCAAATGAGCAGAAATTTAAG TTTGATCCGCTGTTTCTGCGTCTCTTTTTCCGTGAGAGCTATCCCTTCACCACG GAGAAAGTCTATCTCTCACAAATTCCGGGGACTGGTAAACATGGCGCTGTACG TTTCGCCGATTGTTTCCGGTGAGGTTATCCGTTCCCGTGGCGGCTCCACCTCT GAAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTG GCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGT AATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGA ATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAG CTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACT GGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCAT TACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGC TCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTAT TTTTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAA TGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAA TCTTCCTGTTTTTGGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACA TGCTAGTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAG GCAATGACCTGATAGCCTTTGTAGATCTCTCAAAAATAGCTACCCTCTCCGGC ATTAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGT CTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGC ATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGG CTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTA

GCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTAATGCTACTACTATTAGTAGAATTGATGCCACCTT TTCAGCTCGCGCCCCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGC GAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATC AACTGTTATATGGAATGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAA AACATGTTGAGCTACAGCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCA AAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTAATCCTGACC TGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGA TATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCT TCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCATTCTC GTTTTCTGAACTGTTTAAAGCATTTGAGGGGGGATTCAATGAATATTTATGACG ATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCCTCT GGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCTG GTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTCCTTTTG GCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGA ATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATT TTTCTTCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAA GGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACT ACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCT TTGTTACGTTGATTTGGGTAATGAATATCCGGTTCTTGTCAAGATTACTCTTG ATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCT TTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCC GGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGAT GATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGGGGGTC AAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCT TCGTAGTGGCATTACGTATTTTACCCGTTTAATGGAAACTTCCTCATGAAAAA GTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTC TTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAA GCCTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGT TGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTGGAGATTT TCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTC ACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAAATCCCATACAGAAAATTC ATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACTAT GAGGGCTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACGAAA CTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAG GGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCG GTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATC AACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCC TAATCCTTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAA TAGGTTCCGAAATAGGCAGGGGGGCATTAACTGTTTATACGGGCACTGTTACT CAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAA AGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATT CTGGCTTTAATGAGGATTTATTTGTTTGTGAATATCAAGGCCAATCGTCTGAC CTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGG

CGGCTCTGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCT GAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGGTGATTTTGATTATGAAA AGATGGCAAACGCTAATAAGGGGGGCTATGACCGAAAATGCCGATGAAAACG CGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGT GCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGG TGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACG AATCGGTTGAATGTCGCCCTTTTGTCTTTGGCGCTGGTAAACCATATGAATTT TCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTA TATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACATACTGCGTAAT AAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCC TCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTCTTAAAAAGG GCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGGC TTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTG ACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTT ATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAA ATCGTTTCTTATTTGGATTGGGATAAATAATATGGCTGTTTATTTTGTAACTGG CAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAA ATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATTTAAGGCTTCAAAACCT CCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGAT AAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGA TGAAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATA GCTCGTAAATTAGGATGGGATATTATTTTTTTTTTTGTTCAGGACTTATCTATTGTT GATAAACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCT GGACAGAATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATTACTGGCTC GAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTC AATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAAC GCATATGATACTAAACAGGCTTTTTCTAGTAATTATGATTCCGGTGTTTATTCT TATTTAACGCCTTATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGG TCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTT GTCTTGCGATTGGATTTGCATCAGCATTTACATATAGTTATATAACCCAACCT AAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATTTGATAAATTCA CTATTGACTCTTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATT CTAAGGGAAAATTAATTAATAGCGACGATTTACAGAAGCAAGGTTATTCACT CACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGAAA CTCAGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTAT TCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGT TACTGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTC TGTTTTACGTGCAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCA GAAGTATAATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGAT AATCAGGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCA AAATGATAATGTTACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGAT TTAATACGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAA

TGTATTATCTATTGACGGCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATAT TTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGATTTGCCAACTGACCAGAT ATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTT CATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAGGCGGTGTTAATACTGAC GATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAAT ATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGT TGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGACTGGTGAATCTGCCAATG TAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGC GTTTTTCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAA GGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAA GAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGGT GGCCTCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACCGTTCCTGTC TAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAACGAGG AAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCG GTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCTTTAGGGTTCC GATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGT TCACGTAGTGGGCCATCGCCC

S3.5.2 Sequences of staple strands

S3.5.2.1 Staple strand sequences of tiles for regular tilings

Name	Sequence
[SQ]_M13_core	GCTGAGGCTTGCAGGGAGTTAAACGAAAGACAGCATCGC
_l	ATGAGGA
[SQ]_M13_core _2	AGGCAAAAGGACTAAAGACTTTTTGAACGA
[SQ]_M13_core _3	GGGTAGCAACTTTCGAGGTGAA
[SQ]_M13_core _4	AGTTTCCAAGGCACCAACCTAAGATTTGTA
[SQ]_M13_core 5	TGAGAAGTTTATCATTTTGGCTTTGAGAATAC
[SQ]_M13_core _6	GCGCAGACAACAAAGTACAACGGAAACGAAAG
[SQ]_M13_core 7	ACTAAAACACTTTTTTTTTCAGCGGAG
[SQ]_M13_core 8	TCATCGCCCATGTTACTTAGCCGTAATCTT
[SQ]_M13_core 9	AAGCGCGAGGTCAATCATAAGGGACAGGCGCA
[SQ]_M13_core 10	GATTTTGCTAAACAACTTTTTTCCCCAGCGATTATACC
[SQ]_M13_core 11	GCTTGCCCCTGACCTTCATCAAGAGGAACGAG
[SQ]_M13_core 12	GTAAATTGAACGGTGTACAGACACCGAA
[SQ]_M13_core 13	CTGACCAACTTACCGTAACA
[SQ]_M13_core 14	GACAAGAAAGCTGCTCATTCAGAAATCTAC
[SQ]_M13_core 15	TAGGCTGGTGACGAGAAACACCAGGCTCATTA
[SQ]_M13_core 16	TCAGTACCAATAGGTTTTGGACAGATGGGCTT
[SQ]_M13_core 17	TAGGAATAAGGACGTTGGGAAGAATGAATAAG
[SQ]_M13_core _18	TAACGCCCGATTTTAAGAACTGAACGAGTA
[SQ]_M13_core 19	GAGATGGTTTTTTTTTGGGGGTTTTGC
[SQ]_M13_core	GTTAATAAGAAAGATTCATCAGTTTAGACT

Table S3.26. Core staples of M13mp18 square DNA origami tile.

_20	
[SQ]_M13_core 21	TACCAGTCCCACATTCAACTAATGGAAGTTTT
[SQ]_M13_core 22	ACCTTATGAAAAGGAATTACGAGGAAAACCAA
[SQ]_M13_core _23	CCTCAAGAGAAGGATTTTTTTTTTTTTAATCATTGTGAATT
[SQ]_M13_core _24	TGCTTTAAGGGTAATAGTAAAATGTTGAGATT
[SQ]_M13_core 25	ATAAATCGAGGCTTTTGCAAAACAGATACA
[SQ]_M13_core 26	AGATTACCCTGACTATTATAGTTTACCAGACGACGATACAT AGT
[SQ]_M13_core 27	AAGAGCAACATGAATGGAAAG
[SQ]_M13_core _28	GGATAGCATATTCATTGAATCCGAAGCAAA
[SQ]_M13_core 29	GCCAGAGGACAGTTCAGAAAACGATTTTAATT
[SQ]_M13_core 30	AATAGCGAAAAAATCAGGTCTTTAAGAGGAAGCCCGAAA GGCTCAACA
[SQ]_M13_core _31	ACCTTTTTTTTTTTAGCCCCCTATCCTCATTTTTTACCCTCGT
[SQ]_M13_core _32	CGGATGGCAAAGCGAACCAGACCGCCCTCAAA
[SQ]_M13_core _33	TGCTGTAACTTCAAATATCGCGGAATGACC
[SQ]_M13_core _34	CAGAAGCATTTTTCTGTCGTGATAAATCATTTTTCAAGAAA A
[SQ]_M13_core _35	CTCCAACCTTTTGATAAGAGGTTTTGACCA
[SQ]_M13_core _36	CGAGCTTCTTAGAGCTTAATTGCTTGATTCCC
[SQ]_M13_core _37	GCTTTCCAGTTTGCATCAAAA
[SQ]_M13_core _38	TGAAAAGGGAACGAGTAGATTTAGCATTTTTG
[SQ]_M13_core _39	GCAAAGAATAGTAGTAGCATTATTCCATATAACAGTGAATA TAA
[SQ]_M13_core _40	TGTTTTAAATATGCAATTTTTTTAAGCTTGCATGCCTGC
[SQ]_M13_core 41	TTAGATAATATTTTCATTTGGGCATAAAGC
[SQ]_M13_core 42	AATTCTGCTGGCATCAATTCTACTAATTAGCAAAATTAAGG GATAAAA

[SQ]_M13_core 43	AGTTTCAACATCCATTTTCGCTTCTGGACGTT
[SQ]_M13_core 44	GTAAAACGACTTTTTTTGGTGTCTGGA
[SQ]_M13_core 45	CAACGCAACAATAAAGCCTCAGAGGCGCGAGC
[SQ]_M13_core 46	TAAATCGTTTTGCGGGAGAAGCTCAAAAGG
[SQ]_M13_core 47	CAGCCAGCTTTACAGGCAAG
[SQ]_M13_core 48	ATCTACAGCTGATAAATTAATGATGTGTAGGTAAAGATCTT TATTT
[SQ]_M13_core 49	ATTTTTAGAACCCTCATTTTTTCCCGTCGGATTCTCCG
[SQ]_M13_core 50	GTGAGAAATATTCAACCGTTCTAAAGGCTA
[SQ]_M13_core 51	TGAGTACCGGAGAGTTTTGTTAAAATTCAACA
[SQ]_M13_core 52	TTAAATGTGATTTTTTTATGCAATGCC
[SQ]_M13_core 53	TCAGGTCCGATGAACGGTAATCGTAAAACT
[SQ]_M13_core 54	TTGTAAACGTTTTTTTGAGAG
[SQ]_M13_core 55	TCCAGAGCCTAATTTGCCAGTTACAAATAAGAAACGATAC ATAAAA
[SQ]_M13_core 56	GAGCGCTACTTTACAGAGAGAATATTTTTG
[SQ]_M13_core 57	TTTAACGTCATTAGGTTTTGAA
[SQ]_M13_core 58	ACAGGGACTGAACAAAGTCAGACAATAGCT
[SQ]_M13_core 59	TTTTATCCTCCCGATTTTATAGCAGCATATCA
[SQ]_M13_core 60	ACCGAGGAAGAAACAATGAAATAGGGGTAATT
[SQ]_M13_core 61	GAGAGATAACTTTTTTAGCAAGCCGT
[SQ]_M13_core 62	ATCTTACCCGAACAAAGTTACCTGGCAACA
[SQ]_M13_core 63	TAAGAGCAAACGCAATAATAACGGGTTAGCAA
[SQ]_M13_core 64	ACCAAGTACCGCACTCTTTTTTGAGTTAAGCCCAATAA
[SQ]_M13_core	ATATGGTTAATACATACATAAAGGAGAAGGAA

_65	
[SQ]_M13_core 66	GACATTCCTTATTACGCAGTATAATACC
[SQ]_M13_core 67	CAAAAGAACTTGCAGAACGC
[SQ]_M13_core _68	TATAAAATTGTCACAATCAATAGCAAAATC
[SQ]_M13_core _69	ACGTAGAATACCAGCGCCAAAGACCACCGACT
[SQ]_M13_core _70	TACCAGCAACATGTTTTTTAAGACTCAACCGA
[SQ]_M13_core _71	CACCGTAATTGGGAATTAGAGCCAGAAAATTC
[SQ]_M13_core _72	CCTTTAGGTGAATTATCACCGTAAAAGGGC
[SQ]_M13_core _73	TTGAGGGAGGTTTTTTTACAAATTCT
[SQ]_M13_core _74	ACCAGTAACCAATGAAACCATCACCCTCAG
[SQ]_M13_core _75	TGAGCCATTCAGTAGCGACAGAATCCACCACC
[SQ]_M13_core _76	CATTAAAGCGTCAGACTGTAGCGCCTTTTCAT
[SQ]_M13_core _77	AGCCTGTTTAGTATCATTTTTTTTTTTTGACGGAAATTATT
[SQ]_M13_core _78	GAGCCGCCCTCCCTCAGAGCCGCCGATAGCAG
[SQ]_M13_core _79	CAGGTCATCACCGGAACCAGAGCAAGTTTG
[SQ]_M13_core _80	CGCAGTATTCACAAACAAATAATATTAGCGTTTGCCATGTT TTC
[SQ]_M13_core _81	ATCGGCATTTTGCTTAGGTTG
[SQ]_M13_core _82	AACCGCCAGCCGCCACCAGAACAATAAGTT
[SQ]_M13_core 83	GGAACCGCGCCAGCATTGACAGGACATGGCTT
[SQ]_M13_core _84	AATCAAAAGACGATTGGCCTTGATCTCTGAATTTACCGTTC TGAGACT
[SQ]_M13_core _85	TCGGAACCACAGGAGTGTACTGGTCACCACCA
[SQ]_M13_core _86	TAAGAGGCCAGTAAGCGTCATAGGTTGAGG
[SQ]_M13_core 87	TTAACGGACAGTTAATGCCCCCAATAGGTG

[SQ]_M13_core 88	TTGATGATTATTATTCTGAAACATCCGTCGAG
[SQ]_M13_core 89	CCCTCAGATATAAGTATAGCCCGGTGCCTATT
[SQ]_M13_core _90	CTGAGTTCAGGGATAGCAAGCCCAGGCGGATAAGTGGAA AGTAT
[SQ]_M13_core _91	TATCACCAACCGCCACCCTCAGCATTCCAC
[SQ]_M13_core 92	AGGGTTGAGCCACCACCCTCATTTTTCGTCACCAGTACAA CTGTATGG
[SQ]_M13_core _93	TGAATTTTACTACAACGCCTGTAGAACCGCCA
[SQ]_M13_core 94	AGACAGCTCGTCTTTCCAGACGAAGGAATT
[SQ]_M13_core 95	TTTCTTGCCTTTAATTGTATCGTAGAAAGGAACAACTATTA GTAAA
[SQ]_M13_core 96	GCGAATAAAGGCTCCAAAAGGAAAACAGCT
[SQ]_M13_core 97	TGATACCCCCACGCATAACCGATATATTCG
[SQ]_M13_core 98	AAGAATACGTGGCACAGACAATAACTGATAGCCCTAAAAG GTGAGG
[SQ]_M13_core 99	TAAAGCATGCAGAAGATAAAACAGACATCG
[SQ]_M13_core 100	CCATTAAAAATTTTTACATTGG
[SQ]_M13_core _101	CGGTCAGGAGCCAGCAGCAAATAAGGAATT
[SQ]_M13_core 102	TCAAACCGTCTGAATTTTAACCACCACACCTT
[SQ]_M13_core 103	GATAATACGCAAATCAACAGTTGAGAAAAATC
[SQ]_M13_core 104	GCTGAACCTCTTTTTTGTAGAAGAAC
[SQ]_M13_core 105	GAGGAAGCTAATAGATTAGAGCCATTATCA
[SQ]_M13_core 106	GTCAGTTGATTTGAGGATTTAGAACCGAACGT
[SQ]_M13_core 107	GATTAGTAATAACATCTTTTTTCCTCAATCAATATCTG
[SQ]_M13_core 108	TGATGGCATTAAAAGTTTGAGTAACGTCAATA
[SQ]_M13_core 109	TTGGATTTATTAAATCCTTTGCGTATTA
[SQ]_M13_core	GACTTTACAACAGGAGGCCG

_110	
[SQ]_M13_core _111	TTTTGCGTCATCATATTCCTGATCAGATGA
[SQ]_M13_core _112	TATTAATTATTCATCAATATAATCTAAAGAAA
[SQ]_M13_core _113	AAAGGACAGAGCGGTTTTACAACTCGATACTT
[SQ]_M13_core _114	AATACCAAATTTTCAGGTTTAACGTTATCAGA
[SQ]_M13_core _115	TTATTCACACGTAAAACAGAAACTGATTGT
[SQ]_M13_core _116	CTGAATAATGTTTTTTACGTGGCGAG
[SQ]_M13_core _117	ATATACAAACGGATTCGCCTGAAATAACCT
[SQ]_M13_core _118	TTGCGTAGGTTACAAAATCGCGCAGGAAACAG
[SQ]_M13_core _119	ATTATTTGTTTCAATTACCTGAGCTAACAATT
[SQ]_M13_core _120	AGAGCTTGACGGGGAATTTTTTTAACCTACCATATCAAA
[SQ]_M13_core _121	AGCGATAGTCAATATATGTGAGTGTTGCTTTG
[SQ]_M13_core 122	TCAATAGATTACCTTTTTTAATGAGGCGAA
[SQ]_M13_core 123	GGTTATATAGGTCTGAGAGACTCAAAATTAATTACATTAAA AGA
[SQ]_M13_core 124	AGATGATGAATGCCCGAGATA
[SQ]_M13_core 125	TGCTTCTTCCCTTAGAATCCTTCAAATATA
[SQ]_M13_core 126	TACATAAACTTAGATTAAGACGCTATCGCAAG
[SQ]_M13_core 127	TCATTTGATGAATTTATCAAAATCATAACTATATGTAAATCT AGAAAA
[SQ]_M13_core 128	TAAGGCGTCGCGAGAAAACTTTTTGAAAACAT
[SQ]_M13_core 129	ATAATTAGCTGATGCAAATCCAGAGAAGAG
[SQ]_M13_core 130	TTTTAGTTGAAATACCGACCGTTTAACAAC
[SQ]_M13_core 131	ACAAAGAATAAATAAGAATAAACACAACAGTA
[SQ]_M13_core 132	CAAAAGGTTTGAGAATCGCCATATGTGATAAA

[SQ]_M13_core	GCCTGTGACGACGACAATAAATATAAAGCCAACGCTCCGG AATC
[SQ]_M13_core	GCCAACAAATAAGAGAATATAAAAATAATAT
[SQ]_M13_core 135	GGGCTTAAAAAGTAATTCTGTCCATTATCAACAATAGATAG
[SQ]_M13_core 136	CAAGAACGAGTCCTGAACAAGAAAAGTACCGA
[SQ]_M13_core 137	CCCATCCTCGGCTGTCTTTCCTATTACCGC
[SQ]_M13_core 138	GCCTTAGAGGCGTTTTAGCGAATTTCATCGTAGGAATCTAT CATTC
[SQ]_M13_core 139	GCCCAATGTATTCTAAGAACGCAATCAAGA
[SQ]_M13_core 140	TTAGTTGATCTTACCAACGCTAACGAGCGT
[SQ]_M13_core _141	ATGTCAATCATATGTACCCCGGTTTGTATAAGCAAATATTAA ATCA
[SQ]_M13_core 142	AGCTTTCATCGCATTAAATTTTTGTTTAAA
[SQ]_M13_core _143	GCTCATTTCGCGTCTGGCCTTCTAATGGGA
[SQ]_M13_core 144	GACAGTATAACGGCGGATTGACCGCTGTAGCC
[SQ]_M13_core _145	TAGGTCAATCTGCCAGTTTGAGTGTTGGGA
[SQ]_M13_core _146	TGGGAACACGGCCTCAGGAAGATCCAAAGCGC
[SQ]_M13_core 147	GGCGATTAATTCAGGCTGCGCAACGGGACGAC
[SQ]_M13_core 148	CAGTCACGTGCCGGAAACCAGGGCACTC
[SQ]_M13_core 149	AGGGCGAGGCGAAAGGGGGGATGAGCTGTTT
[SQ]_M13_core 150	CATTCGCCAGTTGGGTAACGCCAGGGTACCGA
[SQ]_M13_core 151	TAAAGCCTTCGTAATCATGGTCATTGCTGCAA
[SQ]_M13_core 152	TCACATTTCTAGAGGATCCCCGGGTTTTCC
[SQ]_M13_core 153	CCTGTGTATACGAGCCGGAAGCCAGTGAGA
[SQ]_M13_core 154	GCTCGAATGGGGTGCCTAATGAGTGTATTGGG
[SQ]_M13_core	AGGTCGACAATTGCGTTGCGCTCAATCGGCCA

_155	
[SQ]_M13_core _156	GGTCCACGTGGTTTTTTCTTTTCACATAAAGTG
[SQ]_M13_core 157	TCCTGTTGGAGAGGCGGTTTGCGAGCTAAC
[SQ]_M13_core 158	GGGTTGATCGGCAAAATCCCTTCCAGCTGCATTAATGACT GCCC
[SQ]_M13_core 159	CGGGCAAGCCCTGAGAGAGTTGCGAAAAAC
[SQ]_M13_core 160	CGCCAGGGCTGGTTTGCCCCAGCATATTAAAG
[SQ]_M13_core 161	ACGCGCGGTGATGGTGGTGGTTCCGAAAGTGTTGTTCCAGTTT CCCGATTT
[SQ]_M13_core 162	GGTGCCGTCTCCAACGTCAAAGGGCAGCAAGC
[SQ]_M13_core 163	GGGAGCCGGAACAAGAGTCCACGGCGAAAA
[SQ]_M13_core 164	CGTCTATCAAATCAAGTTTTTTCGGTCACG
[SQ]_M13_core 165	AACGTGGAAAAGCACTAAATCGGAAGGAGCGG
[SQ]_M13_core 166	CTTTGACGGCGCTGGCAAGTGTAGGGGGGTCGA
[SQ]_M13_core 167	ATTAAATTTCCTCGTTAGAATAGGGAAGAAAGCGAAACCC TAAA
[SQ]_M13_core 168	CTGCGCGCTACAGGGCGCGTACCTGAGAAG
[SQ]_M13_core 169	GCGCTAGGAGCACGTATAACGTGCGGGATTTTAGACAGGA ACTTCTTT
[SQ]_M13_core 170	GTAGCAATACGGTACGCCAGAATCTATGGTTG
[SQ]_M13_core 171	TGTTTTTGTCCATCACGCAAATAATATCCA
[SQ]_M13_core 172	CAGATTCATTTTGACGCTCAATTATCGGCCTTGCTGGTTAA CCGTT
[SQ]_M13_core _173	GAACAATTCATGGAAATACCTACACCAGTC
[SQ]_M13_core _174	ACACGACATAGAACCCTTCTGACCTGAAAG

Table S3.27. Edge staples	s of M13mp18 square DNA origami tile.
Name	Sequence

Name	Sequence
[SQ]_M13_edge_1	GCATTTTCGAGCCAGTTGTAATTTAGGCAGAGCG

[SQ]_M13_edge_2	CCTAAATTTAATGGTTTAATTTCATCTTCTGACA
[SQ]_M13_edge_3	CATCGGGAGAAACAATGTAACAGTACCTTTTATA
[SQ]_M13_edge_4	AGAAGGAGCGGAATTAGAACAAAGAAACCACCCG
[SQ]_M13_edge_5	CTATTACGCCAGCTTCGGTGCGGGCCTCTT
[SQ]_M13_edge_6	CAATTCCACACAACGAAATTGTTATCCGCT
[SQ]_M13_edge_7	CGTGAACCATCACCCAGGGCGATGGCCCAC
[SQ]_M13_edge_8	CGCTTAATGCGCCGTAACCACCACACCCGC
[SQ]_M13_edge_9	CCAAATCAACGTAACAACCGGATATTCATTACGT
[SQ]_M13_edge_10	CAACATTATTACAGGTAAACGAACTAACGGAAAA
[SQ]_M13_edge_11	GTACCTTTAATTGCTCAGGTCAGGATTAGAGACA
[SQ]_M13_edge_12	AATAACCTGTTTAGCTCATTTCGCAAATGGTCAC
[SQ]_M13_edge_13	ACCGCCACCCTCAGGTACTCAGGAGGTTTA
[SQ]_M13_edge_14	CAGTGCCCGTATAAGGTCAGTGCCTTGAGT
[SQ]_M13_edge_15	AGGCCGGAAACGTCGCACCATTACCATTAG
[SQ]_M13_edge_16	GGAATAAGTTTATTGAAACGCAAAGACACC

Table S3.28. Core staples of p2820 equilateral triangular DNA origami tile.

Name	Sequence
[TR]_p2820_core _1	GAGGCACATAGTTGCCTGACTCTGATACCG
[TR]_p2820_core	TAGAGTAGGGCCGAGCGCAGAAGGCCCCAGTGCTGCAA
[TR]_p2820_core _3	GGTAACTATCGTTTTTGGCTTACCATCT
[TR]_p2820_core 4	GTGGTTTGTTGCCGGGAAGCTGGTGTCACGCTCGTGATC A
[TR]_p2820_core 5	ATTAACCTGCAACTTTATTTTGCGCTTTCTCATGCCTT
[TR]_p2820_core 6	TCTCCCTTCGGTTTTTCCATCCAGTCT
[TR]_p2820_core _7	CGAGACCAACCAGCCAGCCGGAAAGTAGTT
[TR]_p2820_core 8	CGCCAGTTTGCCATTGCTACAGCCCCCATG
[TR]_p2820_core _9	AAAAAAAAGAACGTGGATTTTCCGGTTCCCAACCGTTT
[TR]_p2820_core _10	GGTATGGCTTCTTTTGTCAAAGGGCG
[TR]_p2820_core _11	CTGTCATTGGCCGCAGTGTTATAGGCGAGTTACATGATGC ATCG
[TR]_p2820_core _12	CACTCATGGTTATTTTCAGCTCATTTTT
[TR]_p2820_core 13	TTGTGCAGTTGTCAGAAGTAAGTGCCATCC

[TR]_p2820_core	TCTCTTACGGCGACCGAGTTTTTTTGTATTTAGAAAAAT
15	TTAAATTTTTTTTTTTACTGCATAAT
[TR]_p2820_core _16	GTAAGATTCATTCTGAGAATAGCGGGATAA
[TR]_p2820_core 17	TAAACAATGAGCGGATACATTTTTTGCCCGGCGTCAATAT GTATG
[TR]_p2820_core 18	AAATAATAATTTTCAAGGGGGGGGAAATTTTTCACGG
[TR]_p2820_core 19	TACCGCGTGGAAAACGTTCTTCGATCTTAC
[TR]_p2820_core 20	TAACTACGATTTTTTCCAACCCGGT
[TR]_p2820_core	AAGACACCTTGAAGTGGTGGTTTTTTTCTGACAGTTACCG
[TR] p2820 core	AATGCTAAGTATATATGAGTTTTTTTACGGCTACACTAGA
22	GAGTT
[TR]_p2820_core _23	GAGAAAGGGTTTCAAACGCTCTTGATTTTTTGTCAT
[TR]_p2820_core _24	TCAAGAAGATCCTTTACGAAAACTCACGTTTTATCAAA
[TR]_p2820_core 25	AAGGATCTTTTAAATCAATCTATAATCAGT
[TR]_p2820_core 26	CGCTGTTCCAACTGATCTTCAG
[TR]_p2820_core 27	TTCCGCGAAGCGTTAATATTTTATCGGCAA
	ATGGCCTTGGAACAAGAGTCCATAACCAATAGGCCGAAG TTAAA
[TR]_p2820_core 29	CTATTCCGTCTATCAGGGCGCTAAATCGGAACCCTCCGGC
[TR]_p2820_core 30	AATCCCTGAGTGTTGTTCCAGTCACTACGT
[TR]_p2820_core 31	GAACCATGGGTCGAGGTGCCGTGAAGGGAA
[TR]_p2820_core 32	AAACCCAAAAATCGACGTTTTTGACGGGGAAAGAAAGG
[TR]_p2820_core 33	GAGCCCCCGATTTTTCAGAGGTGGCG
[TR]_p2820_core 34	TCGCCACGTAACCACCACACCCGAACGTGGCGAGAAAG AAAGCA
[TR]_p2820_core 35	GCCGCGCTTAATTTTTGGATAACGCAGG
[TR]_p2820_core	GAAAGCGAGCGGTCACGCTGCGTTCAGGCT

_36	
[TR]_p2820_core	GTCCCATAGGGGGGATGTGCTTTTTTTGGGCGCTCTTCCAA
_37	TACGG
[TR]_p2820_core	
38	
[TR]_p2820_core	GCGCAACGCTATTACGCCAGCTAACGCCAG
39	
[TR]_p2820_core	GCTTCCCGGGGAGAGGCGGTTTTTTCGATTAAGTTGGGT
40	GGCGAA
[TR]_p2820_core _41	GCTCACATTTTTCGAATACTCACTATTTTTTGTTGC
[TR]_p2820_core	GGTTTTCAGCGCGCGTAATACGTGGGTACC
-42	
43	TTTACTTTCACCAGCTGCCGCAAAAAAGGGGGTTGAATA
[TR]_p2820_core 44	CTCATACCAGGGTTATTGTCTCAATAGGGG
[TR]_p2820_core _45	GGCGTAATTATCCGCTCACAAT
[TR]_p2820_core 46	TGACTCGATCAGCTCACTCAAAAAAGGCCA
[TR]_p2820_core 47	GATACCCCGCCCCCTGACGAGAAAGAACATGTGAGCA GGCGGT
[TR]_p2820_core 48	CATCACGACAGGACTATAAAACCGGATACCTGTCCAGCT C
[TR]_p2820_core 49	GCAAAAGGTTTTTCCATAGGCTAGGCGTTT
[TR]_p2820_core 50	CCCCCTGCCTGTTCCGACCCTGAGTTCGGT
[TR] p2820 core	GACTTACCGCTGCGCCTTATCCACGCTGTAGGTATCTCCC
51	GCTT
[TR]_p2820_core	
_52	GIAGGICCCCGITCAGCCCGATCGCCACI
[TR]_p2820_core 53	GGCAGCATGTAGGCGGTGCTACAAGGACAG
[TR]_p2820_core 54	TATTTGGGAAAAAGAGTTGGTAAAACCACC
[TR]_p2820_core _55	ACAACATACGAGCCGTGAGTGAGCTAACTCACTGCCCG
[TR]_p2820_core _56	CTTTCCAGAATCGGCCAACGCGTCGCTCAC
[TR]_p2820_core 57	GCTGGTAACGCGCAGAAAAAA

Name	Sequence
[TR]_p2820_edge_1	AAAACGACGGCCAGTGCCAGTCACGACGTTGTTA
[TR]_p2820_edge_2	CGGTGCGGGCCTCTTCTGTTGGGAAGGGCGATTC
[TR]_p2820_edge_3	GGGCGCTGGCAAGTGTAAAGGAGCGGGCGCTAAG
[TR]_p2820_edge_4	AGACCGAGATAGGGTTTATAAATCAAAAGAATCT
[TR]_p2820_edge_5	GTGCCACCTAAATTGTCACATTTCCCCGAAAATG
[TR]_p2820_edge_6	TTATTGAAGCATTTATTCTTCCTTTTTCAATATA
[TR]_p2820_edge_7	AATTAAAAATGAAGTTCACCTAGATCCTTT
[TR]_p2820_edge_8	TATTTCGTTCATCCCTATCTCAGCGATCTG
[TR]_p2820_edge_9	ATTTATCAGCAATACACGCTCACCGGCTCC
[TR]_p2820_edge_10	TCGGTCCTCCGATCAAAAAGCGGTTAGCTC
[TR]_p2820_edge_11	AGTACTCAACCAAGGCTTTTCTGTGACTGG
[TR]_p2820_edge_12	AAAGTGCTCATCATCCACATAGCAGAACTT
[TR]_p2820_edge_13	TGTGCCAGCTGCATTAATGTCGGGAAACCTGTCG
[TR]_p2820_edge_14	GAGGCTGCGGCGAGCGGTCTGCGCTCGGTCGTTC
[TR]_p2820_edge_15	GGAGGCCGCGTTGCTGGCGCCAGGAACCGTAAAA
[TR]_p2820_edge_16	AAGCCAGTTACCTTCGTATCTGCGCTCTGC
[TR]_p2820_edge_17	TTAGCAGAGCGAGGTAGCCACTGGTAACAG
[TR]_p2820_edge_18	GCTGTGTGCACGAACCGTTCGCTCCAAGCT

Table S3.29. Edge staples of p2820 equilateral triangular DNA origami tile.

Table S3.30. Core staples of M13mp18 half hexagonal DNA origami tile.

Name	Sequence
[hHE]_M13_core	AAAACATCGCCATTAAAAATACCGGAGGCGGTCAGTATT
_1	ATGAAAAA
[hHE]_M13_core _2	TTTTTATGCAAGCAAATCAGATATAGAAGGC
[hHE]_M13_core _3	TACGAGCCCTTATCATTCCAAGGCAAGCCG
[hHE]_M13_core	TCCTGAGATTAGTTGCTATTTTTTTTCTCATCGAGAACAAA
4	ACGGG
[hHE]_M13_core	CGGTATTCTAAGAACGCGAGGCGTGAAGCCTTAAATCAA
5	ATCTTACC
[hHE]_M13_core 6	AACGTAGATCCTTATTACGCAGTAAAACAGGG
[hHE]_M13_core 7	AAGCGCATAGAGAGAATAACATAATGTTAGCA
[hHE]_M13_core 8	TAAGAATTAGTCTTTAATGCGCGAACTGATA
[hHE]_M13_core _9	ATGGCTATACGTGGCACAGACAATAAACCGTC
[hHE]_M13_core 10	TATCAGGGAACGTCAAAGGGCGAAATTTTTGA

[hHE]_M13_core 11	CTGAAATACGACCAGTAATAAATGAAAGCG
[hHE]_M13_core 12	CAGCAAAACACCGCCTGCAATTTTTGAACCCTTCTGACC AGGGAC
[hHE]_M13_core 13	TACATTTATTCTGGCCAACATTTTTCGCTGAGAGCCAGGG CAAAT
[hHE]_M13_core _14	CCAGTCACGGATTATTTACATTGGCCCCCGAT
[hHE]_M13_core 15	TTAGAGCTGGAACCCTAAAGGGAGCAGATTCA
[hHE]_M13_core _16	TGCCTGAAATATCCAGAACAATTCAATCGT
[hHE]_M13_core _17	TGACGCATTACCGCCAGCCATTTCTTTGATTAGTAATATCA GTG
[hHE]_M13_core _18	CAACAGTTGATTTTTGGAAATACC
[hHE]_M13_core _19	GCAACAGGAAAATTTTTGAGGAAGGTTA
[hHE]_M13_core _20	TTGCTGGTGTAGAAGAACTCAAACCACACCCG
[hHE]_M13_core _21	CCGCGCTTCGCTGCGCGTAACCACTATCGGCC
[hHE]_M13_core _22	AAGAGCAGAAGTGTTTTTATAAACATCACT
[hHE]_M13_core _23	AAAGTCCCACAAGAATTGAGAGGCCACCGAGTAAAATA CT
[hHE]_M13_core 24	TTATTACAACTCGTATTTTTTACCGTTGTAGCAAGAGT
[hHE]_M13_core _25	CTGTCCATCACTTTTTTGCCCGAACG
[hHE]_M13_core _26	AATCCTGAAGAAACAATGAAATAGCAATAGCT
[hHE]_M13_core _27	ATCTTACCTTTTAGACAGGAACGGTACGCCAG
[hHE]_M13_core _28	CCTTTACTAGACGGGAGAATTACCAATAAT
[hHE]_M13_core _29	TTAAGCACTGAACACCCTGAACTAACGTCAAAAATGAAC ATATT
[hHE]_M13_core 30	GATAACAGAGGGTAATTTTTTCATTTTCGAGCCGCCAA
[hHE]_M13_core _31	CATGTAATTTATTTTAATATCAGAGA
[hHE]_M13_core 32	AACGCTATACAAAATAAACAGCAATAGCAG
[hHE]_M13_core	ATCAACAATAGATTTTCGATTTTTGTT

_33	
[hHE]_M13_core	
_34	CCAAICCAAAIIIIIIGAACAAGAA
[hHE]_M13_core	AAATAATTATTAAACCAAGTTTTTTAGCTACAATTTTAATT
35	TATC
[hHE]_M13_core	TTGCCAGTACGAGCGTCTTTCCAGCAAAGACA
36	
[hHE]_M13_core	AAAGGGCGTATGGTTTACCAGCGCAGCCTAAT
37	
[hHE]_M13_core	GAGGTTTTTTTAGCGAACCTCCCGATTTGGGA
38	
[hHE]_M13_core	ATTAGAGCGTCACCGACTTGAGCCACTTGCGG
[hHE]_M13_core	AAGGTAACATGTTCAGCTAATGTCCTAATT
_40 [huf] M12 coro	
	GAATC
	GAAIC
42	AATTCTTAGTAGGGCTTAATTGACCGACAA
$_{\rm hHF}$ M13 core	
43	TTAAAAGCCTGTTTAGTATCGCCATATTTAACAACAGTAA
[hHE] M13 core	
44	ATTTTAGTTGAAATACCGACCGGTTATACA
[hHE] M13 core	ATATGCTGTGATAAATAAGGCGACGCGAGAAAACTTTTC
45	TATAT
[hHE] M13 core	
_46	GAAAAIAAGAAIAAACAIIIIIAIACIICIGAACAAIA
[hHE]_M13_core	
_47	
[hHE]_M13_core	ΤΟ ΑΤΑ GGGGTTGGGTTΑΤΑΤΑ ΑΤΟ Α ΑΤΑΤ
48	
[hHE]_M13_core	CAGTAACAGTACTTTTGCAAGACAAAGA
_49	
[hHE]_M13_core	CTGATGCAAATTTTTATCGGGAGAA
_50	
[hHE]_M13_core	
[nHE]_M13_core	
JZ	
[IIIIE]_MIS_core	ΤΟΛΑΓΙΑΙΑΟΟΤΙΑΟΑΓΙΑΑΓΓΓΓΙΟΑΑΑΟΑΙΟΑΑΟΑΑΑΑ ΟΟΤGA
$_{\rm hHF} M13$ core	
54	AATTACATGGAAACAGTACATAAATCAATAT
[hHE] M13 core	
55	TGCTTTGTTATTCATTTCAATTACAAAATT

[hHE]_M13_core 56	AAATTATAGATTTTCAGGTTTACGCCTGAT
[hHE]_M13_core _57	CGGATTACGTCAGATGAATATAGAAGGGTTAGAACCTATA TCAG
[hHE]_M13_core _58	TTTGCGGCATCATATTCCTGATCCATATCA
[hHE]_M13_core _59	ATTCGAATTTTAAAAGTTTGATGATGGCAATTCATTAATG
[hHE]_M13_core 60	ACAACTAGAGGATTTAGAAGTAATTATCAT
[hHE]_M13_core 61	AGTAACTTAGACTTTACAAACATCTAAAATATCTTTAGTC AGTT
[hHE]_M13_core 62	TCTAAAGTCAATCAATATCTGGGAGCACTA
[hHE]_M13_core _63	TTAGCAAGGCCGGAAACGTCACCAAGCGACAGAATCAA GTTTCGGTC
[hHE]_M13_core _64	AAATCCCTGAGTGTTGTTCCAGTTTGGAACA
[hHE]_M13_core _65	ATCTGCCATAGATGGGCGCATCGTTAGCCCGAGATAGGGT TTATA AATCAAAAGAAAACCGTGC
[hHE]_M13_core 66	TGCCCTTGGTCCACGCTGGTTTAATCGGCA
[hHE]_M13_core _67	GGTGCCTGAACCATCACCCATTTTTGATGGTGGTTCCGA GCCCCA
[hHE]_M13_core _68	CCACTATTAAAGAACGTGGACTCCCGATGGCCCACTACG GTAAAGCA
[hHE]_M13_core _69	TATCACCCAGCAAAATCACCAGTAGCACCAT
[hHE]_M13_core _70	AAATTCAACATTCAACCGATTGAGGTGAAT
[hHE]_M13_core 71	CGGCATTTTGCCTTTAGCGTTTTTTAAATTATTCATTAAAG GGAG
[hHE]_M13_core 72	TATTTTGGGAAGGTAAATATTTTTTAGCGCGTTTTCATCCA CCGG
[hHE]_M13_core 73	TTAAGACAAATACATACATAAATCAATAGA
[hHE]_M13_core 74	TCACAAGGTGGCAACATATAAAGAATACCCAAAAGAACA AAAGT
[hHE]_M13_core _75	AACCGCCTCCTTTTTGGAATAAGTT
[hHE]_M13_core _76	AGAAACGCAAAGTTTTCCGCCACCCTCA
[hHE]_M13_core _77	AAAGGGAGAAGCCCTTTTTAAGTGGCATGA

[hHE]_M13_core	GCTTTCAGAGCGGGAGCTAAAAGCAGATAGCCGAATAAC
_78	G
[hHE]_M13_core 79	TCATTTGGCCTTGATATTTTTGAAACGCAATAACAAAG
[hHE]_M13_core 80	TTACCAGAAGGTTTTTCAAATAAATCC
[hHE]_M13_core _81	GCGGTCAAATGCGCCGCTACAGGGCCGATT
[hHE]_M13_core _82	ACAGGAGGCGCGTACTATGGTTGGCGCTAGGGCGCTGGG CGAAC
[hHE]_M13_core 83	AGAATGACGAGCACGTATTTTTAACTCACATTAGCCTG
[hHE]_M13_core _84	GGGTGCCTAATTTTTTCTTTCCTCGTT
[hHE]_M13_core _85	CTAAATCTGACGGGGAAAGCCGCAAGTGTA
[hHE]_M13_core _86	GGGCGCCAGGGTTTTTGCGAAAGGAGCG
[hHE]_M13_core _87	GAAAGGAAGGTTTTTCTTTTCACCA
[hHE]_M13_core _88	GTGAGACGCAGGCGAAAATCTTTTTTTTTGGGGGTCGAG TGGCGA
[hHE]_M13_core _89	ATTCGCCAGTGCCGGAAACCAGGCGAGAGTTGCAGCAA GC CACCGCCTGGCCCTGAAAAGCGCC
[hHE]_M13_core 90	GTCGGGACCAACGCGCGGGGGGGGGGGGGGGGGGGGGGG
[hHE]_M13_core 91	GGGCAAAGGCGGTTTGCGTATTGTTGCGCTCACTGCCCG CCGGA
[hHE]_M13_core 92	TTTCCCAGGATTAAGTTGGGTAACTGCATTAATGAATCGG AACCTGTCGTGCCAGCGCCAGGGT
[hHE]_M13_core 93	ATCGTCACCACACAACATACGAGCTTTCCA
[hHE]_M13_core 94	CATCGTGCAGGGAGTTAAAGAGCATAAAGTGTAAAATTG C
[hHE]_M13_core 95	GGAACGAGTTCCTGTGTGAAATTGTTATCCGCTCACAATT CCCTCAGCAGCGAAAGACAGCATC
[hHE]_M13_core 96	ATCAGCTTACCGATAGTTGCGCTTTGCGGG
[hHE]_M13_core 97	GCCGCTCGACAATGACAACAACAGGAGCCTTTAATTGTT AATTT
[hHE]_M13_core _98	AGGCTCCCACGCATAACTTTTAGTGCCCGTATAAACGG
[hHE]_M13_core 99	GGTCAGTGCCTTTTTTTCGGTCGCTG

[hHE]_M13_core 100	CAGCTTGATGCTTTCGAGGTGAATACACTAAA
[hHE]_M13_core 101	ACACTCATAAAGAGGCAAAAGAATTTCTTAAA
[hHE]_M13_core 102	AACAGTTAGGAATTGCGAATAAATCGGTTT
[hHE]_M13_core 103	GTTTTGCTCAGTTTTTAAAGGCTCCAAA
[hHE]_M13_core 104	TTGAAAATCTTTTTGGATAAGTGC
[hHE]_M13_core 105	CGTCGAGCGCCACCCTCAGATTTTTTGTATGGGATTTTTT TCACG
[hHE]_M13_core 106	ACAACTAATCAGCGGAGTGAGAATTAGCCGGA
[hHE]_M13_core 107	ACGAGGCGCCTGCTCCATGTTACTAGAAAGGA
[hHE]_M13_core 108	TACAACGCCTGTAGCATTCCACAGTTTTGTCGTCTTTCCC AACTTTC
[hHE]_M13_core 109	GCTAAAAGACGTTAGTAAATTTTTTACCCTCAGAGCCAC CAGAAC
[hHE]_M13_core 110	ATCTAAAGACAGCCCTCATAGTTATGACCTTC
[hHE]_M13_core 111	ATCAAGAGAGGCGCATAGGCTGGCGCGTAACG
[hHE]_M13_core 112	TTTTCAGTAACACTGAGTTTCGTCACCAGTA
[hHE]_M13_core 113	TATAGCCTAGTACCGCCACCCTCACCCTCA
[hHE]_M13_core 114	ACCTATTACTCCTCAAGAGAAGGATATAAG
[hHE]_M13_core 115	AGGGTTGATTAGGATTAGCGGGGTTAATGCCCCCTGCCTAG TGTA
[hHE]_M13_core 116	ATTTACCTTTTGATGATACAGGATTTCGGA
[hHE]_M13_core 117	ACGATAAAGCCAGAATGGAACTGGTAATAAGTTTTAACA G
[hHE]_M13_core 118	CCCTCAGCCAGCATTGACAGGAGTCTCTGA
[hHE]_M13_core 119	AGCGCAGGTTGAGGCAGGTCAGGAACCGCCACCCTCAG GAGCCA
[hHE]_M13_core 120	ATAGCCCAAATCACCGGAACCAAGCCACCA
[hHE]_M13_core 121	CCCAAATCAACGTAACAAAGCTGCAACACCAGAACGAG TTTGTGAAT
[hHE]_M13_core	CATCAACTCTCCGTGGGAACAAACGGCGGAT

_122	
[hHE]_M13_core	TGTTAAATTTTTAACCAATAGGCCAGCTTT
	AGCTTTGACAGTATCGGCCTTTTTTTGGCCTTCCTGTAGA
124	ACGCC
[hHE] M13 core	GTAATGGGATAGGTCACGTTGGTGGTTTGAGGGGACGAC
125	CCGGCACC
[hHE]_M13_core _126	ACAGACCTAATCTTGACAAGAACCGGATATT
[hHE]_M13_core 127	TCCGCGACAGACGGTCAATCATAACGGTGT
[hHE]_M13_core 128	TAATCAAGTAAATTGGGCTTTTTTTAAAGAGGACAGATG AAGGGA
[hHE]_M13_core _129	GCCTGATACCGAACTGACCATTTTTTAATTTCAACTTCT ACGTT
[hHE]_M13_core _130	TAAAACGCTTTGACCCCCAGCGTGTCGAAA
[hHE]_M13_core _131	AAATTGATTATACCAAGCGCGAAATGCCACTACGAAGGA GAGGC
[hHE]_M13_core _132	AATAAAACGATTTTTTGTATCATC
[hHE]_M13_core _133	AACAAAGTACAATTTTGAACAACATTAT
[hHE]_M13_core 134	TAGCTGTGGTAGCAACGGCTACCACCAACC
[hHE]_M13_core 135	AGCTTTACCGAGCTCGAATTTTTGAGGACTAAAGATACG T
[hHE]_M13_core 136	GATAACACTATCATAACTTTTAAACGGGTAAAACTTTT
[hHE]_M13_core 137	TCATGAGGAAGTTTTTTACCAGACGAC
[hHE]_M13_core 138	GCAAGGCTCACGACGTTGTAAACATGGTCA
[hHE]_M13_core 139	CGTAATACGACGGCCAGTGCCACAGCTGGCGAAAGGGG TGTTGG
[hHE]_M13_core _140	CCGGGGCATGCCTGCAGTTTTTATCAGGTCATTTATTT
[hHE]_M13_core _141	TTGAGAGATCTTTTTTCTAGAGGATCC
[hHE]_M13_core _142	GCTTCTGTTCAGGCTGCGCAACGATGTGCT
[hHE]_M13_core _143	AAACAGGAAGATTTTTTCGCTATTACGC
[hHE]_M13_core 144	GATCGGTGCGTTTTTGCAAATATTT

[hHE]_M13_core 145	AAATTGTATCAAAAATAATTTTTTTTCGCACTCCAGCCGA AGGGC
[hHE]_M13_core 146	CGATGAAGTACCCCGGTTGATATAATATTT
[hHE]_M13_core 147	AAACGTATCAGAAAAGCCCCAAAGAGTCTGGAGCAAAC ATTAAT
[hHE]_M13_core _148	GCCGGAGCGTTCTAGCTGATAAAAGAGAAT
[hHE]_M13_core _149	AGAACGTAGGTAAAGATTCAGCCGGAGAGGGGTAGCGCC TG
[hHE]_M13_core _150	CAAAAACCCTTTATTTCAACGCTGAGAAAG
[hHE]_M13_core _151	AAAGGGAAGGATAAAAATTTTTAGCATAAAGCTAAATCG GCAAG
[hHE]_M13_core _152	AATGTCCTCATATATTTTTTTCAAATGCTTTAACATAA
[hHE]_M13_core _153	ATATTCATTGATTTTTAATGCCTGAGT
[hHE]_M13_core _154	AGGTGGCCCAATAAATCATACAGGTTGTAC
[hHE]_M13_core _155	GAAGCCCGAAAGTTTTATAAAGCCTCAG
[hHE]_M13_core _156	ATTAGCAAAATTTTTATATCGCGTT
[hHE]_M13_core 157	TTAATTCTGATAAGAGGTCATTTTTTATTTTCATTTGGGCA AAGA
[hHE]_M13_core 158	TCCATATAACAGTTGATTCCCAATGATACATTTCGCAAAA GCTGAAA
[hHE]_M13_core _159	GGCGCGTGGTCAATAACCTGTTTTTCGGATGGCTTAGAG TCCTTT
[hHE]_M13_core _160	CTGAATAAACTAAAGTACGGTGTCTGGAAGT
[hHE]_M13_core _161	ACCAGACAGTACCTTTAATTGCCTTAATTG
[hHE]_M13_core _162	TCAAAAAGCAAAGCGGATTGCACAAAGCGA
[hHE]_M13_core _163	GAGCTTTCAAAAAGATTAAGAGTCAGAAAACGAGAATG CGTCCA
[hHE]_M13_core _164	AGAAGTTGTTTAGACTGGATAGACCATAAA
[hHE]_M13_core 165	AGCAAAAACCAAAATAGCGAATACTGCGGAATCGTACAG T
[hHE]_M13_core 166	GAGATTTAACGCCAAAAGGAATTTTGCAAA
[hHE]_M13_core	GAGGCTTACGAGGCATAGTAAGTACAGGTAGAAAGATTA

_167	AAAAT
[hHE]_M13_core _168	TACCTTACAGGACGTTGGGAAGCATCAGTT

Table S3.31. Edge staples of M13mp18 half hexagonal DNA origami tile.

Name	Sequence
[hHE]_M13_edge_1	TTTAACCTCCGGCTTATCTGAGAGACTACCTTAT
[hHE]_M13_edge_2	ACCTAAATTTAATGGTTTAATTTCATCTTCTGCG
[hHE]_M13_edge_3	AATCGGCTGTCTTTATGTAGAAACCAATCA
[hHE]_M13_edge_4	ACGACAATAAACAAAGTAATTCTGTCCAGA
[hHE]_M13_edge_5	CATCTTTTCATAATCACCTTATTAGCGTTTGCCC
[hHE]_M13_edge_6	ACCACCAGAGCCGCCGAGCCGCCACCAGAACCGT
[hHE]_M13_edge_7	GTACTCAGGAGGTTCGGAATAGGTGTATCA
[hHE]_M13_edge_8	ATTAAGAGGCTGAGATTCTGAAACATGAAA
[hHE]_M13_edge_9	GGCTCATTATACCAGTTGCGATTTTAAGAACTCA
[hHE]_M13_edge_10	ACTAATGCAGATACATAGGAATACCACATTCAAC
[hHE]_M13_edge_11	GGTCAGGATTAGAGCGGAAGCAAACTCCAA
[hHE]_M13_edge_12	TATTATAGTCAGAATCAGGTCTTTACCCTG
[hHE]_M13_edge_13	TAATCGCGCAGAGGCGAAAATACCAAGTTACAAA
[hHE]_M13_edge_14	ATAATAAAGAAATTGCGTTTGCACGTAAAACAGA
[hHE]_M13_edge_15	CTAATAGATAATACATTTATAGATTAGAGCCGTC
[hHE]_M13_edge_16	TTCTCAAATATCAAACCCCATCACCTTGCTGAAC
[hHE]_M13_edge_17	GTAGTAGCATTAACATATCAATTCTACTAA
[hHE]_M13_edge_18	ACTTTTGCGGGAGAAGATTATGACCCTGTA
[hHE]_M13_edge_19	AGCATGTCAATCATATCGGTAATCGTAAAA
[hHE]_M13_edge_20	TGTTAAATCAGCTCATATTCGCATTAAATT

Table S3.32. Core staples of p8064 square DNA origami tile.

[SQ]_p8064_core_1	AGAACGCGGCAAGCCGTTTTTATT
[SQ]_p8064_core_2	AAACCAAGTACCGCACTCATCGAGAACAA
	AGGCGTTTTAGCGAACCTACAATT
[SQ]_p8064_core_3	TAAGAAACAATCTTACCAACGCTAGTATTCTA
[SQ]_p8064_core_4	GAAAATACTATTTTGCACCCAGCTCCCGACTTGCGGG
[SQ]_p8064_core_5	AGGTTTTTTTTTCCAGAC
[SQ]_p8064_core_6	TTCATCGTAGGAATCTAGAAGGCTTATCCGACGAGCG
	Т
[SQ]_p8064_core_7	TTATCCTGGATTTTTTGTTTAACGAAGTCAGA
[SO] p8064 core 8	
	TTAGTTGGCAGCCTTTACAGAGAAGACGGGAG
[SQ]_p8064_core_9	CTAGAAACGACAAAAGGTAAATTTTTTATCAAGA

0	
[SQ]_p8064_core_1 1	ATAGCCGTGAACACCCTGAACATCAAAAAT
[SQ]_p8064_core_1 2	CGCATTGAATAACCGGAAAGGCGTTA
[SQ]_p8064_core_1 3	CTTTCCACATATTATTTATCCCGAGATAAC
[SQ]_p8064_core_1 4	GGGTAATTGCCCTTTTTAAGAAAAATACATAC
[SQ]_p8064_core_1 5	AATTAACAACAAAGTTACCAGAATTATTACGC
[SQ]_p8064_core_1 6	AATAAGTTTTTCAGGGAAG
[SQ]_p8064_core_1 7	CAAAGACAGGCAACATATAAAAGATAGCTATC
[SQ]_p8064_core_1 8	GGGAGGGTAGCAAACGTAGAAAGTAAGCAG
[SQ]_p8064_core_1 9	TCATTAAAGCATGATTAAGACTCCGGAAAACCGAGGAA ACG
[SQ]_p8064_core_2 0	CAATAATTTTTAGAGTC
[SQ]_p8064_core_2 1	CCACAAGACAATGAAATAGCAAAACGCAAA
[SQ]_p8064_core_2 2	ATAAAGGTAAAGGGCGACATTCAACCATCGAT
[SQ]_p8064_core_2 3	AGTATGTAAGGTAAATATTGACGATTAGCAAG
[SQ]_p8064_core_2 4	AGAACTGGGTGAATTATCACCGAGCCAGCA
[SQ]_p8064_core_2 5	GTTACAAAGCTTAGATTAAGTTTTTTTCCCAAA
[SQ]_p8064_core_2 6	TTAGCGTTCGTAATCAGTAGCGACACCAGCGC
[SQ]_p8064_core_2 7	ACCGGAAACGTCACCAATGAAACCGATTGA
[SQ]_p8064_core_2 8	CCCTCAGACAGTAGCACCATTACCGAAATTAT
[SQ]_p8064_core_2 9	AATTAGTCACCGTGCTTTGACAATA
[SQ]_p8064_core_3 0	GACACCAAAATTCATATGGTTTAGAATCAA
[SQ]_p8064_core_3 1	AGCAGCACTGCCATCTTTTCATAAAGACGATT
[SQ]_p8064_core_3	GCCGGAACCAGAGCCACCACCGGCGCCAGCAT

2	
[SQ]_p8064_core_3 3	AAATCACGCCGCCACCCTCAGAGAGCCGCC
[SQ]_p8064_core_3 4	ACGGATTCTTTTCATTTGGG
[SQ]_p8064_core_3 5	TTTTGATGTATTCACAAACAAATACCCCCTTA
[SQ]_p8064_core_3 6	TTTTAACAGGTTGAGGCAGGTCTCAAAATC
[SQ]_p8064_core_3 7	GCCCGTATCCACCACCAGAGCCGCAACCGCCT
[SQ]_p8064_core_3 8	TTTTGCAAAAACTCCCTCAACCGCC
[SQ]_p8064_core_3 9	ACCCTCAGTTTTTCGAGAGGC
[SQ]_p8064_core_4 0	GTTTGCCCATTTTCGGTCATAGAATCCTCA
[SQ]_p8064_core_4 1	GGCCTTGAATACAGGAGTGTACTGCAAGAGAA
[SQ]_p8064_core_4 2	TGACAGGGGGGTCAGTGCCTTGAAACATGAAA
[SQ]_p8064_core_4 3	ACCAGAAAAACAGTTAATGCTTTTTTTCAACTT
[SQ]_p8064_core_4 4	ACTCAGGAATTAGCGGGGTTTTGCTACATGGC
[SQ]_p8064_core_4 5	CCGCCACGAGGCTGAGACTCCTGTAATAAG
[SQ]_p8064_core_4 6	GAACCTATTATTCTGAGTAACAGT
[SQ]_p8064_core_4 7	TTAAAGCTTCCAGTAAGCGTCATCAGTACC
[SQ]_p8064_core_4 8	GGATTAGGGGTTTAGTACCGCCACAACACTGA
[SQ]_p8064_core_4 9	GTATTAACCTCAGAACCGCCACCATAGCAAGC
[SQ]_p8064_core_5 0	TGAGATTTTTTTTTTTCG
[SQ]_p8064_core_5 1	CGTTAGTAACCAGTACAAACTACAATCACCGT
[SQ]_p8064_core_5 2	GCTAAACGAACCCATGTACCGTCCTCAGAA
[SQ]_p8064_core_5 3	CGGTCACTTAGCTCAGGGCTCAGAGC
[SQ]_p8064_core_5	CACCACTTTTTGGCGCAGA

4	
[SQ]_p8064_core_5 5	AGGCGGAGCCCGGAATAGGTGTACGCCTGT
[SQ]_p8064_core_5 6	GTTTCGTCAATGAATTTTCTGTATAAGGAATT
[SQ]_p8064_core_5 7	CCAATAGAACTTTCAACAGTTTTTTTTCATTAAA
[SQ]_p8064_core_5 8	AATTTCTTTAATTTTTTCACGTTGTTTCCAGA
[SQ]_p8064_core_5 9	AGAAAGGAACAACTAGGGATTTT
[SQ]_p8064_core_6 0	AGCATTCTAAAGTTTTGTCGTCAAAATCTC
[SQ]_p8064_core_6 1	GCGAATAAAAACAGCTTGATACCGATAGTTGCGCCGA
[SQ]_p8064_core_6 2	TTTCATTTTTTGAGAAT
[SQ]_p8064_core_6 3	CAAAAATTTATCAGCTTGCTTTCGAGGTG
[SQ]_p8064_core_6 4	GGTAGCAATATTCGGTCGCTGAGG
[SQ]_p8064_core_6 5	CAACAACCATCGCCCACGCATAACCGAT ACGGCTACAGAGGCTTTTACGAAGG
[SQ]_p8064_core_6 6	GATTTGTATAAAACGAAAGAGGCAGGAACGAG
[SQ]_p8064_core_6 7	AATCCGCAATACGTAATGCCACGAGGACTAAAGACTT
[SQ]_p8064_core_6 8	CTTGCAGGGAGTTAAGCGAAAGACAGCATCAAAGAA TA
[SQ]_p8064_core_6 9	CACCAACCTCATCGCCTGATAAATAAGAGGAC
[SQ]_p8064_core_7 0	CGGGTAAGACCTGCTCCATGTTAATCATAAGG
[SQ]_p8064_core_7 1	AACAAAGCGGTGTACAGACCAGGCACAACGGA
[SQ]_p8064_core_7 2	CCCTGACACTGACCAACTTTGATGTGTCGA
[SQ]_p8064_core_7 3	CACTAAAAGCGCGAAACAAAGTGCATAGGC
[SQ]_p8064_core_7 4	AGATGAACTGCTCATTCAGTGAATAGGACGTT
[SQ]_p8064_core_7 5	GAACCGAGAGAAACACCAGAACGCGATTTTAA
[SQ]_p8064_core_7	AACTAATGAAATCTACGTTAATAAATCAACGT

6	
[SQ]_p8064_core_7 7	TACGAGGCTCATTATACCAGTCAAGGCTTG
[SQ]_p8064_core_7 8	ACCCTCGTTGTGAATTACCTTATGAGTAGTAAATTGG GCT
[SQ]_p8064_core_7 9	TGGCTGAATATTCATTACCCAAAACGAACT
[SQ]_p8064_core_8 0	GGGAAGAACAGATACATAACGCCACGGAATCG
[SQ]_p8064_core_8 1	GAACTGGCATAGTAAGAGCAACAAAATGTTTA
[SQ]_p8064_core_8 2	TAATCATTTACCAGACGACGATAAAAGAAG
[SQ]_p8064_core_8 3	TATAGTCAATTCATTGAATCCCCCCACATTC
[SQ]_p8064_core_8 4	AGATTAATAGCGTCCAATACTGAAAGGAAT
[SQ]_p8064_core_8 5	ATCGCGTTAGAGGGGGGTAATAGTACTATCATA
[SQ]_p8064_core_8 6	AACGGAATGAGATTTAGGAATATCAAATGC
[SQ]_p8064_core_8 7	TCATAAATGAAGCAAAGCGGATTGGGCTTAGA
[SQ]_p8064_core_8 8	GACTGGAGAGGAAGCCCGAAAGACTCCTTTTG
[SQ]_p8064_core_8 9	TTTTGCCTTAATTCGAGCTTCAACAGGTCA
[SQ]_p8064_core_9 0	TCCCAATTGCTGAATATAATGCTGCTGACTAT
[SQ]_p8064_core_9 1	ACCATTAGTCATTTTTGCGGATCATCAAAA
[SQ]_p8064_core_9 2	ACCTGTTTAGAGTACCTTTAATTGCTTCAAAT
[SQ]_p8064_core_9 3	CAGCTTCGGTGGTACTCCAAAGCGA
[SQ]_p8064_core_9 4	ACCAGACCTTTTTCACGCAAC
[SQ]_p8064_core_9 5	TTTAAACAATCAGGTCTTTACCTAGCTCAA
[SQ]_p8064_core_9 6	GCTTAATTCTGCGAACGAGTAGATTAAATCAT
[SQ]_p8064_core_9 7	ATAAGAGGATACATTTCGCAAATTTCTACTAA
[SQ]_p8064_core_9	GGATTAGAGCTATATTTTCATTTTTTTGGGCG

8	
[SQ]_p8064_core_9 9	TTTTGCGGGGCAAAGAATTAGCAACAGTTGAT
[SQ]_p8064_core_1 00	GATAAAAAGCATTAACATCCAATTAGTTTG
[SQ]_p8064_core_1 01	GAAAAGGTGGCATCAAGGTCAATA
[SQ]_p8064_core_1 02	CATGTTTTTCATTCCATATAAAATTAAGC
[SQ]_p8064_core_1 03	ACAGGCAAGAGAAGCCTTTATTTCGCCGGAGA
[SQ]_p8064_core_1 04	TAGTAGTATTTTTAGAACCCTCAGTGTAGGTA
[SQ]_p8064_core_1 05	ATTTGCTTTTTCGAGCT
[SQ]_p8064_core_1 06	CAGGTCATTCACCATCAATATGATTGTAATAC
[SQ]_p8064_core_1 07	GAGAATCAAAAGGGTGAGAAAGAACGCAAG
[SQ]_p8064_core_1 08	ACGACGTAACGCAGTAATTATATTTT
[SQ]_p8064_core_1 09	AAATGCTTTTTTCCCAGTC
[SQ]_p8064_core_1 10	AATAAAGAAAACATTATGACCCATTCAACC
[SQ]_p8064_core_1 11	CAGTCAAATGCCTGAGAGTCTGGAGGTTGATA
[SQ]_p8064_core_1 12	AAGATTCGATGAACGGTAATCTTTTTTCAGTATC
[SQ]_p8064_core_1 13	AATCAGCTAGCCCCAAAAACAGGAAAGGCTAT
[SQ]_p8064_core_1 14	AATCATATGTACCCCGCAAACAA
[SQ]_p8064_core_1 15	GTTCTAGTTTGAGAGATCTACAAGATTGTA
[SQ]_p8064_core_1 16	ATCAGAAACATTTTTTAACCAATAGGAACGCCATCAA
[SQ]_p8064_core_1 17	GTTTGATTTTTTCATGTC
[SQ]_p8064_core_1 18	TAAGCAAAAATTCGCATTAAATTTTTGTTA
[SQ]_p8064_core_1 19	GTTGGTGTTCATCAACATTAAATG
[SQ]_p8064_core_1	TTCGCGTCTGGCCTTCCTGTAGCCAGC

20	TTAGATGGGCGCATCGTAAGCCAGCT
[SQ]_p8064_core_1 21	TCGCTATTCCGCTTCTGGTGCCGGTAGGTCAC
[SQ]_p8064_core_1 22	TGCTGCAGGAAGATCGCACTCCACCGTGCATCTGCCA
[SQ]_p8064_core_1 23	TGAGCGAGTAACAACTTGACCGTAATGGGAAAACCA GG
[SQ]_p8064_core_1 24	TTCCGGCAACGCCAGCTGGCGAAAGAGGTGGA
[SQ]_p8064_core_1 25	GGCCTCAAGGCGATTAAGTTGGGTTGTAAAAC
[SQ]_p8064_core_1 26	TCCGTGGTGGGAACGGATAACCTCGGGCCTCT
[SQ]_p8064_core_1 27	GAGACGCAGTGCCAAGCTTTCAGGGGGGATG
[SQ]_p8064_core_1 28	CAAAGCGAAGGGCGATCGGTGCACCGGAAA
[SQ]_p8064_core_1 29	GCCGCCACGAAGGGATAGCTCTCATAGTGATG
[SQ]_p8064_core_1 30	GACGGCCAGAAACAGCGGATCAAATCCCGTAA
[SQ]_p8064_core_1 31	ATAACGGAAGTTAAACGATGCTGAAGACTTTC
[SQ]_p8064_core_1 32	GCGTGGTCGCACAGGCGGCCTTCGGAAAAA
[SQ]_p8064_core_1 33	AAGAATGCACATCGACATAAAAAAAACTTAAATTTCTG CTC
[SQ]_p8064_core_1 34	CAATCGGGAATTTGTGAGAGATTTGCCGTT
[SQ]_p8064_core_1 35	AAGGGTAAACGTGCCGGACTTGTAGCGCGGTT
[SQ]_p8064_core_1 36	AAAAAGCGCTGGTCTGGTCAGCAATTGCAGGC
[SQ]_p8064_core_1 37	GTTGTGTCAACGGCAGCACCGTACGGCTGG
[SQ]_p8064_core_1 38	AATCGTTAAGCCGGGTCACTGTTGACATCCTC
[SQ]_p8064_core_1 39	GCAGCCACACTCAATCCGCCGGGAACGTCA
[SQ]_p8064_core_1 40	GACGATCCCAGCATCAGCGGGGTCGCAACCGC
[SQ]_p8064_core_1 41	CCGGCAAGCCTCCGGCCAGAGCCCCTGCGG
[SQ]_p8064_core_1	GCGGTATGACGGCATCAGATGCCGTCTTCGCG
42	
-------------------------	----------------------------------
[SQ]_p8064_core_1 43	GCTTTCGGCGGTGCCGGTGCCCCACCGGGGGT
[SQ]_p8064_core_1 44	AGGTGTCAGCGCAGTGTCACTGCCAGAATG
[SQ]_p8064_core_1 45	TCACAATTCCTCCTCACAGTTGAGGTTCAGCA
[SQ]_p8064_core_1 46	ATAAAGTAGCACGCGTGCCTGTGGTTACCT
[SQ]_p8064_core_1 47	TGAGCTAACCGTTTTCACGGTCATCTGCATCA
[SQ]_p8064_core_1 48	TTGAGTGAACGTTCTGCGGCGCGCC
[SQ]_p8064_core_1 49	TGTGCACTTTTTTTAAAAGT
[SQ]_p8064_core_1 50	CTGGTAACCCTTACACTGGTGTGATCCCCG
[SQ]_p8064_core_1 51	TCCGTGAGCCACACAACATACGAGGGCCAACG
[SQ]_p8064_core_1 52	TTCTGCCGTAAAGCCTGGGGTGCAAACCTGTC
[SQ]_p8064_core_1 53	CGGCGGGCTCACATTAATTGTTTTTTACGCTG
[SQ]_p8064_core_1 54	CTGAGAGAGAGGCGGTTTGCGTATTTATCCGC
[SQ]_p8064_core_1 55	TTTGCCCCTGCATTAATGAATCCCGGAAGC
[SQ]_p8064_core_1 56	CCGCTTTCCAGTCGGGCTAATGAG
[SQ]_p8064_core_1 57	GGTACCGTCCTGTGTGAAATTGTGGGCGCC
[SQ]_p8064_core_1 58	CGCGGGGAGTTGCAGCAAGCGGTCATAGGGTT
[SQ]_p8064_core_1 59	GTGCCAGCAGCAGGCGAAAATCCAATCCCTTA
[SQ]_p8064_core_1 60	CGCCTGTTTTTTCACTGC
[SQ]_p8064_core_1 61	CTACGTGATTCCAGTTTGGAACAAGCCTGGCC
[SQ]_p8064_core_1 62	GGGGTCGAAAGAATAGCCCGAGCACGCTGG
[SQ]_p8064_core_1 63	TCACACTTTACACGGCAATGTTTGAT
[SQ]_p8064_core_1	GGTGGTTTTTTTCACCAG

64	
[SQ]_p8064_core_1 65	AGGGTGGTGATTGCCCTTCACCGAGTCCAC
[SQ]_p8064_core_1 66	GAGTGTTGACCATCACCCAAATCATTTAGAGC
[SQ]_p8064_core_1 67	TAAATCAAGGTGCCGTAAAGCTTTTTTTCACGCA
[SQ]_p8064_core_1 68	CGCGTAACGAAAGCCGGCGAACGTATGGCCCA
[SQ]_p8064_core_1 69	AAAGGGAGCCCCCGAAGTTTTTT
[SQ]_p8064_core_1 70	TATTAAACCGTCTATCAGGGCGGGCGAGAA
[SQ]_p8064_core_1 71	TTGACGGGCACCACACCCGCCGCGCTTAATGCGCCGC
[SQ]_p8064_core_1 72	GTAAAATTTTTTAACCCT
[SQ]_p8064_core_1 73	AGGAAGGTGGCAAGTGTAGCGGTCACGCTG
[SQ]_p8064_core_1 74	AATCCTGAGTATAACGTGCTTTCC
[SQ]_p8064_core_1 75	GCGCGTACTATGGTTGCTTTGACGA GCACGAAGTGTTTTTATAATTCTTTGAT
[SQ]_p8064_core_1 76	AAAAACGCACATCACTTGCCTGAGTACGCCAG
[SQ]_p8064_core_1 77	GCTCAATCGTTGTAGCAATACTCAGTGAGGCCACCGA
[SQ]_p8064_core_1 78	TCGTTAGAATCAGAGTTTAGACAGGAACGGTAGAAGA A
[SQ]_p8064_core_1 79	TAGTAATATCATGGAAATACCTACAGAGATAG
[SQ]_p8064_core_1 80	AATTAACCGTCTGAAATGGATTAGACCAGTAA
[SQ]_p8064_core_1 81	ATCGCCATTGACCTGAAAGCGTAAGCAACAGG
[SQ]_p8064_core_1 82	CAGAAGAGACATTCTGGCCAACATTTTGAC
[SQ]_p8064_core_1 83	CTCAAACTTACCGCCAGCCATTGAATACGT
[SQ]_p8064_core_1 84	AACCCTTCTAAAAATACCGAACGACAAACCCT
[SQ]_p8064_core_1 85	TAAAAGGTAAAACAGAGGTGAGGCTAAAGCAT
[SQ]_p8064_core_1	AGAGCCGTATCTGGTCAGTTGGCACCTAAAAC

86	
[SQ]_p8064_core_1 87	TAGAAGTCTGAACCTCAAATATACCACCAG
[SQ]_p8064_core_1 88	AACTCGTAGCAGCAAATGAAAAATCGGTCAGTATTAA CAC
[SQ]_p8064_core_1 89	GGCACAGGCGCGAACTGATAGCAATCAACA
[SQ]_p8064_core_1 90	CAATCAATCAATAGATAATACATTGATTATCA
[SQ]_p8064_core_1 91	CACCTTGATTAGACTTTACAAACCCAGAAGGA
[SQ]_p8064_core_1 92	AGAGCCATTAAATCCTTTGCCCAACATTAT

	Sequence
[PT-	ACTGAACACCCTGAACAAAGTCAGAGGGCAA
prism]_M13_core_1	GAATTGAGTTAATAAGAAAA
[PT-	
prism]_M13_core_2	
[PT-	
prism] M13_core_3	
[PT-	<u> </u>
prism]_M13_core_4	
[PT-	TATTTTGCTATCCCAATCCAATTTTTTTAGCAA
prism]_M13_core_5	TAGCTATCGAACTGGC
[PT-	ΤΤΑ ΓΓΑ GC Α ΓΑΤΑ Α Α GGTGGC Α Α ΓΑ Α ΓGG Α ΑΤ
prism]_M13_core_6	
[PT-	ATGATTAAAACGTAGAAAATACATGCCAAAG
prism]_M13_core_7	ACAAAAGGGGGTGAATT
[PT-	TTAGCAGACTCTTCAAGAGGAGG
prism]_M13_core_8	
[PT-	GAAACGCAATCAATAGAAAATTTTGGGAAT
prism]_M13_core_9	
[PT-	TTTTGAAGTTTTCAGTATG
prism]_M13_core_10	
[PT-	AAACCATCCACCGACTTGAGCCATCATATGGT
prism]_M13_core_11	
[PI-	GACAGAAAAATTATTCATTAAACGACATTC
prism_M13_core_12	
[PI-	
prism_M13_core_13	AICGAGAAGICITICC
[PI-	TAGAGCCCAAGGCCGGAAACGTCAGAGCCA
prismN113_core_14	
[PI-	ATCACCGTGATAGCAGCACCGTAATGCCATCT
prisinj_wits_core_15	
rigm] M12 apro 16	GACGGTCAAGTTTGCCTTTAGCATTTTCG
prism] M13 core 17	TAAAGTAATCCAAGAACGGGTTTTTTTTTAAATATT
nrism] M13 core 18	CTCAGAGCTCAAAATCACCGGAACCACCAATG
[PT_	
nrism] M13 core 19	CGCCGCCCCCTTATTAGCGTTTCAGTAGC
[PT-	
prism] M13 core 20	ATCGGCGTCATTTTACCGCCAGT
[PT-	
prism] M13 core 21	CCACCGGCCGCCACCCTCAGAGACAGGAGT
[PT-	TTTCATAACGCCACCAGAACCACCTCCAGTAA
prism] M13 core 3 [PT- prism] M13 core 4 [PT- prism] M13 core 5 [PT- prism] M13 core 6 [PT- prism] M13 core 6 [PT- prism] M13 core 7 [PT- prism] M13 core 9 [PT- prism] M13 core 9 [PT- prism] M13 core 10 [PT- prism] M13 core 11 [PT- prism] M13 core 12 [PT- prism] M13 core 13 [PT- prism] M13 core 14 [PT- prism] M13 core 14 [PT- prism] M13 core 15 [PT- prism] M13 core 18 [PT- prism] M13 core 18 [PT- prism]	ATAAGAGCAAGGAATTTTTTTGATTTTGATTTTGATTTTGAAGAGCAAGGAAACGCAATAATATAAAAA GTAAGCAAGGAAACGCAATCAATATATAAAAA TAGCTATCGAACTGGC TTACCAGCACATAAAGGTGGCAACAACGGAAT ATGATTAAAACGTAGAAAATACATGCCAAAG ACAAAAGGGGGTGAATT TTAGCAGACTCTTCAAGAGGGAGG GAAACGCAATCAATAGAAAATTTTGGGAAT TTTTGAAGTTTTCAGTATG AAACCATCCACCGACTTGAGCCATCATATGGT GACAGAAAAATTATTCATTAAACGACATTC AACCGATTGAGGTTTTTTTAGTACCGCACTC ATCGAGAAGCCAAGCC

Table S3.33. Core staples of M13mp18 prismatic pentagonal DNA origami tile.

prism] M13 core 22	
[PT_	
[1 1- prigm] M12 core 22	GTCATAGCAGCATTGACAGGAGGTGAATGGAA
prising_M15_core_25	
	AATAAGAGTTTTGCGTTTTC
prism M13 core 24	
[PT-	ATGCCCCCATGGCTTTTGATGATCCACCACC
prism]_M13_core_25	
[PT-	ΤGAAACACTCTGAATTTACCGTACCAGAGC
prism]_M13_core_26	
[PT-	GGCGGATACTGAGACTCCTCAAGAATCCTCATT
prism]_M13_core_27	AAAGCCATGAGGCAG
[PT-	
prism] M13 core 28	GICAGACGAIIGGIIIIIIIIIAAIGGIIIGAA
[PT-	
prisml M13 core 29	GTACTGGAACAGTGCCCGTATATTTAGTAC
[PT_	
prisml M13 core 30	GCGTCATATGCCTATTTCGGAACCCCCGGAAT
$[\Gamma I - $	AGCGCAGTTGAAAGTATTAAGAGGAGTGCCGT
prising M15_core_51	
prism]_M13_core_32	TIAGGAITITTITIGAAGCAAA
LPT-	CAAAATCGCTTAGGTTGGGTTAGTTTAGTA
prism]_M13_core_33	
[PT-	Δ G Δ ΔΤΟ G Ο ΤΤΔ Ο ΤΔ G Δ Δ Δ Δ Δ G Ο Ο ΤΤΔΤΔ Δ Ο ΤΔ
prism]_M13_core_34	лоли состиство плолими бестили сти
[PT-	
prism]_M13_core_35	IAIOIAAAOAOAOAOICAAIAOIACAIIIAA
[PT-	
prism] M13 core 36	AAGACGCIIGCIGAIGCAAAICCAAACACCGG
[PT-	
prism] M13 core 37	ATTTAGGCGTTAAATAAGAATAATCGCAAG
[PT-	
prisml M13 core 38	ACAAAGAAAAACATAGCGATAGTAATGGAA
[PT_	
11^{-1}	AATCCTTGACGCGAGAAAACTTTTCGTGTGAT
prising_wrs_core_39	
[PI-	ATACCGACTCAAATATATTTTAGTCGCTATTAAT
prism]_M13_core_40	
LPT-	
prism]_M13_core_41	TT
[PT-	TCATATGCGCTCAACAGTAGGGCGCGCCTG
prism]_M13_core_42	
[PT-	
prism]_M13_core_43	
[PT-	
prism] M13 core 44	AAAIAAUGUAGAUGUAIIIIUGAGAUAAAAGG

[PT- prism] M13 core 45	GTAGAAACTTCAGCTAATGCAGAACTTAATTG
[PT- prism] M13 core 46	TTATCATTTCTGTCCAGACGACAACATGTA
[PT- prism] M13 core 47	TTTATCAATCCCATCCTAATTTTCATTACC
[PT- prism] M13 core 48	ACAACATGCAATCAATAATCGGCTCAAGCAAG
[PT- prism] M13 core 49	TTTTAGCGATTTTCATCGTAGGAAACGAGCAT
[PT- prism] M13 core 50	GCGCCCACGGTATTCTAAGAACATCCTGAA
[PT- prism] M13 core 51	CCGTTTTTAACCTCCCGACTTGCGTTAGTTGC
[PT- prism] M13 core 52	ACGTCAAAAAACAGCCATATTATTACCCA GCTACAATTTTGCGAGGCG
[PT- prism]_M13_core_53	TCTTACCTGCCAGTTACAAAATAATGAAAA
[PT- prism]_M13_core_54	TAGCAGCATAAAAACAGGGAAGCGCATTAGACGGG
[PT- prism]_M13_core_55	ACGGTAATCGTAAAACTAGAGAAAAGCCCCAAAAC ATTAAAT
[PT- prism]_M13_core_56	CCTTCCTGATTTTGTTAAAATTCGACAGGAA
[PT- prism]_M13_core_57	GATTGTATAATTAGCTATTTTTGAGAGATGATATTC
[PT- prism]_M13_core_58	TTTTGTTCATCAAAAATAATTCGTGTAGAT
[PT- prism]_M13_core_59	TTAATTAGCCAGCTTTCATCAGCGGATTG
[PT- prism]_M13_core_60	ATATTTTATAGCTGATAAATTAATTTTTATTGTAAACG
[PT- prism]_M13_core_61	GATCGCACGGGATAGGTCACGTTGGCGTCTGG
[PT- prism]_M13_core_62	TCTGGTGCCGTGGGAACAAACGACATT
[PT- prism]_M13_core_63	AAATGTGATTTTTTTAAAAATTTTTAGAATACTTTT
[PT- prism] M13_core_64	GGGCGCAGACGACAGTATCGGCTTGGGTAA
[PT- prism] M13 core 65	ACCGTAATTCCAGCCAGCTTTCCGGCGAAAGG
[PT- prism] M13 core 66	ATTCTCCGGAAACCAGGCAAAGGTGCGGG
[PT-	AGCTGAAAAAGCCTTTATTTTTTTTTTTTTTCCGTCGG

prism] M13 core 67	
[PT-	
prism] M13 core 68	CAGGTCGACTGCAAGGCGATTAAGCTCAGGAA
[PT-	
prisml M13 core 69	GCTCGAACTATTACGCCAGCTGGCACCGCT
[1 1-	CGATCGCGCCATTCTTTTTTTTTTTTTCATTTATACAT
[1 1-	CGCCAGGCCAGTGCCAAGCTTGAATTGCGT
[1 1-	GGGATGTGCTCTAGAGGATCCCCGTGGGGTGC
	CCTCTTCGTTCGTAATCATGGTCACATACGAG
prism M15 core /5	
[PI- ·]) (12 74	
prism M13 core /4	
	AATGCTGTACGGTGTCTGGAAGTCATACAG
prism]_M13_core_/5	
[PT-	TACCAAAAATTAACATCCAATAAATTTCATTC
prism_M13_core_76	
[PT-	CATATAACGCTTAGAGCTTAATTGAGAAGCAA
prism] M13 core 77	
[PT-	ΤGCGGATGAGTTGATTCCCAATTCTACTAATA
prism]_M13_core_78	
[PT-	
prism]_M13_core_79	dedddadadd ddemeani rerocdaacd
[PT-	
prism]_M13_core_80	
[PT-	
prism]_M13_core_81	TIAATIOCTIAOTITOACCALIAOOOOOCOCO
[PT-	
prism]_M13_core_82	
[PT-	
prism]_M13_core_83	UUAAUUUAUAUUAIAAAUU IAAAAI U I U IA
[PT-	
prism] M13 core 84	GIAGIAGCACALIAIGACCCIGIAACCCICAL
[PT-	
prism] M13 core 85	AACCGIICAAIGCAAIGCCIGAGIAICGGIIG
[PT-	
prism] M13 core 86	GGIAAAGAAATCACCATCAATATCTACAAA
[PT-	
prism] M13 core 87	GGCTATCCTGGAGCAAACAAGAGAAT
[PT-	
prism] M13 core 88	GGGATAGCCACCGTACTCAGGAGGAACAGTTA
[PT-	
prism] M13 core 89	CGCCACCCAGAGCCACCACCCTATGAATTT

[PT-	
prism]_M13_core_90	AUTOTATAAUCCCAATAGUAACCTAAAUTTT
[PT-	AGCGAAAGATGCCACTACGAATTTTTTTTTTT
prism] M13_core_91	TGAAAGAGGATAACAAAG
[PT-	<u>Γ<u>G</u>GCTACGGA AGTTTCCATTA A A ΔΤΔCΔCT</u>
prism] M13_core_92	
[PT-	<u>ΓΑΤΑ Α GGGA Α CCGTTTTTTTTTΤΤΑ Α Α Α CGA Α Α GA</u>
prism]_M13_core_93	
[PT-	AAAACACCGAAAACAAAGTACAACGGAGATTTGTAT
prism]_M13_core_94	
[PT-	TGATAAATTGTGTCGAAATCCGCGACCTGGA
prism] M13_core_95	ACGAGGCGCAGAAGACCAGG
[PT-	AATCAACGCAGATGAACGGTGTACCGGTCAAT
prism M13_core_96	
[PT-	CGCATAGAAGAACCGGATATTCGATGGTTT
prism]_M13_core_97	
[PT-	GTCAGGACAGTAAATTGGGCTTGAATTACCCA
prism] M13_core_98	
[PI-	
prism]_M13_core_99	
[PI-	
prism]_M13_core_100	AAAIAICGCGIGAGIACCI
[P1- mism] M12 conc 101	TAGGAATAAAAAACCAAAATAGCGTATTCATT
$[\Gamma I - nright] M12 core 102$	GAATCCCCGCATCAAAAAGATTAAGTCATTTT
[DT] [DT] [DT] [DT] [DT]	
11^{-1}	AAACGAGCTGACTATTATAGTCCTGAATAT
[PT-	
prism] M13 core 104	AGCGGATTCTCAAATGCTTTAAACTTTACCAG
[PT-	
prism] M13 core 105	TAACGCCCTATCATAACCCTCGAGTTCAGA
[PT-	
prism] M13 core 106	CCGAAAGCGGAATCGTCATAAAAGAGGCTT
[PT-	
prism] M13 core 107	GAGCIICAAAGCGIIIIIIIIIGCICAGIACCA
[PT-	
prism] M13 core 108	AUGAUGAIUUAUAI IUAAUTAAIGI TATACUA
[PT-	
prism] M13 core 109	AAIIIUAIIAAGAAUIGGUIUAUAGAIAUA
[PT-	
prism]_M13 core 110	I IUUAAAAUAAAUAI IUAIUAUIAUI IAA
[PT-	TAAAACGAACTATTTTTTTAAAGGAGCC
prism]_M13 core 111	TTTAATTGTATTTTTTTCA
[PT-	TGTCGTCTGAATTGCGAATAATAACGGTTTAT

prism]_M13_core_112	
[PT-	
prism]_M13_core_113	AACTAAAGTTCCAGACGTTAGTAACATTTTCA
[PT-	
prism]_M13_core_114	UTAACACT IUATATAAUTATAUTATAUTAT TAT TC
[PT-	CGAGAGGGTGAGTTTCGTCACCAGACAGACAG
prism]_M13_core_115	
[PT-	
prism]_M13_core_116	
[PT-	GCGCCAGATAAAGTGTAAAGCCGGTACCGA
prism] M13_core_117	
[PT-	CTGAGTTGTAGCAATTTTTTTTCCACACAATAGCT
prism] M13_core_118	
[PT-	GGAACAATCAAAGGGCGAAAAACCGT
prism] M13 core 119	
[PT-	GGGCGATGGCCCACTACGTGAGGTGCCG
prism]_M13_core_120	TAAAGCCGTGGCGA
[PT-	CTGCGCGTGGGGAAAGCCGGCGAAACTAAAT
prism]_M13_core_121	
[PT-	CGGAACCCTATATAGGGTTGAGTGTTGTCGAAATCG
prism M13_core_122	
[PT-	CTTCACCGCCTTATAAATCAAAATTTTTTGATTTAGAG
prism]_M13_core_123	С
[PT-	TTGACAACCACCACCCGCCTATAACGT
prism]_M13_core_124	
[PI-	GAAAGGACGCTGGCAAGTGTAGGGAGCTAA
prism]_M13_core_125	
[PI- · 1) (12 12)	TTATAATCCGTTAGAATCAGAGCGCGGTCACG
prism] M13_core_126	
[PI-	
prism]_M13_core_12/	
[PI-	AAGGGACAICGGCCIIGCIGGIAAAAGA
prism]_M13_core_128	
[PI-	
prism] M13_core_129	
[PI-	
prism_M15_core_130	GCCAACAGAGIAIIIIIG
[PI-	AAAACGCGTCTGAAATGGATTAAATACCGA
prism_M15_core_131	
[1]-	ACAGGAGCGCCAGAATCCTGAGCAACAGGA
prismIVI15_core_132	
[[1]- nmigm] M12 corr 122	GGCAGATTTTACCGCCAGCCATTGAAGTGTTT
prismj ivi i 5 core 133	
[F]-	GAACAATACACCAGTCACACGACCCGAACTGA
prismN13_core_134	

[PT- prism] M13 core 135	GCTTTCCTAGTGAGGCCACCGAGTAATATCCA
[PT- prism] M13 core 136	TGTGTGAAATTGTTTAGTAATAACATC
[PT- prism] M13 core 137	CTAATGAGGGGGGAGAGGCGGTTTGTGATTGCC
[PT- prism] M13 core 138	TGCGCTCGCCAGCTGCATTAATTTGCAGCA
[PT- prism] M13 core 139	GCAAAATCCCTGGCCCTGAGAGAGGAATCGGC
[PT- prism] M13 core 140	AGCGGTCGTTTGATGGTGGTTCTCCAGTTT
[PT- prism] M13 core 141	GTGCCACGAAACATCGCCATTAAATTTACATT
[PT- prism]_M13_core_142	ATCTAAATTAGTCTTTAATGCGAGTAATAA
[PT- prism]_M13_core_143	AATTTGAGTGAATATTTTTTTTCACAGACAAATAGA
[PT- prism]_M13_core_144	TTAAATCGAGTAACATTATCATTTTG
[PT- prism]_M13_core_145	AAAGAAACCACCAGAAGGATGATTATCA GATGATGAACCTAC
[PT- prism]_M13_core_146	CGTCAGATAATAATGGAAGGGTTAGGCAATT
[PT- prism]_M13_core_147	CATCAATATATTTTACAAACAATTCGACGCCGTCAA
[PT- prism]_M13_core_148	TGGTCAGTACATTTGAGGATTTATTTTTTGGATTATAC
[PT- prism]_M13_core_149	TTCTGGAATATACAGTAACAGCCAAGTTA
[PT- prism]_M13_core_150	CATATCAATTGCGTAGATTTTCTCATTTCA
[PT- prism]_M13_core_151	CAATTTCACGCAGAGGCGAATTATAGGTTTAA
[PT- prism]_M13_core_152	TTTGAATATACCTTTTACATCTTTTTTTA TCAAACCCTCAAAATGAAAA
[PT- prism]_M13_core_153	AGCGATAGTAATGGAAACAGTACTGATTGC
[PT- prism] M13 core 154	AATGGCTAGCATCACCTTGCTTTTTTT TTAACGGATTCGCCATAAATCA
[PT- prism] M13 core 155	ΑΤΤΑCCΤΑΑΑΑCAAAATTAATTGAATTTAT
[PT- prism] M13 core_156	CAAAATCGTTTGAATTACCTTTTTCTTAGATT
[PT-	TAGCCCTACTGAGAGCCAGCAGCATCAATATC

prism]_M13_core_157	
[PT-	
prism]_M13_core_158	ACGAACCCAGTALTAACACCGCGAAAGGAA
[PT-	
prism]_M13_core_159	IAGAIAAIIGGCAAAICAACAGIICIGCAACA
[PT-	
prism]_M13_core_160	I IUAUUAAAC IAAIAUAI IAUAAAC ICUTA
[PT-	TCGTCATAAAGGCCGCTTTTTTTTTGCCCTGACGAGT
prism]_M13_core_161	CAGTT
[PT-	TATTCCTACAAACTACAACTTTTATGTTTAGACTGGG
prism]_M13_core_162	GGGTT
[PT-	TTACCGCCAGTAATAAGAGTTTTGCGTTTTCATCGGC
prism]_M13_core_163	GTCAT
[PT-	TCAAGAGGAGGTTTTGAAGTTTTCAGTATGTTAGCA
prism]_M13_core_164	GACTCT

Table S3.34. Core staples of M13mp18 Cairo pentagonal DNA origami tile.

Name	Sequence
[PT-	AAACAAATAAATCCTCATTTACCGTTCCAGTAAGGCC
Cairo]_M13_core_1	TTGA
[PT-	
Cairo]_M13_core_2	
[PT-	ATGGCTTTTGTTCCCTCAGAGCCGCCACCACTCAGAG
Cairo]_M13_core_3	С
[PT- Cairo] M13 core 4	GTAACAGTTTCGGAACCTATTATCCCGGAA
[PT-	TTTTCGGTTCAGAACCGCCACCCTTTTTTGTACTGG
Cairo]_M13_core_5	TAATAAGATTAAGAG
[PT-	
Cairo]_M13_core_6	COCCACCCOTIGATATAAGTATAGTCIGAAAC
[PT-	
Cairo]_M13_core_7	UCIUAUACAAUIUCCUICUAUAUUICAUAUCC
[PT-	AGGCGGATTCCTCAAGAGAAGTTTTTTTTTTTGTAGC
Cairo]_M13_core_8	GCGTTTTTCAGTAGC
[PT-	TAGGTGTACTCAGAACCGCCACCCCAGACG
Cairo]_M13_core_9	
[PT-	CCTCATAGCATTTTCAGGGATAGCTCAGTACC
Cairo]_M13_core_10	
[PT-	TATTGACGCAAGTTTGCCTTTTTTTTGGGGGTTTTGCA
Cairo] M13_core_11	AGCCCAA
[PT-	GAATAGAAAAGTTTTGTCGTCTTTCTCAGAAC
Cairo] M13_core_12	
[PT-	
Cairo]_M13_core_13	

[PT- Cairo] M13 core 14	TAGGAACGCCTGTAGCATTCCATTTTCACGT
	ACTACAACCCATGTACCTTTTTTAGGGAGGGAAGCG
Cairo] M13 core 15	CCAAAGACAAAAACAAAGTT
[PT-	
Cairo] M13 core 16	TIAGIAAAITICAACAGITICAGCGCCCAC
[PT-	
Cairo]_M13_core_17	GUTIGATAATIGUGAATAATAATIUAGAUAGU
[PT-	
Cairo] M13_core_18	CAUCITUCICICCAAAAAAAAUUUCAUTACAA
[PT_	CGGAATTTAGCCGAGGGCGATTCGTCACTCCAAAAG
Cairol M13 core 19	G
	AGCTTTTTTTAAGCCT
[PT-	GTATGTTA A A CATATA A A A GA A ATTGGGA A
Cairo]_M13_core_20	
[PT-	AAACCATCCACCGACTTGAGCCATCGCAAAGA
Cairo]_M13_core_21	
[PT-	CACCACGGTGATTAAGACTCCTTATGAGTTAA
Cairo]_M13_core_22	
[PT-	
Cairo] M13 core 23	
[PI- Coimal M12 come 24	GACAGAAIGAAAI IAI ICAI IAAACACAAICAAIAGA
Calloj_WI15_core_24	
[PT-	CA
Cairo]_M13_core_25	GGTAAA
[PT_	
Cairol M13 core 26	TTAGAGCCCAAGGCCGGAAACGTGCGTTTG
[PT-	
Cairol M13 core 27	ATCACCGTGATAGCAGCACCGTAACATCGGCA
[PT-	
Cairo] M13 core 28	CGCCACCCCATAGCCCCCTTATTACACCAATG
 [PT-	
Cairo]_M13_core_29	CCATCITIACCOGAACCOCCICCOAACCAC
[PT-	
Cairo]_M13_core_30	CACCADAOOTCADACOATTOOCCTTOA
[PT-	AATACCACATTCAACTAATGCAGATAAGAGCAACACT
Cairo]_M13_core_31	ATCAAAAAGAAG
[PT-	ТСАТА А АТА GCG A G A GGCTTTTGCTA A CCCTC
Cairo] M13_core_32	
LPT-	GTTTACCAGACTTTTTTTTTATACCAGTCAGGACGTT
Cairo M13_core_33	TGAATTAC
[PT-	TTTTGCCTAGCGTCCAATACTGTACCCTGA
Cairo M13 core 34	

[PT-	CAGTGAATATTTTAAGAACTTTTTTTTAAAAACCAA
Cairo]_M13_core_35	AATATTCATTG
[PT-	CAAATATCTCAAAAATCAGGTCTTCGGAATCG
Cairo M13_core_36	
[PI- Coincl M12 conc 27	AATCCCCCTCATTTTTTTTTTTAGCTGCTCATT
Calloj_WI15_Core_5/	
Cairol M13 core 38	CTATTATTTAAGAGGAAGCCCGTTGCGGAT
[PT-	
Cairo] M13 core 39	ACCATAAAGCGTTTTAATTCGAGCCTTTAATT
[PT-	CGGATATTCATTACCCAAATTTAGTTCAGAAAACGAG
Cairo] M13 core 40	AATG
[PT-	AGTACGGTTGATAAGAGGTCATTTAAAGACTT
Cairo] M13_core_41	
[PT- Coincl M12 conc 42	CAGTTGATCAGGATTAGAGAGTACTTCAAAGC
Calloj WI15_Cole_42	
Cairol M13 core 43	GAACCAGACCGTTTTTTTTTTTTACTTAGCCGG
[PT-	
Cairo]_M13_core_44	GGUTTAGACATGTTTTAAATATTGGCATCA
[PT-	GCTCCTTTGTCTGGAAGTTTCATTTATATATTT
Cairo]_M13_core_45	
[PT-	CCATTAAATCCGCGACCTGTTTTTTTTTCTCCAACAG
Cairo] M13_core_46	GITCCCAAIIC
[PI- Cairol M13 coro 47	AAAATTAAGCGCGAGCTGAAAAGGGCAACTAA
Cairol M13 core 48	CTAAATCGCAATAACCTGTTTAGCCCATATAA
[PT-	
Cairo]_M13_core_49	IGCGAACGAGIIIIIIIIGAGGAAGIII
[PT-	
Cairo]_M13_core_50	
[PT-	CATTTGGGGCAATAAAGCCTCAGAATGCCTGA
Cairo]_M13_core_51	
[PT-	CATTICGCAAAIGGIGIIGIIGIACCAAAAACAAIITTIA
Cairoj_N13_core_52	G
[FI- Cairo] M13 core 53	CTTTGAGGACTATGACCATTAGATA
[PT-	
Cairo] M13 core 54	ATGCCGGATAGGTAAAGATTCAAAGAATTAGC
[PT-	
Cairo] M13 core 55	
[PT-	CTGGAGCACAACGCAAGGATAAAATTATGACC
Cairo] M13 core 56	
[PT-	CTGTAATACTTTTTTTTTTTGTATCGGTTTAT

Cairo]_M13_core_58	
[PT-	
Cairo] M13_core_59	
[PT-	
Cairo]_M13_core_60	
[PT- TTATTTAACAAGTTTGAGACGAAAAACCGTCTTTT	Γ
Cairo]_M13_core_61 TTTTGAGTCAATAGTG	
[PT- TCACCCTCCAATGACAACCATCGGAGTGA	
Cairo] M13_core_62	
[PT- CTAAAGGACCGATAGTTGCGCCGAAGCAGCGA	
Cairo] M13_core_63	
[PT- TGAAAATTTCGAGGTGAATTTCAACGGCTACAGAG	iG
Cairo] M13 core 64	
[PT- GCATAACCTAAAGGCCGCTTTTGGAGGCAA	
Cairo]_M13_core_65	
PT-	
Cairo]_M13_core_66	
PT-	
Cairo]_M13_core_67	
PT- AAGACAGCTGCCACTACGAAGGCATTTGTATC	
Cairo]_M13_core_68	
PT- AAGAATACATACCAAGCGCGAAACCAACTT	
Cairo] M13_core_69	
[PI- Grint M12 and 70 AACGAGGCATAAATTGTGTCGAAACGGGTAAA	
Cairoj_M13_core_/0	
[PI- Gring] M12 and 71 TAATCTTGAAGGGAACCGAACTGACAAAGTAC	
Cairoj Milo core / I	
Coirol M12 coro 72 ATCGCCTGGCAGACGGTCAATCATACAAGAAC	
Coirol M12 coro 72 TGAAAGAGGGCTGGCTGACCTTCAGAAACA	
Cairol M13 core 74 CTTATGCGAAGGCTTGCCCTGACGATCAAGAG	
Cairol M13 core 75 CCAGAACGCAACTTTAATCATTGGGGGAAGA	
Cairol M13 core 76 AAAATCTATTACAGGTAGAAAGATTCATCAGTTG	
	$^{\rm G}$
Cairol M13 core 77 CTAA	
[PT-	
Cairol M13 core 78 TCCAAATAATCCTGAATCTTACCACCTTAAAT	
	TC
Cairo] M13 core 79 T	

[PT- Cairo] M13 core 80	CGAGCGTCAACAGCCATATTATTACACCCT
[PT-	CCTGTTTACATTCCAAGAACGGGTTTTTTCCCAGCT
Cairo M13 core 81	ACAATTTTAGAAACGA
[PT- Cairo] M13 core 82	GCCCAATACGGGAGAATTAACTGATATCCCAA
[PT- Cairo] M13 core 83	TTTTTTGTAGGGAAGCGCATTAGAATAAGAGC
[PT-	ATAAAAACTTAACGTCAAAAATTTTTTTTTTTTTTCA
Cairo M13_core_84	GCIAAIGCGIAAAGIA
[PT- Cairo] M13 core 85	GAACAAAGATAACCCACAAGAATTTACGCA
[PT- Cairo] M13 core 86	ACGGAATAATGAAATAGCAATAGCAGAATAAC
[PT-	CATATGCGCAGACGACGATTTTTTTTTTTTTTACAG
Cairoj_M13_core_8/	
[P1- Cairo] M13 core 88	ACCAGAAGCITITIAAGITITITAAAGCCIGIAAAIA AGA
[PT-	
Cairo]_M13_core_89	AATCCAAAAATATATTTTAGTTAATTGAGA
[PT- Cairo] M13_core_90	GAGAATATCTCAACAGTAGGGCTTAATTTCAT
[PT- Cairo] M13 core 91	CTTCTGACTAACTATATGTAAATGATAACCTT
[PT- Cairo] M13 core 92	GGGTTATACTAAATTTAATGGTTTCAGTATAA
[PT-	
Cairo]_M13_core_93	ATTCTGTCTTATACAAATTCTTACGAAATACC
[PT- Cairo] M13 core 94	GACCGTGTCCTTTTTAACCTCCGGTTAATTTT
[PT- Cairo] M13 core 95	GAGACTAGATAAATAAGGCGTTTTAGTAT
[PT- Cairo] M13 core 96	ATAAACACAATTTATCAAAATCATGCGATAGC
[PT- Cairo] M13 core 97	ATCGCCAAGGCATTTTCGAGCCCCTGAACA
[PT-	AGCCAACGAAAGTACCGACAAAAGAGAACGCG
Cairo] M13_core_98	
[PT- Cairo] M13 core 99	TTCCTTATTCAACAATAGATAAGTAGTAATAA
[PT- Cairo] M13 core 100	AGAAAAAAACCAATCAATAATCCAAGCAAG
[PT- Cairo] M13 core 101	CCGTTTTATAGCAAGCAAATCAGATA
[PT-	TGCGCAACTGTTGGGAAGGAGCTGGCGAAAGGG

$C_{1} = 1 M (12) = 102$	CAACCACC
Cairoj_M13_core_102	GAACGACG
[PT-	TTCGTAATAGTCACGACGTTGTAAGATGTGCT
Cairo]_M13_core_103	
[PT-	GCAAGGCGATTTGTATCGGCCTCAGGAAGACGCATC
Cairo]_M13_core_104	GT
[PT-	
Cairo] M13 core 105	GUAGIGUGAIUUUGGGIAUUGAGIGAGU
	GTGAGCGAATCTGCCAGTTTGAGTTTTTTCGCCAG
Cairol M13 core 106	GGTTTTCCCCATGGTCA
$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} M_{12} \text{area} 107$	CTGCATTACCTGGGGTGCCTAATGAGCTCGAA
	TAGCTGTTAGCATAAAGTGTAAAGATGAATCG
Cairo M13_core_108	
[PT-	GAGCCGGATCCTGTGTGAAATTTTTTTTTTCA
Cairo]_M13_core_109	GCTTTCATCAAACGCCATC
[PT-	
Cairo] M13 core 110	IAAUTCACAGICGGGAAACCIGICGAAAAI
Cairol M13 core 111	GAGTTGCAGCGGGGGGGGGGGGGGGGTTCAACATAC
[PT_	
Cairol M13 core 112	CCACATGCGTATT
$\begin{bmatrix} \Gamma & I \\ C & inc \end{bmatrix} M 12 come 112$	AGGGTTGAGGTTTGCCCCAGCAGGCGTGCCAG
Cairoj M15_core_115	
	GCCAACGCGCAAGCGGTCCACGCTGTGTTGTT
Cairo]_M13_core_114	
[PT-	GGGCGCCCCTTCACCGCCTGGTTAAAGAAC
Cairo]_M13_core_115	
[PT-	GCTGATTGAGGGTGGTTTTTTTTTTGTAATCGTACTGAG
Cairo]_M13_core_116	AGT
[PT-	
Cairo]_M13_core_117	CETUTTIOAAAICAAAAOAAIAOOAOCCCC
[PT-	
Cairo] M13 core 118	GUICUAUUUAACAAUAUICCACIACCCIUAUA
[PT-	
Cairo] M13 core 119	CGIGAACCICCAACGICAAAGGGCGGGCAACA
[PT-	
Cairol M13 core 120	CAGCTCATCCCAAAAACAGGAAGAATAAATTA
$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} M = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} M = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$	AAAAATAATCATATGTACCCCGGTGAGAGATC
	GCAAATATTCGCATTAAATTTTTTTCTCCGT
Cairo]_M13_core_122	
[PT-	AGAAAAGCTTTTTAACCAATAGGACATTAAAT
Cairo]_M13_core_123	
[PT-	Δ Δ C C G T G C G T Δ Δ C Δ Δ C C C G T C G G Δ T G T T Δ Δ Δ Τ
Cairo] M13 core 124	

[PT- Cairo]_M13_core_125	GGGAACAGTTGGTGTAGATGGGTCGCACTC
[PT- Cairo] M13 core 126	CAGCCAGGGCAAAGCGCCATTCGCCA
[PT- Cairo] M13 core 127	GCCTGCAACAGTGCCACGCTGAGAGCTGCTG AACCTCAAATTTGAGGAA
[PT- Cairo]_M13_core_128	ACATTTGACAACAGTTGAAAGGAAATCAAACC
[PT- Cairo] M13 core 129	CTCAATCAATATTTTTTTTTTTTTTTTTTTTTTTTTTT
[PT- Cairo] M13 core 130	GGTTATCGATTAGAGCCGTCAATAAAAGTT
[PT- Cairo] M13 core 131	GATTCACCTTTGAATGGCTTTTTTTTTTAG TTGGCAAATGGATTTAG
[PT- Cairo]_M13_core_132	TTCCTGATCGAACGTTATTAATTTTAGATAAT
[PT- Cairo]_M13_core_133	AAGTATTAGACTTTTTTTTTTTTACATTGGCA
[PT- Cairo]_M13_core_134	TGAGTAAGAAGGAGCGGAATTAAAACAGAA
[PT- Cairo]_M13_core_135	CCTTTGCCTATCAGATGATGGCAAAGAACCTA
[PT- Cairo]_M13_core_136	TTTTGACGCTCAATCGTCTTTTTCGACAACTCGTATTA AAT
[PT- Cairo]_M13_core_137	TACATCGGAAATTATTTGCACGTATCATCATA
[PT- Cairo]_M13_core_138	ATTGCTTTGAATAATGGAAGGGTTTTCATCAA
[PT- Cairo]_M13_core_139	TATAATCCTGATTTTTTTTAGCAATACTT
[PT- Cairo]_M13_core_140	ATAAAGAGAATATACAGTAACAACAATTTC
[PT- Cairo]_M13_core_141	CCATATCAGAGAAACAATAACGGAAAAACATCA
[PT- Cairo]_M13_core_142	TACTATGGTCACGCAAATTTTTTTTTTTTAT TATACTTCTGAATACCAA
[PT- Cairo]_M13_core_143	GCTTCTGTAAATTAATTACATTTAGTACCTTT
[PT- Cairo] M13 core 144	CCCTTAGAAAGAAGATGATGAAACTTCGCCTG
[PT- Cairo] M13 core 145	GTTACAAAATTTTTTTTTTACAGGGCGCG
[PT- Cairo] M13 core 146	ATTTGAAAATATATGTGAGTGACTGATGCA
[PT-	AGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Cairo]_M13_core_147	
[PT-	CAATTACCTGAGCAAATCCTTGAAAACATAAGGTCTG
Cairo]_M13_core_148	A
[PT-	
Cairo] M13_core_149	
[PT-	
Cairo]_M13_core_150	
[PT-	GGAGCGGGATCGGAACCCTAAAGCCCCGAGAT
Cairo]_M13_core_151	
[PT-	
Cairo] M13 core 152	
[PT-	GTGGACATCACCCAAATCAAGTGCGCGTAACCACCA
Cairo] M13 core 153	GIGGACAICACCEAAAICAAGIGCGCGIAACCACCA
[PT-	
Cairo]_M13_core_154	COMPTROOMACONACCONCET
[PT-	ACGAGCACAGTGTAGCGGTCACGCTTTTTTGG
Cairo]_M13_core_155	
[PT-	ΤΤΤΑΤΑ ΑΤΤΟΩΤΤΑ GA ΑΤΟΑ GA GO A A GOGA A A
Cairo]_M13_core_156	
[PT-	CGCTGGCAGTATAACGTGCTTTCCCAGTGAGG
Cairo]_M13_core_157	
[PT-	AAACAGGAACGCCAGAATCCTGATCAAACT
Cairo]_M13_core_158	
[PT-	CTTTGATTTAAAAGAGTCTGTCCATTGCTTTG
Cairo]_M13_core_159	
[PT-	CATGGAAAGCCTGAGTAGAAGAACGAAGTGTT
Cairo]_M13_core_160	
[PT-	CCACCGAGAGTAATAACATCACTTTACCTACA
Cairo]_M13_core_161	
[PT-	ATCGGCCTGCCATTGCAACAGGAATAAAAG
Cairo]_M13_core_162	
[PT-	ACAATATTAGTCACACGACCAGTAAAAACGCT
Cairo]_M13_core_163	
[PT-	GGACATTCA AGCGTA AGA ATACGGCCCTA A
Cairo]_M13_core_164	
[PT-	ΑΑΓΑΤΟGCGATAΑΑΑCAGAGGTGAGGCGGTCAGT
Cairo]_M13_core_165	

Table S3.35. Core staples of p8064 floret pentagonal DNA origami tile.

Name	Sequence
[PT-	ATCATTACCGCGCCCAATATATTCTAAGAACGCGCGGG
floret]_p8064_core_1	AGGT
[PT- floret] p8064 core 2	ACTTGAGGCGTTTTTTTTTTTTCATTCCAATA

[PT- floret] p8064 core 3	TTTGAAGCAGCTACAATTTTATGCCAGTTA
[PT- floret] p8064 core 4	ATCGGCTGTTTACCTCCCG
[PT- floret] p8064 core 5	AAAAATGATTCCAGAGCCTAATTTCCTGAATC
[PT- floret]_p8064_core_6	TTACCAACGTGCCTGTTTA
[PT- floret] p8064 core 7	CAAAATAGAAACGATTTTTTGTAGACGGGA
[PT- floret] p8064 core 8	AGGCATAATGCGCGTCTAAATAGCAGCTTTTAATTT
[PT- floret] p8064 core 9	CCCACAAGAACAGGGAAGCGCATTTTAACGTC
[PT- floret]_p8064_core_1 0	GAATTAAGAGCGCTAATATCAGCTTTTTAA
[PT- floret]_p8064_core_1 1	TCATAATTTATTTAACAACGCCATTTTAGAGAATAACAT AAAAATTGAGT
[PT- floret]_p8064_core_1 2	GGAATACCCTATCTTACCGAAGCCAGAGATAA
[PT- floret]_p8064_core_1 3	TAAGCCCAAATGAAATAGCAATAGCAAAAGAACTGGC ATGTAGAAAAT
[PT- floret]_p8064_core_1 4	AAACATAATTTTTAAAGTTAAATATTTTTTCAAG
[PT- floret]_p8064_core_1 5	GAAAAGTAACCGAGGAAACGCAAAAAGAAA
[PT- floret]_p8064_core_1 6	CAGCGCCAAAAGGTGGCAACATATATAATAAC
[PT- floret]_p8064_core_1 7	AAACGATTAAGACTCCTTTTTTTATAACTATATGTACCT CC
[PT- floret]_p8064_core_1 8	CGCAAAGAATAGAAAATTCATAGGGAATTA
[PT- floret]_p8064_core_1 9	ACATACATAAGACAAAAGGGCGACTGAATTAT
[PT-	GGCTTAGGTTGGTTTTTTCAGTATGTTAGC

floret]_p8064_core_2 0	
[PT- floret]_p8064_core_2 1	ACCATCGACCGACTTGAGCCATTTTGGTTTAC
[PT- floret]_p8064_core_2 2	CAGAATCATTATTCATTAAAGGATTCAACC
[PT- floret]_p8064_core_2 3	GATTGAGGGAGGGATTTTTAGTGAATAACCTTG
[PT- floret]_p8064_core_2 4	GAGCCAGAGGCCGGAAACGTCAAAATCACC
[PT- floret]_p8064_core_2 5	CACCGTCATAGCAGCACCGTAATCCCTTATTA
[PT- floret]_p8064_core_2 6	TTCGCCATAAATCAATTTTTTTTTTTTTGACGGAAAAGTT
[PT- floret]_p8064_core_2 7	ACCGCCACCATCTTTTCATAATCACCAATGAA
[PT- floret]_p8064_core_2 8	CGCCACCTTTCGGTCATAGCCCAGTAGCGA
[PT- floret]_p8064_core_2 9	TGCCTTTAGCGTTTTTTACAATAACGGA
[PT- floret]_p8064_core_3 0	GGAACCACCCTCAGAGCCGCCAAGCGCAGT
[PT- floret]_p8064_core_3 1	GCGTTTGCCCTCAGAGCCACCACCACAAATAA
[PT- floret]_p8064_core_3 2	ATCGGCATAGAACCACCACCAGAGCAGGTCAG
[PT- floret]_p8064_core_3 3	GTACCTTTTACATTTTTTGTAGCGCGTTTTC
[PT- floret]_p8064_core_3 4	TAATAAGTTAAAGCCAGAATGGAACCCTCAGA
[PT-	AACAGTGCCTTGATATTCACAACTCAGAGC

floret]_p8064_core_3 5	
[PT- floret]_p8064_core_3 6	TGAGGCCGCCGCCATTTTTTTCATATTCCACCAG
[PT- floret]_p8064_core_3 7	CTCTGAATTGATGATACAGGAGGGATAAGT
[PT- floret]_p8064_core_3 8	ATCCTCATTTTAACGGGGTCAGTGTAGGATTA
[PT- floret]_p8064_core_3 9	ACGATTGGCCCGTATAAACAGTTATTAAGAGG
[PT- floret]_p8064_core_4 0	AAGGAGCGGTTTTTACAGGAGGT
[PT- floret]_p8064_core_4 1	TAGTACCGTTGCTCAGTACCAGGCTGTACTGG
[PT- floret]_p8064_core_4 2	GAACCGCCCTCAAGAGAAGGATCCTTGAGT
[PT- floret]_p8064_core_4 3	TTTCAGGGCTGAAACATGAAAGTAATGCCCCC
[PT- floret]_p8064_core_4 4	TGCCTATTTCTTTTGTTGAAAGGA
[PT- floret]_p8064_core_4 5	GCCGTCGTGTATCACCGTACTCAGTTTTGT
[PT- floret]_p8064_core_4 6	GCGGGGTTCCACCCTCAGAACCGCAGACAGCC
[PT- floret]_p8064_core_4 7	CTGAGACTCACCCTCAGAGCCACCAGTACAAA
[PT- floret]_p8064_core_4 8	AATATGTTGGCATTTTATTATTATAGCAAGCCCTACAGA C
[PT- floret]_p8064_core_4 9	GTTTCAGCTAGCGTAACGATCTAAAGGAGGTT
[PT-	TAAAGGACCTGTAGCATTCCACCACCCTCA

floret]_p8064_core_5 0	
[PT- floret]_p8064_core_5 1	TTGAAAATACTGAGTTTCGTCACCACCCTCAT
[PT- floret]_p8064_core_5 2	CGTCTTTATTTTGCTAAACAACTGCGCCGA
[PT- floret]_p8064_core_5 3	CTCATAGTGGAGTGAGAATAGAAAGTGAATTT
[PT- floret]_p8064_core_5 4	CTACAACGATTGCGAATAATAATTAATTGTAT
[PT- floret]_p8064_core_5 5	CCGTAACCTCCAAATTTAGTAAGA
[PT- floret]_p8064_core_5 6	GAAATTGTTTAGTAATACTGAAAGCGTAAGAATTACCC ATGTA
[PT- floret]_p8064_core_5 7	AAAACGCGTCTGAAATGGATTAGCAGAAGA
[PT- floret]_p8064_core_5 8	CAGCAAATACCGAACGAACCACCATTTACATT
[PT- floret]_p8064_core_5 9	GGCAGATTTTACCGCCAGCCATTGAAGTGTTT
[PT- floret]_p8064_core_6 0	GAACAATACACCAGTCACACGACCCATCGCCA
[PT- floret]_p8064_core_6 1	TGAACCTCTGATAGCCCTAAAAAGTAATAA
[PT- floret]_p8064_core_6 2	AAGGGACATCGGCCTTGCTGGTAAAAGAGT
[PT- floret]_p8064_core_6 3	CTCAAACTATTCTGGCCAACAGAGGTCTTTAA
[PT- floret]_p8064_core_6 4	GGCTATTAATAGAACCCTTCTGACACATCACT
[PT-	TAAAACAAACAGTGCCACGCTGACATTTGA

floret]_p8064_core_6 5	
[PT- floret]_p8064_core_6 6	TTAAAAATGAAAAATCTAAAGCATCAACTAAT
[PT- floret]_p8064_core_6 7	TGCGCGAACAAATATCAAACCCTCAGGTTATC
[PT- floret]_p8064_core_6 8	ATTGAGGAAATCAATATCTGGTCATTTTGAAT
[PT- floret]_p8064_core_6 9	CGTTATTAGCCGTCAATAGATAATAGAGCCAG
[PT- floret]_p8064_core_7 0	TCATTTTCTTTAGGAGCACTAACACCTTGC
[PT- floret]_p8064_core_7 1	GGATTTATCGTATTAAATCCTTATGGAAGG
[PT- floret]_p8064_core_7 2	AGATTAGAATTTTAAAAGTTTGAGAATCCTGA
[PT- floret]_p8064_core_7 3	TAAAATATGCGGAACAAAGAAACCTGATTATCAGATG ATGCAGTAACA
[PT- floret]_p8064_core_7 4	AATTGCGTATTATACTTCTGAATATGCCCGAA
[PT- floret]_p8064_core_7 5	GAATATAGCAATTCATCAATATTAACATTA
[PT- floret]_p8064_core_7 6	GTTAGAATGCACGTAAAACAGATTCATTTC
[PT- floret]_p8064_core_7 7	TTGTTTGGAGATTTTCAGGTTTAAACCAAGTT
[PT- floret]_p8064_core_7 8	ACAATTTCGCGCAGAGGCGAATTAAATAAAGA
[PT- floret]_p8064_core_7 9	CTTCTGTATTAATGGAAACAGTACTGATTGCTTTGAAT CGTCAGAT
[PT-	AATTACCGAAAACAAAATTAATTCCTTGAA

floret]_p8064_core_8 0	
[PT- floret]_p8064_core_8 1	ACAAAATCATTTGAATTACCTTTTAATCGTCG
[PT- floret]_p8064_core_8 2	AGGTCTGATAATTTTCCCTTAGAATACATTTA
[PT- floret]_p8064_core_8 3	AACATAGAATAGTGAATTTATCAACGCGAG
[PT- floret]_p8064_core_8 4	CTATTAATGAGACTACCTTTTTAAAAATGCTGA
[PT- floret]_p8064_core_8 5	TACCGACCCAATCGCAAGACAAAGAAAATCAT
[PT- floret]_p8064_core_8 6	AAAACTTGACCTAAATTTAATGTTAGTATC
[PT- floret]_p8064_core_8 7	TGCAAATCGTGTGATAAATAAGGCCACCGGAA
[PT- floret]_p8064_core_8 8	AATCGCCAACTAGAAAAAGCCTGTGTTTGAAA
[PT- floret]_p8064_core_8 9	ATATGCGCTCAACAGTAGGGCTAGTAATAA
[PT- floret]_p8064_core_9 0	TCAACAATAAACAACATGTTCAGCGAGGCATTTTCGA GCCTAATTGAG
[PT- floret]_p8064_core_9 1	GAGAATACCAGACGACGACAATAGATAAGT
[PT- floret]_p8064_core_9 2	CCTGAACCATGTAGAAACCAATCAAGAACG
[PT- floret]_p8064_core_9 3	GGTATTAGCCGTTTTTATTTTCATCG
[PT- floret]_p8064_core_9 4	CTTCACCGCCTTATAAATCAAAATTTTTGATTTAGAGC
[PT-	TAATGCGCTTTTTTTTGACGGGCAACAGCCGTATTGG

floret]_p8064_core_9 5	
[PT- floret]_p8064_core_9 6	TGCCTGAGTTGTAGCAATTTTTTTTTCCACACAATAGCT GTT
[PT- floret]_p8064_core_9 7	CGTTTTCTGCCTGTTCTTCGCGAATTGCGT
[PT- floret]_p8064_core_9 8	CAACGCGCTGAGCTAACTCACATTTCCGTGAG
[PT- floret]_p8064_core_9 9	CCTCCTCATGCTGCGGCCAGAATGAAGGTTTC
[PT- floret]_p8064_core_1 00	CTCTGTGGCAGTTGAGGATCCCCGTGGGGGTGC
[PT- floret]_p8064_core_1 01	GCGCCAGATAAAGTGTAAAGCCGGTACCGA
[PT- floret]_p8064_core_1 02	CCGGAAGCGGTGGTTTTTTTTTTTTTTTTTCGTACTA
[PT- floret]_p8064_core_1 03	GCTCGAACAGTGTCACTGCGCGCACTGGTG
[PT- floret]_p8064_core_1 04	TAACGGCAATCAGACGATCCAGCGTTCGTAATCATGG TCACATACGAG
[PT- floret]_p8064_core_1 05	TCCTGTGTTGCCGGTGCCCCCTGCTCAGATGCCT TTTTTGAAGATCGCCTGCCAGT
[PT- floret]_p8064_core_1 06	CTAATGAGGGGGGGGGGGGGGGGGGTTTGTGATTGCC
[PT- floret]_p8064_core_1 07	TGCGCTCGCCAGCTGCATTAATTTGCAGCA
[PT- floret]_p8064_core_1 08	GCAAAATCCCTGGCCCTGAGAGAGGAATCGGC
[PT- floret]_p8064_core_1 09	AGCGGTCGTTTGATGGTGGTTCTCCAGTTT
[PT-	ATCGGAACCCTATATAGGGTTGAGTGTTGTCGAAATCG

floret]_p8064_core_1 10	
[PT- floret]_p8064_core_1 11	GGAACAATCAAAGGGCGAAAAACCGT
[PT- floret]_p8064_core_1 12	TGGTTTCACGCAAATTAACCGTAGAAGAA
[PT- floret]_p8064_core_1 13	CTGTCCAGCTTTGACGAGCACGGCGCT
[PT- floret]_p8064_core_1 14	TTGACAACCACCACCCGCCTATAACGT
[PT- floret]_p8064_core_1 15	CTGCGCGTGGGGAAAGCCGGCGAAACTAA
[PT- floret]_p8064_core_1 16	GGGCGATGGCCCACTACGTGAGGTGCCGTAAAGCCGT GGCGA
[PT- floret]_p8064_core_1 17	GAAAGGACGCTGGCAAGTGTAGGGAGCTAA
[PT- floret]_p8064_core_1 18	TTATAATCCGTTAGAATCAGAGCGCGGTCACG
[PT- floret]_p8064_core_1 19	GCTTTCCTAGTGAGGCCACCGAGTAATATCCA
[PT- floret]_p8064_core_1 20	ACAGGAGCGCCAGAATCCTGAGCAACAGGA
[PT- floret]_p8064_core_1 21	TTCAGAGGTTTCTCCGTGGTGAATTTTTTTCGTCTCG
[PT- floret]_p8064_core_1 22	GTGGTGCCTTTTTTTTAACGACGGCCAGTTTGGGTAA
[PT- floret]_p8064_core_1 23	ATCAACACTCCGTGGGAACAAATCAGGCTG
[PT- floret]_p8064_core_1 24	GGGATGTGAAGCGCCATTCGCCATCGGCGGAT
[PT-	TGACCGTACTGGCCTTCCTGTAGCCCCGGTTG

floret]_p8064_core_1 25	
[PT- floret]_p8064_core_1 26	ATTCGCGTATGGGATAGGTCACGTTGCCGGAA
[PT- floret]_p8064_core_1 27	CGCCAGGCGGCACCGCTTCTGGTGGTGTAG
[PT- floret]_p8064_core_1 28	CAGCTTTCGTTTTCCCAGTCTTTTTTTTTCAGCTTACG GCTCAAATCGT
[PT- floret]_p8064_core_1 29	ATGGGCGCAATAGGAACGCCATGGAAGATT
[PT- floret]_p8064_core_1 30	TAAATTGTCAGCTCATTTTTTAACCATCGTAACCGTGC ATACTCCAGC
[PT- floret]_p8064_core_1 31	CCTGACTTTTTTCGCATACGACGATTTCCAGCGG
[PT- floret]_p8064_core_1 32	TTGAGGGGTAAATTTTTGTTAAATAAACGTTAATT TTTTTAAAGCGGATAAAATCAG
[PT- floret]_p8064_core_1 33	ACCAGGCACTGCAAGGCGATTAAGGCCAAGCT
[PT- floret]_p8064_core_1 34	CGCAACTCTATTACGCCAGCTGACGGATAA
[PT- floret]_p8064_core_1 35	AGATAGACTGGAGCCGCCACGGGAGCGAAAGG
[PT- floret]_p8064_core_1 36	CCTCACCTTACCAGTCCCGGAAGAAACAGC
[PT- floret]_p8064_core_1 37	CGTTCCGGCAAATACGGAAAAAGAGACGCATTTGTGA G
[PT- floret]_p8064_core_1 38	GGATCAATGGGCGGTTGTGTACATCG
[PT- floret]_p8064_core_1 39	TGTTCAGGGAGGTGTCCAGCATCGTCG
[PT-	TCGCTATGCCAACGGCAGCACCAGCGGGG

floret]_p8064_core_1 40	
[PT- floret]_p8064_core_1 41	CCGCAAGAGGCAGCCTCCGGCCAGATTGC
[PT- floret]_p8064_core_1 42	AAAAATCCCGTAAAAAAAGAGTTAAACGATGCTGAG CACATC
[PT- floret]_p8064_core_1 43	CTCATAAGGTGCTGGTCTGGTCATCCGCCG
[PT- floret]_p8064_core_1 44	TTTGCTCGGGCGCTTTCGCACTCAAGCAGCAA
[PT- floret]_p8064_core_1 45	TCATTGCATCATAAACATCCCTTACCTGTGCA
[PT- floret]_p8064_core_1 46	GGCGCGGGGCTGGTAATGGGTACGGCGGGC
[PT- floret]_p8064_core_1 47	GTACGGTGACCTGTTTAGCTATATTTTTCGCAAGGATA
[PT- floret]_p8064_core_1 48	TCTAGCTGTTTTTTTTTTTGTTTTAAATATGTTAGAGCT
[PT- floret]_p8064_core_1 49	GTAATAGGCGGAATCGTCATAAAAAGCGAA
[PT- floret]_p8064_core_1 50	TAAGAGGTTTTTAATTCGAGCTTCATATTCAT
[PT- floret]_p8064_core_1 51	TGAATCCCGCAAAAGAAGTTTTGCAGGTAGAA
[PT- floret]_p8064_core_1 52	AGGCTTTTCCTCAAATGCTTTAAAGACTTCAA
[PT- floret]_p8064_core_1 53	TAATTGCAGAGGAAGCCCGAAACAGTTCAG
[PT- floret]_p8064_core_1 54	AAAGATTATGAATATAATGCTTTTTTTTTCGGAGAGGG TAGCAAATATT
[PT-	AAAACGAACGATAAAAACCAAAATACCACA

floret]_p8064_core_1 55	
[PT- floret]_p8064_core_1 56	TACATAACCCTCGTTTACCAGACGGAATGACCATAAAT CATGCATCAA
[PT- floret]_p8064_core_1 57	GTCTTTACGCAACACTATCATAACGCCAAAAGGTTT TTTTGGAGCCTTTTTTCACG
[PT- floret]_p8064_core_1 58	ATATCGCGCATTTTTGCGGATGGCCAACTAAA
[PT- floret]_p8064_core_1 59	CCAGACCGTACCTTTAATTGCTCATATAAC
[PT- floret]_p8064_core_1 60	GGTCAATATCTGGAAGTTTCATTCCCTTTTGA
[PT- floret]_p8064_core_1 61	AGTTGATACCATTAGATACATTGGCATCAA
[PT- floret]_p8064_core_1 62	TTGCGGGAGAAGTGCGCGAGCTGAAAAGGTTCGCAA AT
[PT- floret]_p8064_core_1 63	TTCTACTACAGGCAAGGCAAAGAATT
[PT- floret]_p8064_core_1 64	GTATAAGCTATTTTTGAGAGATACCGT
[PT- floret]_p8064_core_1 65	AAAATATCAATATGATATTCACTACAAAG
[PT- floret]_p8064_core_1 66	AAATCACCTTTTAGAACCCTCATATACTT
[PT- floret]_p8064_core_1 67	ATTAAGCAATAAAGCCTCAATTATGACCCTGTAATATTT TAA
[PT- floret]_p8064_core_1 68	ATGCAATGGTGAGAAAGGCCGGCTGGAGCA
[PT- floret]_p8064_core_1 69	ATAATCAGGTCATTGCCTGAGAGTAGACAGTC
[PT-	GCTATCAGAAAAGCCCCCAAAAAACACAAAAATA

floret]_p8064_core_1 70	
[PT- floret]_p8064_core_1 71	AACAAGAGTCAATCATATGTACCAGCTTTC
[PT- floret]_p8064_core_1 72	AGGACTAACTAAAACACTCATCTTTTTTGGCTGGCTG A
[PT- floret]_p8064_core_1 73	TGGGCTTGTTTTTTTGCAACGGCTACAGTCACCCTC
[PT- floret]_p8064_core_1 74	TTAAAGGCGCTTGATACCGATAGTTTTCAACA
[PT- floret]_p8064_core_1 _75	AGCAGCGCAGCTTGCTTTCGAGGGAACAAC
[PT- floret]_p8064_core_1 76	CGGTTTATAAAGACAGCATCTTTTTTTTTTTTCAACTTTA ATAATGCAGA
[PT- floret]_p8064_core_1 77	CTTAAACACGCTTTTGCGGGGATCGAGGCTTTG
[PT- floret]_p8064_core_1 78	CAATGACCGGTCGCTGAGGCTTAAGTTTCC
[PT- floret]_p8064_core_1 79	AGAATACAAGACTTTTTCATGAGGGCAGGGAG
[PT- floret]_p8064_core_1 80	ATTAAACCAACCTAAAACGAAAAACAAAGT
[PT- floret]_p8064_core_1 81	AACGGTGTACAGTGATTATACCAAGCGCGAGAGGCAA A
[PT- floret]_p8064_core_1 82	ACAACGGAAATCCGCGACCTGCTCCA
[PT- floret]_p8064_core_1 83	TTCAACTCATTGTGAATTACCTTAAAT
[PT- floret]_p8064_core_1 84	CCTTCACACCAGAACGAGTAGTATGCGAT
[PT-	GACGAGAAATCAAGAGTAATCTTGAGATG

floret]_p8064_core_1	
85	
[PT- floret] p8064 core 1	TTAGCCGGAACGAGGCGCAACTTTGAAAGAGGACAC
86	AAGAAC
[PT-	
floret]_p8064_core_1	CGGATATATTCAGTGAATAAGGGTCAGGAC
87	
[PT-	
floret]_p8064_core_1	AGATTCATCTGGCTCATTATACCACTTGCCCT
88	
[PT-	
floret]_p8064_core_1	TTTAAGAACAGTTGAGATTTAGGAATAGCGAG
89	
[PT-	
floret]_p8064_core_1	GTTGGGAGAACAACATTATTACCAGAGGGG
90	

S5.2.2 Staple strand sequences of tiles for semiregular tilings

Name	Sequence
[SQ]_33344_edge_1	AAATCCGCGACCTGCTCTGATAAATTGTGTCGAG
[SQ]_33344_edge_2	CAACATTATTACAGGTAAACGAACTAACGGAACC
[SQ]_33344_edge_3	GTACCTTTAATTGCTCAGGTCAGGATTAGAGACA
[SQ]_33344_edge_4	TATGACCCTGTAATACGTTGTACCAAAAACATTT
[SQ]_33344_edge_5	AAACCAATCAATAATAATTTACGAGCATGT
[SQ]_33344_edge_6	TAAATTTAATGGTTTAATTTCATCTTCTGA
[SQ]_33344_edge_7	TCGGGAGAAACAATGTAACAGTACCTTTTA
[SQ]_33344_edge_8	AGGAGCACTAACAAGTTATCTAAAATATCT
[SQ]_33344_edge_9	TCGTACCGCCACCCTCAGGTACTCAGGAGGTTTA
[SQ]_33344_edge_10	AAAACAGTGCCCGTATAAGGTCAGTGCCTTGAGT
[SQ]_33344_edge_11	GGCAAGGCCGGAAACGTCGCACCATTACCATTAG
[SQ]_33344_edge_12	GAACGGAATAAGTTTATTGAAACGCAAAGACACC
[SQ]_33344_edge_13	GACGCTATTACGCCAGCTTCGGTGCGGGCCTCTT
[SQ]_33344_edge_14	GGCACAATTCCACAACGAAATTGTTATCCGCT
[SQ]_33344_edge_15	AATACGTGAACCATCACCCAGGGCGATGGCCCAC
[SQ]_33344_edge_16	TCCGCGCTTAATGCGCCGTAACCACCACACCCGC
[TR]_33344_edge_17	ATTGAAGCATTTATTCTTCCTTTTTCAATA
[TR]_33344_edge_18	GCCACCTAAATTGTCACATTTCCCCGAAAA
[TR]_33344_edge_19	ACCGAGATAGGGTTTATAAATCAAAAGAAT
[TR]_33344_edge_20	GGGCGCTGGCAAGTGTAAAGGAGCGGGCGCTAAG
[TR]_33344_edge_21	CGGTGCGGGCCTCTTCTGTTGGGAAGGGCGATGT
[TR]_33344_edge_22	AAAACGACGGCCAGTGCCAGTCACGACGTTGTTT
[TR]_33344_edge_23	TAAAAGTGCTCATCATCCACATAGCAGAACTTTA
[TR]_33344_edge_24	TGAGTACTCAACCAAGGCTTTTCTGTGACTGGTC
[TR]_33344_edge_25	CTTCGGTCCTCCGATCAAAAAGCGGTTAGCTCAG
[TR]_33344_edge_26	ATTTATCAGCAATACACGCTCACCGGCTCC
[TR]_33344_edge_27	TATTTCGTTCATCCCTATCTCAGCGATCTG
[TR]_33344_edge_28	AATTAAAAATGAAGTTCACCTAGATCCTTT
[TR]_33344_edge_29	GGCTGCGGCGAGCGGTCTGCGCTCGGTCGT
[TR]_33344_edge_30	AGGCCGCGTTGCTGGCGCCAGGAACCGTAA
[TR]_33344_edge_31	GCTGTGTGCACGAACCGTTCGCTCCAAGCT
[TR]_33344_edge_32	TTAGCAGAGCGAGGTAGCCACTGGTAACAG

Table S3.36. Edge staples of elongated triangular (3³.4²) DNA origami tiling.

Table S3.37. Edge staples of snub square (3².4.3.4) DNA origami tiling.

Name	Sequence
[SQ_1]_33434_edge_1	GAAGAAGGAGCGGAATTAGAACAAAGAAACCACC
[SQ_1]_33434_edge_2	GGCATCGGGAGAAACAATGTAACAGTACCTTTTA
[SQ_1]_33434_edge_3	AACCTAAATTTAATGGTTTAATTTCATCTTCTGA

[SQ_1]_33434_edge_4	TCGCATTTTCGAGCCAGTTGTAATTTAGGCAGAG
[SQ_1]_33434_edge_5	GAACGGAATAAGTTTATTGAAACGCAAAGACACC
[SQ_1]_33434_edge 6	GGCAAGGCCGGAAACGTCGCACCATTACCATTAG
[SQ_1]_33434_edge 7	AAAACAGTGCCCGTATAAGGTCAGTGCCTTGAGT
[SQ_1]_33434_edge 8	TCGTACCGCCACCCTCAGGTACTCAGGAGGTTTA
[SQ_1]_33434_edge 9	GACCAAATCAACGTAACAACCGGATATTCATTAC
[SQ_1]_33434_edge_10	GGCAACATTATTACAGGTAAACGAACTAACGGAA
[SQ_1]_33434_edge_11	AAGTACCTTTAATTGCTCAGGTCAGGATTAGAGA
[SQ_1]_33434_edge_12	TCAATAACCTGTTTAGCTCATTTCGCAAATGGTC
[SQ_1]_33434_edge_13	GACGCTATTACGCCAGCTTCGGTGCGGGCCTCTT
[SQ_1]_33434_edge_14	GGCACAATTCCACACAACGAAATTGTTATCCGCT
[SQ_1]_33434_edge_15	AATACGTGAACCATCACCCAGGGCGATGGCCCAC
[SQ_1]_33434_edge_16	TCCGCGCTTAATGCGCCGTAACCACCACACCCGC
[SQ_2]_33434_edge_17	ATCCAAATCAACGTAACAACCGGATATTCATTAC
[SQ_2]_33434_edge_18	TACAACATTATTACAGGTAAACGAACTAACGGAA
[SQ_2]_33434_edge_19	ATGTACCTTTAATTGCTCAGGTCAGGATTAGAGA
[SQ_2]_33434_edge_20	AAAATAACCTGTTTAGCTCATTTCGCAAATGGTC
[SQ_2]_33434_edge_21	ATCGCTATTACGCCAGCTTCGGTGCGGGCCTCTT
[SQ_2]_33434_edge_22	TACACAATTCCACAACGAAATTGTTATCCGCT
[SQ_2]_33434_edge_23	ATTACGTGAACCATCACCCAGGGCGATGGCCCAC
[SQ_2]_33434_edge_24	AACGCGCTTAATGCGCCGTAACCACCACACCCGC
[SQ_2]_33434_edge_25	ATAGAAGGAGCGGAATTAGAACAAAGAAACCACC
[SQ_2]_33434_edge_26	TACATCGGGAGAAACAATGTAACAGTACCTTTTA
[SQ_2]_33434_edge_27	ATCCTAAATTTAATGGTTTAATTTCATCTTCTGA
[SQ_2]_33434_edge_28	AAGCATTTTCGAGCCAGTTGTAATTTAGGCAGAG
[SQ_2]_33434_edge_29	ATACGGAATAAGTTTATTGAAACGCAAAGACACC
[SQ_2]_33434_edge_30	TACAAGGCCGGAAACGTCGCACCATTACCATTAG
[SQ_2]_33434_edge_31	ATAACAGTGCCCGTATAAGGTCAGTGCCTTGAGT
[SQ_2]_33434_edge_32	AAGTACCGCCACCCTCAGGTACTCAGGAGGTTTA
[TR]_33434_edge_33	TATTTCGTTCATCCCTATCTCAGCGATCTG
[TR]_33434_edge_34	ATTTATCAGCAATACACGCTCACCGGCTCC
[TR]_33434_edge_35	TGAGTACTCAACCAAGGCTTTTCTGTGACTGGTC
[TR]_33434_edge_36	CTTCGGTCCTCCGATCAAAAAGCGGTTAGCTCAG
[TR]_33434_edge_37	CGGTGCGGGCCTCTTCTGTTGGGAAGGGCG
[TR]_33434_edge_38	GGGCGCTGGCAAGTGTAAAGGAGCGGGCGC
[TR]_33434_edge_39	AGACCGAGATAGGGTTTATAAATCAAAAGA
[TR]_33434_edge_40	GTGCCACCTAAATTGTCACATTTCCCCGAA
[TR]_33434_edge_41	TTAGCAGAGCGAGGTAGCCACTGGTAACAG
[TR]_33434_edge_42	GCTGTGTGCACGAACCGTTCGCTCCAAGCT
[TR]_33434_edge_43	AGGCCGCGTTGCTGGCGCCAGGAACCGTAA
[TR]_33434_edge_44	GGCTGCGGCGAGCGGTCTGCGCTCGGTCGT
Table S3.38. Edge staples of trihexagonal (3.6) ² DNA origami tiling.	
Name	Sequence

[TR]_3636_edge_1	CTGCGGCGAGCGGTCTGCGCTCGGTCGTTC
[TR]_3636_edge_2	GCCGCGTTGCTGGCGCCAGGAACCGTAAAA
[TR]_3636_edge_3	TGTGTGCACGAACCGTTCGCTCCAAGCTGG
[TR]_3636_edge_4	AGCAGAGCGAGGTAGCCACTGGTAACAGGA
[TR] 3636 edge 5	GTGCGGGCCTCTTCTGTTGGGAAGGGCGAT
[TR]_3636_edge_6	GCGCTGGCAAGTGTAAAGGAGCGGGCGCTA
[TR]_3636_edge_7	ACCGAGATAGGGTTTATAAATCAAAAGAAT
[TR]_3636_edge_8	GCCACCTAAATTGTCACATTTCCCCGAAAA
[TR]_3636_edge_9	TATTTCGTTCATCCCTATCTCAGCGATCTG
[TR]_3636_edge_10	ATTTATCAGCAATACACGCTCACCGGCTCC
[TR]_3636_edge_11	TCGGTCCTCCGATCAAAAAGCGGTTAGCTC
[TR]_3636_edge_12	AGTACTCAACCAAGGCTTTTCTGTGACTGG
[TR]_3636_edge_13	TGACGCTCAGTGGAGATCTTTTCTACGG
[TR]_3636_edge_14	AATTAAAAATGAAGTTCACCTAGATCCT
[TR]_3636_edge_15	AAAGTGCTCATCATCCACATAGCAGAAC
[TR]_3636_edge_16	ACCCACTCGTGCACGAGATCCAGTTCGA
[TR]_3636_edge_17	GCAAGCAGCAGATTGCGGTGGTTTTTTT
[TR]_3636_edge_18	GCCAGTTACCTTCGTATCTGCGCTCTGC
[TR]_3636_edge_19	CCAGCTGCATTAATGTCGGGAAACCTGT
[TR]_3636_edge_20	CCTGGGGTGCCTAAGAAGCATAAAGTGT
[TR]_3636_edge_21	CCTGTGTGAAATTGTCATGGTCATAGCT
[TR]_3636_edge_22	AACGACGGCCAGTGCCAGTCACGACGTT
[TR]_3636_edge_23	ATTGAAGCATTTATTCTTCCTTTTTCAA
[TR]_3636_edge_24	ACAGGAAGGCAAAAGTTTCTGGGTGAGC
[HE]_3636_edge_25	TTTAACCTCCGGCTTATCTGAGAGACTACCTTTT
[HE]_3636_edge_26	ACCTAAATTTAATGGTTTAATTTCATCTTCTGGC
[HE]_3636_edge_27	CGACGACAATAAACAAAGTAATTCTGTCCAGAAG
[HE]_3636_edge_28	ATAATCGGCTGTCTTTATGTAGAAACCAATCAGG
[HE]_3636_edge_29	CATCTTTTCATAATCACCTTATTAGCGTTTGCCG
[HE]_3636_edge_30	ACCACCAGAGCCGCCGAGCCGCCACCAGAACCGG
[HE]_3636_edge_31	GTATTAAGAGGCTGAGATTCTGAAAACATGAAAAG
[HE]_3636_edge_32	CCGTACTCAGGAGGTTCGGAATAGGTGTATCAGT
[HE]_3636_edge_33	GGCTCATTATACCAGTTGCGATTTTAAGAACTTG
[HE]_3636_edge_34	ACTAATGCAGATACATAGGAATACCACATTCACT
[HE]_3636_edge_35	ACTATTATAGTCAGAATCAGGTCTTTACCCTGAG
[HE]_3636_edge_36	CAGGTCAGGATTAGAGCGGAAGCAAACTCCAATC
[HE]_3636_edge_37	TAATCGCGCAGAGGCGAAAATACCAAGTTACAAA
[HE]_3636_edge_38	ATAATAAAGAAATTGCGTTTGCACGTAAAACAGA
[HE]_3636_edge_39	CTAATAGATAATACATTTATAGATTAGAGCCGTC
[HE]_3636_edge_40	TTCTCAAATATCAAACCCCATCACCTTGCTGAAC
[HE]_3636_edge_41	TGTTAAATCAGCTCATATTCGCATTAAATT
[HE]_3636_edge_42	AGCATGTCAATCATATCGGTAATCGTAAAA
[HE]_3636_edge_43	ACTTTTGCGGGAGAAGATTATGACCCTGTA

[HE]_3636_edge_44	GTAGTAGCATTAACATATCAATTCTACTAA
[HE]_3636_edge_45	ATTACCTTTTTTAATTTAACAATTTCAT
[HE]_3636_edge_46	AGGAGCGGAATTATAACAAAGAAACCAC
[HE]_3636_edge_47	GATAAAACAGAGGTAACGAACCACCAGC
[HE]_3636_edge_48	ACAACCCGTCGGATATTAAATGTGAGCG
[HE]_3636_edge_49	ATATGATATTCAACACAGTCAAATCACC
[HE]_3636_edge_50	TAGTTTGACCATTATCTGCGAACGAGTA
[HE]_3636_edge_51	TTTCCCTTAGAATCTCGTCGCTATTAAT
[HE]_3636_edge_52	TACCGCGCCCAATATTTCATCGTAGGAA
[HE]_3636_edge_53	GCACCGTAATCAGTATGAAACCATCGAT
[HE]_3636_edge_54	GAACCCATGTACCGGGATAGCAAGCCCA
[HE]_3636_edge_55	TTGCCCTGACGAGATCATTCAGTGAATA
[HE] 3636_edge_56	TGTTTTAAATATGCTAATGCTGTAGCTC

Table S3.39. Edge staples of rhombitrihexagonal (3.4.6.4) DNA origami tiling.

Name	Sequence
[HE]_3464_edge_1	TTTAGTTTGACCATTATCTGCGAACGAGTA
[HE]_3464_edge_2	GTAGTAGCATTAACATATCAATTCTACTAA
[HE]_3464_edge_3	ACTTTTGCGGGAGAAGATTATGACCCTGTA
[HE]_3464_edge_4	AGCATGTCAATCATATCGGTAATCGTAAAA
[HE]_3464_edge_5	TGTTAAATCAGCTCATATTCGCATTAAATT
[HE]_3464_edge_6	TAACAACCCGTCGGATATTAAATGTGAGCG
[HE]_3464_edge_7	GAGAATTACCTTTTTTAATTTAACAATTTCATTT
[HE]_3464_edge_8	TAATCGCGCAGAGGCGAAAATACCAAGTTACAAA
[HE]_3464_edge_9	ATAATAAAGAAATTGCGTTTGCACGTAAAACAGA
[HE]_3464_edge_10	CTAATAGATAATACATTTATAGATTAGAGCCGTC
[HE]_3464_edge_11	TTCTCAAATATCAAACCCCATCACCTTGCTGAAC
[HE]_3464_edge_12	AGAAGATAAAACAGAGGTAACGAACCACCAGCAG
[HE]_3464_edge_13	ATATGATATTCAACACAGTCAAATCACC
[HE]_3464_edge_14	AGGAGCGGAATTATAACAAAGAAACCAC
[HE]_3464_edge_15	TGTTTTAAATATGCTAATGCTGTAGCTCAA
[HE]_3464_edge_16	GGTCAGGATTAGAGCGGAAGCAAACTCCAA
[HE]_3464_edge_17	TATTATAGTCAGAATCAGGTCTTTACCCTG
[HE]_3464_edge_18	TAATGCAGATACATAGGAATACCACATTCA
[HE]_3464_edge_19	CTCATTATACCAGTTGCGATTTTAAGAACT
[HE]_3464_edge_20	TTGCCCTGACGAGATCATTCAGTGAATAAG
[HE]_3464_edge_21	GAACCCATGTACCGGGATAGCAAGCCCAAT
[HE]_3464_edge_22	GTACTCAGGAGGTTCGGAATAGGTGTATCA
[HE]_3464_edge_23	ATTAAGAGGCTGAGATTCTGAAACATGAAA
[HE]_3464_edge_24	CACCAGAGCCGCCGAGCCGCCACCAGAACC
[HE]_3464_edge_25	TCTTTTCATAATCACCTTATTAGCGTTTGC
[HE] 3464_edge_26	GCACCGTAATCAGTATGAAACCATCGATAG

[HE]_3464_edge_27	TACCGCGCCCAATATTTCATCGTAGGAATC
[HE]_3464_edge_28	AATCGGCTGTCTTTATGTAGAAACCAATCA
[HE]_3464_edge_29	ACGACAATAAACAAAGTAATTCTGTCCAGA
[HE]_3464_edge_30	CTAAATTTAATGGTTTAATTTCATCTTCTG
[HE] 3464 edge 31	TAACCTCCGGCTTATCTGAGAGACTACCTT
[HE] 3464 edge 32	TTTCCCTTAGAATCTCGTCGCTATTAATTA
[SQ 1] 3464 edge 33	GACAACAACCATCGGATAGTTGCGCCGA
[SQ_1]_3464_edge_34	AAATCTCCAAAAAAATAATTTTTTCACG
[SQ_1]_3464_edge_35	ATTAACTGAACACCAGCGCATTAGACGG
[SQ_1]_3464_edge_36	TATTTATCCCAATCCAAAATAAACAGCC
[SQ_1]_3464_edge_37	CAAAAACAGGAAGATGATAATCAGAAAA
[SQ_1]_3464_edge_38	CCATCAAAAATAATTTTTAACCAATAGG
[SQ_1]_3464_edge_39	AACAGGAAAAACGCATTACCGCCAGCCA
[SQ_1]_3464_edge_40	TCTGGCCAACAGAGCAGTAATAAAAGGG
[SQ_1]_3464_edge_41	GTCACCCTCAGCAGGGCCGCTTTTGCGG
[SQ_1]_3464_edge_42	GTAATGCCACTACGATTAAACGGGTAAA
[SQ_1]_3464_edge_43	TCACCATCAATATGAGGCCGGAGACAGT
[SQ_1]_3464_edge_44	GCAAACAAGAGAATATTGCCTGAGAGTC
[SQ_1]_3464_edge_45	CAATTTTATCCTGACTATTTTGCACCCA
[SQ_1]_3464_edge_46	AGAAGGCTTATCCGAGCAAGCAAATCAG
[SQ_1]_3464_edge_47	CAGTGCCACGCTGATATTAACACCGCCT
[SQ_1]_3464_edge_48	TCTTTAATGCGCGATTTTTGAATGGCTA
[SQ_1]_3464_edge_49	TATGACCCTGTAATACGTTGTACCAAAAACATGC
[SQ_1]_3464_edge_50	AATAACCTGTTTAGCTCATTTCGCAAATGGTCGG
[SQ_1]_3464_edge_51	GTACCTTTAATTGCTCAGGTCAGGATTAGAGAAC
[SQ_1]_3464_edge_52	CAACATTATTACAGGTAAACGAACTAACGGAAAC
[SQ_1]_3464_edge_53	CCAAATCAACGTAACAACCGGATATTCATTACCA
[SQ_1]_3464_edge_54	AAATCCGCGACCTGCTCTGATAAATTGTGTCGCA
[SQ_1]_3464_edge_55	AAAAGTAAGCAGATAGCGAAGCCCTTTTTAAGAA
[SQ_1]_3464_edge_56	ACGGAATAAGTTTATTGAAACGCAAAGACACCCG
[SQ_1]_3464_edge_57	CAAGGCCGGAAACGTCGCACCATTACCATTAGGG
[SQ_1]_3464_edge_58	AACAGTGCCCGTATAAGGTCAGTGCCTTGAGTAG
[SQ_1]_3464_edge_59	GTACCGCCACCCTCAGGTACTCAGGAGGTTTAGT
[SQ_1]_3464_edge_60	ACGATCTAAAGTTTTGCCTCATAGTTAGCGTATT
[SQ_1]_3464_edge_61	CCGAGTAAAAGAGTCTATAATCAGTGAGGCCATT
[SQ_1]_3464_edge_62	CGCGCTTAATGCGCCGTAACCACCACACCGCGT
[SQ_1]_3464_edge_63	TACGTGAACCATCACCCAGGGCGATGGCCCACAG
[SQ_1]_3464_edge_64	CACAATTCCACACAACGAAATTGTTATCCGCTGG
[SQ_1]_3464_edge_65	CGCTATTACGCCAGCTTCGGTGCGGGCCTCTTCG
[SQ_1]_3464_edge_66	CGCATCGTAACCGTGCCGTTGGTGTAGATGGGAA
[SQ_1]_3464_edge_67	TTAGGAGCACTAACAAGTTATCTAAAATATCTCA
[SQ_1]_3464_edge_68	AGAAGGAGCGGAATTAGAACAAAGAAACCACCCA
[SQ_1]_3464_edge_69	CATCGGGAGAAACAATGTAACAGTACCTTTTAAC
[SQ_1]_3464_edge_70	CCTAAATTTAATGGTTTAATTTCATCTTCTGAAC
----------------------	------------------------------------
[SQ_1]_3464_edge_71	GCATTTTCGAGCCAGTTGTAATTTAGGCAGAGGG
[SQ_1]_3464_edge_72	AGAAACCAATCAATAATAATTTACGAGCATGTGC
[SQ_2]_3464_edge_73	GACAACAACCATCGGATAGTTGCGCCGA
[SQ_2]_3464_edge_74	AAATCTCCAAAAAAATAATTTTTTCACG
[SQ_2]_3464_edge_75	ATTAACTGAACACCAGCGCATTAGACGG
[SQ_2]_3464_edge_76	TATTTATCCCAATCCAAAATAAACAGCC
[SQ_2]_3464_edge_77	CAAAAACAGGAAGATGATAATCAGAAAA
[SQ_2]_3464_edge_78	CCATCAAAAATAATTTTTAACCAATAGG
[SQ_2]_3464_edge_79	AACAGGAAAAACGCATTACCGCCAGCCA
[SQ_2]_3464_edge_80	TCTGGCCAACAGAGCAGTAATAAAAGGG
[SQ_2]_3464_edge_81	GTCACCCTCAGCAGGGCCGCTTTTGCGG
[SQ_2]_3464_edge_82	GTAATGCCACTACGATTAAACGGGTAAA
[SQ_2]_3464_edge_83	TCACCATCAATATGAGGCCGGAGACAGT
[SQ_2]_3464_edge_84	GCAAACAAGAGAATATTGCCTGAGAGTC
[SQ_2]_3464_edge_85	CAATTTTATCCTGACTATTTTGCACCCA
[SQ_2]_3464_edge_86	AGAAGGCTTATCCGAGCAAGCAAATCAG
[SQ_2]_3464_edge_87	CAGTGCCACGCTGATATTAACACCGCCT
[SQ_2]_3464_edge_88	TCTTTAATGCGCGATTTTTGAATGGCTA
[SQ_2]_3464_edge_89	ACGATCTAAAGTTTTGCCTCATAGTTAGCGTACA
[SQ_2]_3464_edge_90	GTACCGCCACCCTCAGGTACTCAGGAGGTTTACA
[SQ_2]_3464_edge_91	AACAGTGCCCGTATAAGGTCAGTGCCTTGAGTAC
[SQ_2]_3464_edge_92	CAAGGCCGGAAACGTCGCACCATTACCATTAGGT
[SQ_2]_3464_edge_93	ACGGAATAAGTTTATTGAAACGCAAAGACACCCC
[SQ_2]_3464_edge_94	AAAAGTAAGCAGATAGCGAAGCCCTTTTTAAGAG
[SQ_2]_3464_edge_95	TATGACCCTGTAATACGTTGTACCAAAAACATTG
[SQ_2]_3464_edge_96	AATAACCTGTTTAGCTCATTTCGCAAATGGTCGG
[SQ_2]_3464_edge_97	GTACCTTTAATTGCTCAGGTCAGGATTAGAGAAG
[SQ_2]_3464_edge_98	CAACATTATTACAGGTAAACGAACTAACGGAAGC
[SQ_2]_3464_edge_99	CCAAATCAACGTAACAACCGGATATTCATTACTT
[SQ_2]_3464_edge_100	AAATCCGCGACCTGCTCTGATAAATTGTGTCGAA
[SQ_2]_3464_edge_101	CGCATCGTAACCGTGCCGTTGGTGTAGATGGGAG
[SQ_2]_3464_edge_102	CGCTATTACGCCAGCTTCGGTGCGGGCCTCTTCC
[SQ_2]_3464_edge_103	CACAATTCCACACAACGAAATTGTTATCCGCTGT
[SQ_2]_3464_edge_104	TACGTGAACCATCACCCAGGGCGATGGCCCACAC
[SQ_2]_3464_edge_105	CGCGCTTAATGCGCCGTAACCACCACACCGCCA
[SQ_2]_3464_edge_106	CCGAGTAAAAGAGTCTATAATCAGTGAGGCCACA
[SQ_2]_3464_edge_107	TTAGGAGCACTAACAAGTTATCTAAAATATCTAA
[SQ_2]_3464_edge_108	AGAAGGAGCGGAATTAGAACAAAGAAACCACCTT
[SQ_2]_3464_edge_109	CATCGGGAGAAACAATGTAACAGTACCTTTTAGC
[SQ_2]_3464_edge_110	CCTAAATTTAATGGTTTAATTTCATCTTCTGAAG
[SQ_2]_3464_edge_111	GCATTTTCGAGCCAGTTGTAATTTAGGCAGAGGG
[SQ_2]_3464_edge_112	AGAAACCAATCAATAATAATTACGAGCATGTTG

[SQ_3]_3464_edge_113	GACAACAACCATCGGATAGTTGCGCCGA
[SQ_3]_3464_edge_114	AAATCTCCAAAAAAATAATTTTTTCACG
[SQ_3]_3464_edge_115	ATTAACTGAACACCAGCGCATTAGACGG
[SQ 3] 3464 edge 116	TATTTATCCCAATCCAAAATAAACAGCC
[SQ_3]_3464_edge_117	CAAAAACAGGAAGATGATAATCAGAAAA
[SQ_3]_3464_edge_118	CCATCAAAAATAATTTTTTAACCAATAGG
[SQ_3]_3464_edge_119	AACAGGAAAAACGCATTACCGCCAGCCA
[SQ_3]_3464_edge_120	TCTGGCCAACAGAGCAGTAATAAAAGGG
[SQ_3]_3464_edge_121	GTCACCCTCAGCAGGGCCGCTTTTGCGG
[SQ_3]_3464_edge_122	GTAATGCCACTACGATTAAACGGGTAAA
[SQ_3]_3464_edge_123	TCACCATCAATATGAGGCCGGAGACAGT
[SQ_3]_3464_edge_124	GCAAACAAGAGAATATTGCCTGAGAGTC
[SQ_3]_3464_edge_125	CAATTTTATCCTGACTATTTTGCACCCA
[SQ_3]_3464_edge_126	AGAAGGCTTATCCGAGCAAGCAAATCAG
[SQ_3]_3464_edge_127	CAGTGCCACGCTGATATTAACACCGCCT
[SQ_3]_3464_edge_128	TCTTTAATGCGCGATTTTTGAATGGCTA
[SQ_3]_3464_edge_129	AGAAACCAATCAATAATAATTTACGAGCATGTAT
[SQ_3]_3464_edge_130	GCATTTTCGAGCCAGTTGTAATTTAGGCAGAGTT
[SQ_3]_3464_edge_131	CCTAAATTTAATGGTTTAATTTCATCTTCTGAAC
[SQ_3]_3464_edge_132	CATCGGGAGAAACAATGTAACAGTACCTTTTACG
[SQ_3]_3464_edge_133	AGAAGGAGCGGAATTAGAACAAAGAAACCACCAT
[SQ_3]_3464_edge_134	TTAGGAGCACTAACAAGTTATCTAAAATATCTAT
[SQ_3]_3464_edge_135	CGCATCGTAACCGTGCCGTTGGTGTAGATGGGTA
[SQ_3]_3464_edge_136	CGCTATTACGCCAGCTTCGGTGCGGGCCTCTTTG
[SQ_3]_3464_edge_137	CACAATTCCACACAACGAAATTGTTATCCGCTCT
[SQ_3]_3464_edge_138	TACGTGAACCATCACCCAGGGCGATGGCCCACAG
[SQ_3]_3464_edge_139	CGCGCTTAATGCGCCGTAACCACCACACCCGCTC
[SQ_3]_3464_edge_140	CCGAGTAAAAGAGTCTATAATCAGTGAGGCCATA
[SQ_3]_3464_edge_141	TATGACCCTGTAATACGTTGTACCAAAAACATAT
[SQ_3]_3464_edge_142	AATAACCTGTTTAGCTCATTTCGCAAATGGTCTT
[SQ_3]_3464_edge_143	GTACCTTTAATTGCTCAGGTCAGGATTAGAGAAC
[SQ_3]_3464_edge_144	CAACATTATTACAGGTAAACGAACTAACGGAACG
[SQ_3]_3464_edge_145	CCAAATCAACGTAACAACCGGATATTCATTACAT
[SQ_3]_3464_edge_146	AAATCCGCGACCTGCTCTGATAAATTGTGTCGAT
[SQ_3]_3464_edge_147	ACGATCTAAAGTTTTGCCTCATAGTTAGCGTATA
[SQ_3]_3464_edge_148	GTACCGCCACCCTCAGGTACTCAGGAGGTTTATC
[SQ_3]_3464_edge_149	AACAGTGCCCGTATAAGGTCAGTGCCTTGAGTAG
[SQ_3]_3464_edge_150	CAAGGCCGGAAACGTCGCACCATTACCATTAGCT
[SQ_3]_3464_edge_151	ACGGAATAAGTTTATTGAAACGCAAAGACACCTG
[SQ_3]_3464_edge_152	AAAAGTAAGCAGATAGCGAAGCCCTTTTTAAGTA
[TR]_3464_edge_153	CCTGGGGTGCCTAAGAAGCATAAAGTGT
[TR]_3464_edge_154	GCAAGCAGCAGATTGCGGTGGTTTTTTT
[TR]_3464_edge_155	TGACGCTCAGTGGAGATCTTTTCTACGG

[TR]_3464_edge_156	ACCCACTCGTGCACGAGATCCAGTTCGA
[TR]_3464_edge_157	ACAGGAAGGCAAAAGTTTCTGGGTGAGC
[TR]_3464_edge_158	CCTGTGTGAAATTGTCATGGTCATAGCT
[TR]_3464_edge_159	AAAGTGCTCATCATCCACATAGCAGAACTT
[TR]_3464_edge_160	AGTACTCAACCAAGGCTTTTCTGTGACTGG
[TR]_3464_edge_161	TCGGTCCTCCGATCAAAAAGCGGTTAGCTC
[TR]_3464_edge_162	ATTTATCAGCAATACACGCTCACCGGCTCC
[TR]_3464_edge_163	TATTTCGTTCATCCCTATCTCAGCGATCTG
[TR]_3464_edge_164	AATTAAAAATGAAGTTCACCTAGATCCTTT
[TR]_3464_edge_165	GCCAGTTACCTTCGTATCTGCGCTCTGCTG
[TR]_3464_edge_166	AGCAGAGCGAGGTAGCCACTGGTAACAGGA
[TR]_3464_edge_167	TGTGTGCACGAACCGTTCGCTCCAAGCTGG
[TR]_3464_edge_168	GCCGCGTTGCTGGCGCCAGGAACCGTAAAA
[TR]_3464_edge_169	CTGCGGCGAGCGGTCTGCGCTCGGTCGTTC
[TR]_3464_edge_170	CCAGCTGCATTAATGTCGGGAAACCTGTCG
[TR]_3464_edge_171	AACGACGGCCAGTGCCAGTCACGACGTTGT
[TR]_3464_edge_172	GTGCGGGCCTCTTCTGTTGGGAAGGGCGAT
[TR]_3464_edge_173	GCGCTGGCAAGTGTAAAGGAGCGGGCGCTA
[TR]_3464_edge_174	ACCGAGATAGGGTTTATAAATCAAAAGAAT
[TR]_3464_edge_175	GCCACCTAAATTGTCACATTTCCCCGAAAA
[TR]_3464_edge_176	ATTGAAGCATTTATTCTTCCTTTTTCAATA

Table S3.40. Edge staples of 3-isohedral pentagonal DNA origami tiling.

Name	Sequence
[PT-floret] 3-	CTTAGAAGGCTTATCCGGGCAAGCAAATCAGA
isohedral_edge_1	ТА
[PT-floret]_3-	CCGTTGCTATTTTGCACCCCTTAAATCAAGATT
isohedral_edge_2	А
[PT-floret]_3-	AAATCCCAATCCAAATAAAAACAGCCATATTATT
isohedral_edge_3	Т
[PT-floret]_3-	ACAAGTCAGAGGGTAATTCTGAACACCCTGA
isohedral_edge_4	ACA
[PT-floret]_3-	TAAAAGTTACCAGAAGGAAAGCAGATAGCCG
isohedral_edge_5	AAC
[PT-floret]_3-	AATTATTTTGTCACAATCACACCACGGAATAA
isohedral_edge_6	GT
[PT-floret]_3-	TGACCATTACCATTAGCACAAAATCACCAGTA
isohedral_edge_7	GC
[PT-floret]_3-	TAGCGTCATACATGGCTTTTTACCGTTCCAGTA
isohedral_edge_8	А
[PT-floret]_3-	AGTATAGCCCGGAATAGGAGAGGGTTGATATA
isohedral_edge_9	AG
[PT-floret]_3-	ACGAATTTTCTGTATGGGCCAGACGTTAGTAA
isohedral_edge_10	AT

[PT-floret]_3-	TTGCATAACCGATATATTAACAACCATCGCCCA
isohedral_edge_11	С
[PT-floret]_3-	AAGCCACTACGAAGGCACGGGTAAAATACGT
isohedral_edge_12	AAT
[PT-floret]_3-	ATCTGATAAATTGTGTCGAGATTTGTATCATCG
isohedral_edge_13	С
[PT-floret]_3-	
isohedral_edge_14	Стеблокискибеликиссиноткессек
[PT-floret]_3-	
isohedral_edge_15	
[PT-floret]_3-	<u>GGTA A A GTA ΑΤΤΟΤGΤΤΑ Α Α GTA CCGA C A A</u>
isohedral_edge_16	
[PT-floret]_3-	
isohedral_edge_17	
[PT-floret]_3-	<u> </u>
isohedral_edge_18	
[PT-floret]_3-	GACGCTGAGAAGAGTCCGATAGCTTAGATT
isohedral_edge_19	
[PT-floret]_3-	ATGAAACAAACATCAATGAGCAAAAGAAGA
isohedral_edge_20	
[PT-floret]_3-	CAAACAATTCGACAACGAAGTATTAGACTT
isohedral_edge_21	
[PT-floret]_3-	TATTAACACCGCCTGCGAGGTGAGGCGGTC
isohedral_edge_22	
[PT-floret]_3-	ATTTTGACGCTCAATCTCATGGAAATACCT
1sohedral_edge_23	
[PT-floret]_3-	TTAGACAGGAACGGTAGCCGATTAAAGGGA
isohedral_edge_24	
[PI-floret]_3-	GGAGCGGGCGCTAGGGAGGGAAGAAAGCGA
1sohedral_edge_25	
[PI-floret]_3-	CAAGTTTTTTGGGGTCGAACCATCACCCAA
1sohedral_edge_26	
$[P1-floret]_3-$	AACCGAACTGACCAGACGGTCAATCATA
Isohedral_edge_2/	
$[P1-floret]_3-$	
Isohedral_edge_28	
[P1-floret]_3-	
Isohedral_edge_29	
[P1-floret]_3-	
Isohedral edge 30	
[r1-Iloret]_3-	
Isoneural edge 51	A
[[r 1-110ret]_3-	ATCCAATAAATCATAATAGTAGTAGCAT
Isonedral edge 32	
[[r1-floret]_3-	UTIVIAUCAAAAAUVAVUAIAAAUUTAA

isohedral_edge_33	
[PT-floret]_3-	
isohedral_edge_34	
[PT-floret]_3-	
isohedral_edge_35	CUTAAACTAOCATOAATCOATOAACOOTA
[PT-floret]_3-	TGCGGGCCTCTTCGGTTGGGAAGGGCGATC
isohedral_edge_36	
[PT-floret]_3-	GTACAGCGCCATGTGGAAACAATCGGCGAA
isohedral_edge_37	
[PT-floret]_3-	TTGCCGCCAGCAGTACTTAAATTTCTGC
isohedral_edge_38	
[PT-floret]_3-	GTGATGAAGGGTAACCGCACAGGCGGCC
isohedral_edge_39	
[PT-floret]_3-	TAGAACGTCAGCGTCGGAACGTGCCGGACT
isohedral_edge_40	
[PT-floret]_3-	CACTGTTGCCCTGCTTGCGGTATGAGCCGG
isohedral_edge_41	
[P1-floret]_3-	GGGAAACCTGTCGTACTGCCCGCTTTCCAG
Isohedral_edge_42	
[PI-floret]_3-	CAGGCGAAAATCCTCACGCTGGTTTGCCCC
isohedral_edge_43	
[PI-floret]_3-	CGTGGACTCCAACGGAGTCCACTATTAA
Isohedral_edge_44	
[PI-Cairo]_3-	AAAI IAUGAGGCAIAGIACAIAAUGCCAAAAG
Isonedral_edge_43	
[PI-Califo]_5-	AGAATGTTIAGACTGGAAGAGGGGGGTAATA
ISOliedial_edge_40	
[FI-Callo]_5-	AUUAI IUCAICAAAAAUAAUICAUAAUCAAA
ISOlicular_edge_47	
[FI-Callo]_5-	T
ISolicular_edge_46	Ι Α G A A C ATCCA ΑΤΑ Α ΑΤC ΑΤΑ ΑΤΑ GTA GTA GC AT
[FI-Call0]_5- isohadral adga 40	T
[PT Cairo] 3	
isohedral edge 50	
[PT Cairo] 3	Α GCTA ΑΤΑΤΤΤΤΩΤΤΑ Α Α ΑΤΤΤΑ Α ΑΤΤΩΤΑ Α ΑΟG
[FI-Callo]_5- isohadral adga 51	T
[DT Coiro] 3	
[FI-Callo]_5-	CG
[DT Cairo] 3	
isohedral edge 53	TT
[DT Coiro] 2	
[FI-Call0]_3-	CGAACCACCAGCAGAACATTAAAAATACCG
[DT Coiro] 2	
[[r]-Callo]_3-	AACCCTTCTGACCTGATGGCCAACAGAGAT
isoneurai_euge_33	

[PT-Cairo]_3-	AACAATATTACCGCCATGCTGGTAATATCC
isohedral_edge_56	
[PT-Cairo]_3-	TTTAGACAGGAACGGTGGCCGATTAAAGGG
Isohedral_edge_5/	
[PT-Cairo]_3-	CCGGCGAACGTGGCGAAGCTTGACGGGGAA
Isohedral_edge_58	
[PI-Cairo]_3-	CGGCAAAATCCCTTATATGGTGGTTCCGAA
INT Coircel 2	
[PI-Callo]_5- isohedral edge 60	TCACTGCCCGCTTTCCATTAATTGCGTTGC
[PT-Cairo] 3-	
isohedral edge 61	CAGGTCGACTCTAGAGCAAGCTTGCATGCC
[PT-Cairo] 3-	
isohedral edge 62	TCTTCGCTATTACGCCGCGATCGGTGCGGG
[PT-Cairo] 3-	
isohedral edge 63	AGATGGTTTAATTTAGTAGTAAATTGGG
[PT-Cairo] 3-	ACAGACCAGGCGCATAGACAGATGAACGGTG
isohedral edge 64	TAT
[PT-Cairo] 3-	TTGACCCCCAGCGATTACTAAAACACTCATCT
isohedral edge 65	CA
[PT-Cairo] 3-	GATTTTGCTAAACAACTGAATTTTCTGTATGGA
isohedral edge 66	Α
[PT-Cairo] 3-	GTTTAGTACCGCCACCTCACCGTACTCAGGAG
isohedral_edge_67	ТА
[PT-Cairo]_3-	ТСССССТСССТАТСССССТАТА А АСАС
isohedral_edge_68	IOCCCCTOCCTATOCCCOTATAAACAO
[PT-Cairo]_3-	GGAGGTTGAGGCAGCCCCCCCCCAGCATT
isohedral_edge_69	UDAUUT TUAUUCAUCCUCCUCCAUCATT
[PT-Cairo]_3-	CGGAACCAGAGCCACCTCATAATCAAAATCAC
isohedral_edge_70	GG
[PT-Cairo]_3-	GCACCATTACCATTAGAGCAAAATCACCAGTA
isohedral_edge_71	AT
[PT-Cairo]_3-	CGCTAATATCAGAGAGTCAGAGGGTAATTGAG
isohedral_edge_72	GG
[PT-Cairo]_3-	TGCCAGTTACAAAATATTTCCAGAGCCTAATTA
isohedral_edge_73	C
[PT-Cairo]_3-	AACCTCCCGACTTGACGCGAGGCGTTTT
isohedral_edge_74	
[PT-Cairo]_3-	TACGAGCATGTAGATAATATCCCATCCT
isohedral edge 75	
[PT-Cairo]_3-	
isohedral edge 76	
[PT-Cairo]_3-	GAGAAAACTTTTTCTCGCAAGACAAAGAAC
isohedral edge 77	
[PT-Cairo]_3-	GTTTAACGTCAGATAATTGCGTAGATTTTC

isohedral_edge_78	
[PT-Cairo]_3-	
isohedral_edge_79	CAAAGAAACCACCACATIAICATITIGCOO
[PT-Cairo]_3-	
isohedral_edge_80	ACTAACAACTAATATAAAATATCTTTAO
[PT-prism]_3-	
isohedral_edge_81	ACAOAAAIAAAOAAAAAIIAIIIAIIIIOCACO
[PT-prism]_3-	TGAAACAAACATCAAGGAGCAAAAGAAGATG
isohedral_edge_82	ACA
[PT-prism]_3-	ACCTTTTTAACCTCCGATAGGTCTGAGAGACT
isohedral_edge_83	GC
[PT-prism]_3-	GAACAAGAAAAATAATACAATAGATAAGTCCT
isohedral_edge_84	AG
[PT-prism]_3-	ATATAGAAGGCTTATCATAGCAAGCAAATCAG
isohedral_edge_85	AA
[PT-prism]_3-	
isohedral_edge_86	
[PT-prism]_3-	
isohedral_edge_87	AATTTAAAAOTTTCTTTOCCCOAACOT
[PT-prism]_3-	CTTTAGGAGCACTAACAGGTTATCTAAAATATT
isohedral_edge_88	G
[PT-prism]_3-	ACAGAGGTGAGGCGGTACCAGCAGAAGATAA
isohedral_edge_89	AGT
[PT-prism]_3-	TTAGACAGGAACGGTAGCCGATTAAAGGGATT
isohedral_edge_90	TC
[PT-prism]_3-	GGAGCGGGCGCTAGGGAGGGAAGAAAGCGA
isohedral_edge_91	AAAG
[PT-prism]_3-	
isohedral_edge_92	AUTITITOOOOTCOARCEATCACCEAA
[PT-prism]_3-	
isohedral_edge_93	
[PT-prism]_3-	CAGGCGAAAATCCTCACGCTGGTTTGCCCC
isohedral_edge_94	CAUCUAAAAACCTEACUCTUUTTUEECE
[PT-prism]_3-	GGGAAACCTGTCGTACTGCCCGCTTTCCAG
isohedral_edge_95	OUDAAACCTUTCUTACTUCCCUCTTTECAU
[PT-prism]_3-	CAGTTTGAGGGGACTCGTAACCGTGCATCT
isohedral_edge_96	
[PT-prism]_3-	
isohedral_edge_97	
[PT-prism]_3-	
isohedral_edge_98	
[PT-prism]_3-	ΔGΔGTΔΔΤCTTGΔCGCTGGCTGΔCCTTC
isohedral_edge_99	
[PT-prism]_3-	
isohedral_edge_100	IACCITATOCOALIACTITAATCALIOTOA

[PT-prism]_3-	TAGTAAGAGCAACAAAAAGGAATTACGAGG
1sohedral_edge_101	
[PT-prism]_3-	ATATGCAACTAAAGTAGCTCAACATGTTTT
isohedral_edge_102	
[PT-prism]_3-	ΑGCA ΑΤΑ Α ΑGCCTCA Α ΑGA ΑΤΤΑ GCA Α Α ΑΤ
isohedral_edge_103	
[PT-prism]_3-	GGCCGGAGACAGTCATTCAAAAGGGTGA
isohedral_edge_104	OUCCOURDACAUTCAI TCAAAAOOOTOA
[PT-prism]_3-	CATCAGAGAGATAACCCATAATTGAGCGCTAA
isohedral_edge_105	ТА
[PT-prism]_3-	CTTACCAGAAGGAAACCGGATAGCCGAACAA
isohedral_edge_106	AGT
[PT-prism]_3-	GAAAGTTTATTTTGTCACAAAGACACCACGGA
isohedral_edge_107	AT
[PT-prism] 3-	CAGCACCATTACCATTAGAGCAAAATCACCAG
isohedral_edge_108	TA
[PT-prism]_3-	CCGCCGCCACCCTCAGAAAACCGCCTCCCTCA
isohedral_edge_109	GA
[PT-prism]_3-	
isohedral_edge_110	GGGGTCAGIGCCIIGAGIIAAIAAGIIIIAAC
[PT-prism] 3-	
isohedral_edge_111	GCGATIAIACCAAGCGICAICIIIGACCCC
[PT-prism] 3-	
isohedral edge 112	AAAGACIIIIICAIGAAGAGGCIIIGAGGA
[PT-prism] 3-	
isohedral edge 113	CAAIGACAACAACCAICCGAIAGIIGCGCC
[PT-prism] 3-	
isohedral edge 114	ACTITICAACAGTTICAGGGATTITIGCTAAA
[PT-prism] 3-	TOACAACCCCCACCCTCTCACAACCCCCCAC
isohedral_edge_115	

Table S3.41. Edge staples of 12-fold quasicrystal DNA origami tiling.

[SQ]_p8064_edge_1	CAACCCTAAAGTAAAACGTGCCGAACTTTAG
	GGTTGGCGGGCGCTAGGGCGCGAAGAAA
[SQ]_p8064_edge_2	TCCGTTGCTCGGAAAAACTGTGCGCCGAGC
	AACGGAGTCAAAGGGCGAAAAAGAACGTG
[SQ]_p8064_edge_3	GCTACTTTCCCTAAAACCTTCCAGAGGGAA
	AGTAGCTGAGACGGGCAACAGCTTTTTCT
[SQ]_p8064_edge_4	GCTACGTCATGCAAAAGACCTGGCGCA
	TGACGTAGCCATGGTCATAGCTGTTAGCTCGA
[SQ]_p8064_edge_5	CCGTTTTTTCTATACCTCCATAAAAGC
	CAGGTCATGGAGGTATAG
[SQ]_p8064_edge_6	TACAGCGCCGGCCCGTTGCCGAAAAC
	TGGAAGGCGGCAACGGGCC

[SQ]_p8064_edge_7	CCATTCAGGAAGGCCTAAGCTAAAACG
	CACAGTAGCTTAGGCCTT
[SQ]_p8064_edge_8	ATTCTCCGTGTTAGTATTAAGAAAATCG
	GCACGCTTAATACTAAC
[SQ]_p8064_edge_9	GCGAAAGGAACGGGTTTTGCGAAAAAG
	CGAGGACGCAAAACCCGT
[SO] p8064 edge 10	GACTCCAACCCACCAATGCTAAAAAGA
	CGTGCTTAGCATTGGTGG
[SO] p8064 edge 11	TTTCACCAGGGTGGAGGCAATAAAAGT
[bQ]_p000+_cuge_11	CGCAGAATTGCCTCCACC
[SO] p8064 edge 12	ATTCGTAATGCTACTTTGTACAAAACAC
[bQ]_pooo1_ouge_12	ACGTGGTACAAAGTAGC
[SO] p8064 edge 13	TGGATCACCCCCAAAACACGTGTGGGGGG
[bQ]_poor_cuge_15	GTGATCCACGTCTCGTCGCTGGCAACGCGGT
[SO] p8064 edge 14	GAGGGCCTGACTAAAATCTGCGACAGTC
[5 4]_poos [_0080_1]	AGGCCCTCATGTTTACCAGTCCCGCGAAACG
[SO] p8064 edge 15	AATCTCGAAATTAAAAAGCACGTCAATT
[~ C]_p ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	TCGAGATTCTGCGCAACTGTTGGGCCATTCG
[SO] p8064 edge 16	TATTTAAGCATCAAAATCCTCGCTGATG
	CTTAAATAGGGAACAAACGGCGGACCGTCGG
[SQ]_p8064_edge_17	CTCGTCATAAACATTGGGTAAAGGTTTC
[SO] p8064 edge 18	TCAGATAATTACCGCGCCCAATAGTTAG
[5 4]_poos [_0080_10	TATTAAGAAAATCGGCACGCTTAATACTAAC
[SO] p8064 edge 19	AAACAGCGAGCCTAATTTGCCAGAAGG
[~ C]_p	CCTAAGCTAAAACGCACAGTAGCTTAGGCCTT
[SO] p8064 edge 20	GCAAGAAAATTGAGTTAAGCCCAGGCC
	CGTTGCCGAAAACTGGAAGGCGGCAACGGGCC
[SO] p8064 edge 21	
	CCTCCATAAAAGCCAGGTCATGGAGGTATAG
[SO] p8064 edge 22	GCTACGTCATGCAAAAGACCTGGCGCAT
r~ <1_P000 '_0080_22	GACGTAGCGTCTCTGAA
[SQ] p8064 edge 23	GCTACTTTCCCTAAAACCTTCCAGAGGG
[SQ]_p8064_edge_24	
[SQ]_p8064_edge_25	
[SO] p8064 edge 26	
[SQ] p8064 edge 27	
[SO] p8064 edge 28	
[SQ]_p8064_edge_29	IGGAICACCCCCAAAACACGTGTGGG
	GGGIGATCCATGICACAAT

[SQ]_p8064_edge_30	TTTACCGCAGAATGGAAAGCGCAGCT
	ACTTTGTACAAAACACACGTGGTACAAAGTAGC
[SQ]_p8064_edge_31	AAGTATATAAGTGCCGTCGAGAGGGT
	GGAGGCAATAAAAGTCGCAGAATTGCCTCCACC
[SQ]_p8064_edge_32	AACGATCCACAGACAGCCCTCATCCA
	CCAATGCTAAAAAGACGTGCTTAGCATTGGTGG
	GTATCGGAAGGCTCCAAAAGGAGACG
[SQ]_pouo4_euge_ss	GGTTTTGCGAAAAAGCGAGGACGCAAAACCCGT
[SQ]_p8064_edge_34	CGCGTTTTCATCGGTTTAGCGTCAGACT
[SO] p2064 adap 25	AAGGGATCGGGAGCTAAACAGGAGTT
[SQ]_po004_euge_55	AGTATTAAGAAAATCGGCACGCTTAATACTAAC
[SO] = 2064 ad a = 26	AACAATATATCGGCCTTGCTGGTAAGG
[SQ]_po004_euge_50	CCTAAGCTAAAACGCACAGTAGCTTAGGCCTT
[SO] = 2064 ad a = 27	CTTTAATACAATATTTTTGAATGGGCC
[SQ]_pouo4_euge_s7	CGTTGCCGAAAACTGGAAGGCGGCAACGGGCC
[SO] = 1000 m	ATCTTTAGGAATTGAGGAAGGTTCTAT
[SQ]_po004_euge_30	ACCTCCATAAAAGCCAGGTCATGGAGGTATAG
[SO] = p8064 adga 30	GCTACGTCATGCAAAAGACCTGGCGCA
[SQ]_poud4_euge_39	TGACGTAGCTTTTTTAAT
[SO] = p8064 odgs 40	GCTACTTTCCCTAAAACCTTCCAGAGG
[SQ]_po004_euge_40	GAAAGTAGCAAAGAACGC
[SO] = 9064 ad aa = 41	TCCGTTGCTCGGAAAAACTGTGCGCCG
[SQ]_po004_euge_41	AGCAACGGAAATCGCCAT
[SO] = 2064 ad aa = 42	CAACCCTAAAGTAAAACGTGCCGAACT
[SQ]_po004_euge_42	TTAGGGTTGTAATATCCC
[SO] = p8064 = dga = 43	TATTTAAGCATCAAAATCCTCGCTGAT
[SQ]_pooo4_cuge_45	GCTTAAATAGGCCGATTA
[10] p8064 edge 44	AATCTCGAAATTAAAAAGCACGTCAAT
[bQ]_pooo+_cugc_++	TTCGAGATTAATATCCAG
[SO] p8064 edge 45	GAGGGCCTGACTAAAATCTGCGACAGT
[SQ]_povo4_edge_45	CAGGCCCTCGCTATTAGT
[SO] n8064 edge 46	TGGATCACCCCCAAAACACGTGTGGGG
[vV]_hono+_ense_40	GGTGATCCAATCTAAAAT
[SO] p8064 edge 47	GGAAACATTTCATTTGAATTACCGCTA
[bQ]_pooo1_cuge_17	CTTTGTACAAAACACACGTGGTACAAAGTAGC
[SO] p8064 edge 48	GAGAAAAAATCCAATCGCAAGACGGT
[5Q]_pooo1_ougo_10	GGAGGCAATAAAAGTCGCAGAATTGCCTCCACC
[SO] n806/ edge /0	ATTTAACGTAGGGCTTAATTGAGCCAC
[5 Q]_poor [_0050_15	CAATGCTAAAAAGACGTGCTTAGCATTGGTGG
[SO] p8064 edge 50	ATCCTAATCCTGAACAAGAAAAAACGG
[3V]_hoon+_enge_30	GTTTTGCGAAAAAGCGAGGACGCAAAACCCGT
[SQ]_p8064_edge_51	GAAGGGTTAGAACCTTATACTTCTGAAT
[SO] n8064 edge 52	CAACCCTAAAGTAAAACGTGCCGAACTT
	TAGGGTTGCGTTAATAT
[SQ]_p8064_edge_53	TCCGTTGCTCGGAAAAACTGTGCGCCGA

	GCAACGGAGGAGAGGGT
[CO] = 2064 = de = 54	GCTACTTTCCCTAAAACCTTCCAGAGGG
[SQ]_p8064_edge_54	AAAGTAGCTAAATCGGT
[CO] = 2000 - 1 - 55	GCTACGTCATGCAAAAGACCTGGCGCAT
[SQ]_p8064_edge_55	GACGTAGCGTACGGTGT
[00] = 00(4 = de = 5(CATCAGTCAACATTATTACAGGTCTATAC
[SQ]_p8064_edge_56	CTCCATAAAAGCCAGGTCATGGAGGTATAG
[CO] = 2000 - 1 - 57	GAACCGGCCTTCATCAAGAGTAAGGCCC
[SQ]_p8064_edge_57	GTTGCCGAAAACTGGAAGGCGGCAACGGGCC
[CO] = 2064 adap 59	TATACCAACACTCATCTTTGACCAAGGCC
[SQ]_p8064_edge_38	TAAGCTAAAACGCACAGTAGCTTAGGCCTT
[SO] = 0064 adap 50	CTCAGCAAGGCCGCTTTTGCGGGGGTTAGT
[SQ]_p8004_edge_39	ATTAAGAAAATCGGCACGCTTAATACTAAC
$[\mathbf{SO}] = \mathbf{m}^{\mathbf{SO}} \mathbf{M}^{\mathbf{SO}} \mathbf{M}^{\mathbf{SO}}$	TTTGTTAATATTTAAATTGTAAAACGGGT
[SQ]_pouo4_euge_ou	TTTGCGAAAAAGCGAGGACGCAAAACCCGT
[SO] = 2064 add 61	AGCTATTCTGATAAATTAATGCCCCACCA
[SQ]_pouo4_cuge_01	ATGCTAAAAAGACGTGCTTAGCATTGGTGG
[SO] n8064 edge 62	TGTACCACCTCAGAGCATAAAGCGGTGG
[SQ]_pooo4_cuge_o2	AGGCAATAAAAGTCGCAGAATTGCCTCCACC
[SO] n8064 edge 63	CTGGAAGTAAATATGCAACTAAAGCTAC
[3Q]_hooo4_cage_o3	TTTGTACAAAACACACGTGGTACAAAGTAGC
[02] n8064 edge 64	TGGATCACCCCCAAAACACGTGTGGGGGG
[SQ]_pooo4_cuge_o4	GTGATCCAAGAAAGATT
[SO] n8064 edge 65	GAGGGCCTGACTAAAATCTGCGACAGTC
	AGGCCCTCTCTTGACAA
[SO] p8064 edge 66	AATCTCGAAATTAAAAAGCACGTCAATT
[pd]_booo+_cage_oo	TCGAGATTCCCAGCGAT
[SO] p8064 edge 67	TATTTAAGCATCAAAATCCTCGCTGATG
[bQ]_poor_cage_or	CTTAAATAATCGTCACC
[SQ]_p8064_edge_68	GACCATAAATCAAAAGTTCAGAAAACGA
[TR]_p2820_edge_69	TCTACGGGGGTTAGTATTAAGAAAATCGG
	CACGCTTAATACTAAC
[TR]_p2820_edge_70	AGATCCTTTAAGGCCTAAGCTAAAACGCA
	CAGTAGCTTAGGCCTT
[TR]_p2820_edge_71	AGCGATCTGGGCCCGTTGCCGAAAACTGG
	AAGGCGGCAACGGGCC
[TR]_p2820_edge_72	ACCGGCTCCCTATACCTCCATAAAAGCC
	AGGTCATGGAGGTATAG
[TR]_p2820_edge_73	GCTACGTCATGCAAAAGACCTGGCGCAT
	GACGTAGCCTTCGGTCCTCCGATCAAAAAGC
[TR]_p2820_edge_74	GCTACTTTCCCTAAAACCTTCCAGAGGG
	AAAGTAGCTGAGTACTCAACCAAGGCTTTTC
[TR]_p2820_edge_75	TCCGTTGCTCGGAAAAACTGTGCGCCG
	AGCAACGGATAAAAGTGCTCATCATCCACATA
[TR]_p2820_edge_76	CAACCCTAAAGTAAAACGTGCCGAACT

	TTAGGGTTGTAACCCACTCGTGCACGAGATCC					
[TR]_p2820_edge_77	TATTTAAGCATCAAAATCCTCGCTGAT					
	GCTTAAATATCTGACGCTCAGTGGAGATCTTT					
[TR] p2820 edge 78	AATCTCGAAATTAAAAAGCACGTCAAT					
	TTCGAGATTTAAATTAAAAATGAAGTTCACCT					
[TR] p2820 edge 79	GAGGGCCTGACTAAAATCTGCGACAGT					
	CAGGCCCTCTCTATTTCGTTCATCCCTATCTC					
[TR] p2820 edge 80	TGGATCACCCCCAAAACACGTGTGGGG					
	GGTGATCCAAGATTTATCAGCAATACACGCTC					
[TR] p2820 edge 81	GGTTAGCTCGCTACTTTGTACAAAACA					
	CACGTGGTACAAAGTAGC					
[TR] p2820 edge 82	TGTGACTGGGGTGGAGGCAATAAAAGT					
	CGCAGAATTGCCTCCACC					
[TR] p2820 edge 83	GCAGAACTTCCACCAATGCTAAAAAG					
	ACGTGCTTAGCATTGGTGG					
[TR]_p2820_edge_84	AGTTCGATGACGGGTTTTGCGAAAAA					
	GCGAGGACGCAAAACCCGT					
[TR]_p2820_edge_85	AAAGTGTAAGTTAGTATTAAGAAAAT					
	CGGCACGCTTAATACTAAC					
[TR]_p2820_edge_86	AACCTGTCGAAGGCCTAAGCTAAAAC					
	GCACAGTAGCTTAGGCCTT					
[TR]_p2820_edge_87	CGGTCGTTCGGCCCGTTGCCGAAAAC					
	TGGAAGGCGGCAACGGGCC					
[TR]_p2820_edge_88	ACCGTAAAACTATACCTCCATAAAAG					
	CCAGGTCATGGAGGTATAG					
[TR]_p2820_edge_89	GCTACGTCATGCAAAAGACCTGGCGC					
	ATGACGTAGCGCTGTGTGCACGAACCGTTCGCT					
[TR]_p2820_edge_90	GCTACTTTCCCTAAAACCTTCCAGAG					
	GGAAAGTAGCTTAGCAGAGCGAGGTAGCCACTG					
[TR]_p2820_edge_91	TCCGTTGCTCGGAAAAACTGTGCGCCG					
	AGCAACGGAAAGCCAGTTACCTTCGTATCTGC					
[TR]_p2820_edge_92	CAACCCTAAAGTAAAACGTGCCGAAC					
	TTTAGGGTTGTTGCAAGCAGCAGATTGCGGTGG					
[TR]_p2820_edge_93	TATTTAAGCATCAAAATCCTCGCTGAT					
	GCTTAAATAAGCCTGGGGTGCCTAAGAAGCAT					
[TR]_p2820_edge_94	AATCTCGAAATTAAAAAGCACGTCAAT					
	TTCGAGATTTGCCAGCTGCATTAATGTCGGGA					
[TR]_p2820_edge_95	GAGGGCCTGACTAAAATCTGCGACAGT					
	CAGGCCCTCGGCTGCGGCGAGCGGTCTGCGCT					
[TR]_p2820_edge_96	TGGATCACCCCCAAAACACGTGTGGGG					
	GGTGATCCAAGGCCGCGTTGCTGGCGCCAGGA					
[TR]_p2820_edge_97	CCAAGCTGGGCTACTTTGTACAAAAC					
	ACACGTGGTACAAAGTAGC					
[TR]_p2820_edge_98	GTAACAGGAGGTGGAGGCAATAAAAG					
	TCGCAGAATTGCCTCCACC					

[TR]_p2820_edge_99	GCTCTGCTGCCACCAATGCTAAAAAGA
	CGTGCTTAGCATTGGTGG
[TR]_p2820_edge_100	TTTTTTGTACGGGTTTTGCGAAAAAG
	CGAGGACGCAAAACCCGT
[TR]_p2820_edge_101	GGTGAGCAAGTTAGTATTAAGAAAAT
	CGGCACGCTTAATACTAAC
[TR]_p2820_edge_102	TTTTCAATAAAGGCCTAAGCTAAAAC
	GCACAGTAGCTTAGGCCTT
[TR]_p2820_edge_103	CCCCGAAAAGGCCCGTTGCCGAAAAC
	TGGAAGGCGGCAACGGGCC
[TR]_p2820_edge_104	CAAAAGAATCTATACCTCCATAAAAG
	CCAGGTCATGGAGGTATAG
[TR]_p2820_edge_105	GCTACGTCATGCAAAAGACCTGGCG
	CATGACGTAGCGGGGCGCTGGCAAGTGTAAAGGAG
[TR]_p2820_edge_106	GCTACTTTCCCTAAAACCTTCCAGAG
	GGAAAGTAGCCGGTGCGGGCCTCTTCTGTTGGG
[TR]_p2820_edge_107	TCCGTTGCTCGGAAAAACTGTGCGCC
	GAGCAACGGAAAAACGACGGCCAGTGCCAGTCA
[TR]_p2820_edge_108	CAACCCTAAAGTAAAACGTGCCGAA
	CTTTAGGGTTGTTCCTGTGTGAAATTGTCATGGT
[TR]_p2820_edge_109	TATTTAAGCATCAAAATCCTCGCTGA
	TGCTTAAATAAAACAGGAAGGCAAAAGTTTCTG
[TR]_p2820_edge_110	AATCTCGAAATTAAAAAGCACGTCA
	ATTTCGAGATTTTATTGAAGCATTTATTCTTCCT
[TR]_p2820_edge_111	GAGGGCCTGACTAAAATCTGCGACA
	GTCAGGCCCTCGTGCCACCTAAATTGTCACATTT
[TR]_p2820_edge_112	TGGATCACCCCCAAAACACGTGTGG
	GGGGTGATCCAAGACCGAGATAGGGTTTATAAAT
[TR]_p2820_edge_113	CGGGCGCTAGCTACTTTGTACAAAA
	CACACGTGGTACAAAGTAGC
[TR]_p2820_edge_114	AAGGGCGATGGTGGAGGCAATAAA
	AGTCGCAGAATTGCCTCCACC
[TR]_p2820_edge_115	CGACGTTGTCCACCAATGCTAAAA
	AGACGTGCTTAGCATTGGTGG
[TR]_p2820_edge_116	CATAGCTGTACGGGTTTTGCGAAAAA
	GCGAGGACGCAAAACCCGT

3.6 References

1 Qi, X. *et al.* Programming molecular topologies from single-stranded nucleic acids. *Nat. Commun.* **9**, 4579, (2018).

2 Williams, S. *et al.* in *DNA Computing*. *DNA 2008*. *Lecture Notes in Computer Science* Vol. 5347 90-101 (Springer, Berlin, Heidelberg, 2009).

3 SantaLucia, J., Jr. & Hicks, D. The thermodynamics of DNA structural motifs. *Annu. Rev. Biophys. Biomol. Struct.* **33**, 415-440, (2004).

4 Kilchherr, F. *et al.* Single-molecule dissection of stacking forces in DNA. *Science* **353**, (2016).

399

399

APPENDIX C

SUPPLEMENTAL INFORMATION FOR CHAPTER 4

S4.1 Materials and Methods

S4.1.1 Synthesis of customized DNA scaffold strands

Three customized DNA scaffold strands (p3548) were synthesized and utilized in this study. The phagemid vector with 2820 base pairs (bp) was synthesized by deleting a DNA fragment of 141 bp from pBlueScript II SK(+) vector using Q5 site-directed mutagenesis kit (New England Biolabs). For p3548, customized DNA fragments were synthesized and inserted into pBlueScript II SK(+) vector by Bio Basic Inc. (biobasic.com) to form phagemid vectors with 3548 bp. To synthesize DNA scaffold strands, the phagemid vector (3548 bp) was co-transformed into *E. coli* DH5α competent cells with a helper plasmid pSB4423, a kind gift from Dr. Stanley Brown (Niels Bohr Institute, Denmark). The DNA scaffold strands were amplified and purified as described previously¹. The mass concentration of each strand was measured by NanoDropTM 2000 spectrophotometer (Thermo Scientific) and converted to molar concentration using the average molecular weight of a DNA nucleotide (330 g/mol). Sequences of these scaffold strands are summarized in Section S4.4.1.

S4.1.2 Sample preparation

The M13mp18 single-stranded DNA was purchased from Bayou Biolabs (P-107, 1 $\mu g/\mu L$). DNA strands were used as received without further purification. Sequences of scaffold strands are summarized in Section S4.4.1.

Staple strands were categorized based on their positions and functions within the DNA origami tiles: core staples fold the scaffold strand into the designed geometry; edge staples present sticky ends and base stackings that "glue" monomer DNA origami tiles together into higher-order assemblies. All staple strands were purchased from Integrated

DNA Technologies (idtdna.com) at 100 μ M in RNase-free water and were used as received without further purification. Sequences of staple strands are summarized in Section S4.4.2.

The multimeric complexes assembled from p3548 equilateral triangular tiles were prepared by mixing the p3548 scaffold strand (5 nM) and corresponding staple strands (50 nM/each) in $1 \times TAE/Mg^{2+}$ buffer (Tris base 40 mM, acetic acid 20 mM, EDTA·Na₂·12H₂O 2 mM, (CH₃COO)₂Mg·4H₂O 12.5 mM) and annealing the mixture from 80 °C to 20 °C in ~101 h. The annealing procedure was controlled using DNA Engine Tetrad® 2 Thermal Cycler (Bio-Rad). The samples were heated up to 80 °C, held at 80 °C for 10 min, cooled from 80 °C to 40 °C at -1 °C/min, held at 40 °C for 10 min, cooled from 40 °C to 20 °C at -0.1 °C/30 min, and held at 15 °C until use.

The lattices assembled from a single tile species were prepared by mixing the scaffold strand (25 nM), core staple strands (250 nM/each), and edge staple strands (375 nM/ea) in $1 \times TAE/Mg^{2+}$ buffer. The samples were annealed following the same procedure used for multimeric complexes.

The lattices assembled from two or more tile species were prepared in two steps. Firstly, different tile species were prepared in separate tubes by mixing the scaffold strand (25 nM), core staple strands (250 nM/each), and edge staple strands (375 nM/ea) in $1 \times TAE/Mg^{2+}$ buffer. The mixtures were heated up to 80 °C, held at 80 °C for 10 min, cooled from 80 °C to 40 °C at -1 °C/min, and held at 40 °C until Step 2. In Step 2, different tile species were mixed in one tube preheated to 40 °C, held at 40 °C for 30 min, annealed from 40 °C to 20 °C at -0.1 °C/30 min, and held at 15 °C until use.

S4.1.3 Fluorescence experiments for melting temperature measurement.

For melting temperature measurement, on one side of the square DNA origami unit, A FAM fluorophore was attached to the 3' end of an edge staple strand and a TAMRA quencher was also attached at the 5' end of edge staple strand on the opposite side, which allow the fluorophore and quencher could be placed face to face once the lattice was formed. All fluorophore and quencher strands were purchased from Integrated DNA Technologies (idtdna.com) at 100 μ M with HPLC purification.

The lattices assembled with FAM fluorophore and TAMRA quencher labeled were heated up to 90 °C, held at 90 °C for 30 min, cooled from 90 °C to 45 °C at -1 °C/min, held at 45 °C for 5 min, cooled from 45 °C to 25 °C at -1 °C/5 min, and held at 25 °C until use. The samples were evaluated in "MxPro" program, Quantitative PCR mode, on Mx3000P qPCR System (Stratagene).

S4.1.4 AFM imaging

For multimeric complexes imaging, the samples were diluted to 3 nM using $1 \times$ TAE/Mg²⁺ buffer. 5 µL of the diluted sample was deposited onto a freshly cleaved mica surface (Ted Pella) and incubated for 5 min. Then, 60 µL $1 \times$ TAE/Mg²⁺ buffer was added onto the mica surface and removed by compressed air. This step was repeated twice to minimize the imaging background from excess staples. Subsequently, the mica surface was covered by 60 µL $1 \times$ TAE/Mg²⁺ buffer, and 10 µL NiCl₂ solution (100 mM) was added to assist adsorption. The samples were imaged in "ScanAsyst in Fluid" mode with a ScanAsyst-liquid+ tip on the MultiMode 8 AFM (Bruker).

For the imaging of lattices, the samples were diluted to 5 nM (scaffold concentration) using $1 \times TAE/Mg^{2+}$ buffer. 10 µL of the diluted sample was deposited

onto a freshly cleaved mica surface and incubated for 5 min. The rest steps were the same

as the imaging of multimeric complexes.

S4.2 Designs of DNA Origami Tile S4.2.1 Design parameters of DNA origami tiles

Table S4.1. Design parameters of three regular polygonal DNA origami tiles based on the p3548 scaffold.

Design name	[SQ]_p3548
Rise per base pair, r (nm)	0.332
Interhelical distance, \boldsymbol{D} (nm)	2.65
Number of helices per subunit	14
Minimum helix length (bp)	34
Maximum helix length (bp)	82
Lengths of helices (bp)	34/42/50/58/ 66/74/82
Lengths of scaffold loops (nt)	10/10/12/12/10/10
Length of the scaffold bridge (nt)	11
Lengths of staple bridges (nt)	8/8/3/6/9/8

Design name	[SQ]_M13
Rise per base pair, r (nm)	0.34
Interhelical distance, \boldsymbol{D} (nm)	2.69
Number of helices per subunit	22
Minimum helix length (bp)	39
Maximum helix length (bp)	118
Lengths of helices (bp)	39/47/55/63/71/79/ 86/94/102/110/118
Lengths of scaffold loops (nt)	9/11/8/10/8/ 8/9/8/10/8
Length of the scaffold bridge (nt)	3
Lengths of staple bridges (nt)	2/4/7/6/0/ 4/7/7/1/5

Table S4.2. Design parameters of three regular polygonal DNA origami tiles based on the M13mp18 scaffold.

S4.2.2 Tiamat designs of DNA origami tiles

Figure S4.1. Tiamat² designs of DNA origami tiles for regular tilings. (a) p3548 square tile, and (b) M13mp18 square tile. The scaffold strand (gray) is folded by core staple strands (blue) into the target shape, which can be further linked together by edge staple strands (orange) into 2D lattices.

S4.3 Additional AFM Images

Figure S4.2. AFM images of 2D lattice assembled from M13mp18 square DNA origami, (a) without any poly A surface labeling strands, (b) with five poly A surface labeling strands in each subunit, (c) with ten poly A surface labeling strands in three of the four subunits, (d) with ten poly A surface labeling strands in each subunit.

Figure S4.3. AFM images of M13mp18 square DNA origami monomers annealed end at

(a) 40 °C, (b) 45 °C and (c) 50 °C.

Figure S4.4. AFM images of 2D linear structure assembled from M13mp18 square DNA seed origami, type B (a, c, and e) and type R (b, d, and f). The tile-tile interaction of square DNA origami units is provided by 2-nt sticky end (a and b), 3-nt sticky end (c and d), and 4-nt sticky end (e and f).

S4.4 DNA Sequences

S4.4.1 Sequences of scaffold strands

S4.4.1.1 Sequence of the customized p3548 scaffold

GTGGCACTTTTCGGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTCTAA ATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCA ATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTT ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTG GTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCG AACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACG TTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCC GTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAA TGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATG ACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGG CCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTT GCACAACATGGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTG AATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGG CAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGC GCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAG CGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCC GTATCGTAGTTATCTACACGACGGGGGGGGGCAGTCAGGCAACTATGGATGAACGAAA TAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCA GACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTAATTT AAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTA ACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCCGTAGAAAAGATCAAAGGA ACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTT TTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCT AGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACA TACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTC GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCT ACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCC CGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGG AGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCT GTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGG GGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTG GCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCT GTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCC GAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAA TACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCAC GACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGA

GTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGT ATGTTGTGGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATG ACCATGATTACGCCAAGCGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCT GGAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTG CAGGAATTCTGACGGTCTCACTGTTCGGTCATTGTGACACGTCGAGAAGTCCT GCCACTGTACGAGAGTTTTTTCCGCAGTACAGCTTCCTTTTACGGGCCTTCTC CCTCTTTTTTCGGATAGAAGGTATCTTGATACACATGGGTCGTTCGATGTGCA TTTTTCCTAACGTGTACAAGGTTTTACCATGCCAGGGTTGCTTTTTTCCTATCC TGGTTGGAGCGGACTGCGTTTCGTGCTGGCCGAATAATTGCTGCGCTGAGGCT AGGCGTTGGCTTATCTTGCCCCGATGGATAACTTCTTTTTCCAACTATCCACC CGATTTTGAGCTCTCTGCGTATCTTTTTTCCCTGGCAGATTTGTCGTTGATTTT GTCCGTAGTCCGCTGATGCCAGTATCAGATGCCGGCGAGTCACGTTAAGCCA GGGATCTCGATTGGTGACTTTTTTCCTGTCAATCGCTCAATTTTCACGCCACC CGGTACCCAATTCGCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTC GTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCT TGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACC GATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCT GTAGCGGCGCATTAAGCGCGGCGGGGTGTGGTGGTTACGCGCAGCGTGACCGC CGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCTTTAG GGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGT GATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGAC GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACAC TCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGG CCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAAC AAAATATTAACGCTTACAATTTAG

S4.4.1.2 Sequence of the M13mp18 scaffold

TGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGG ACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTG ATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCC TGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGC GGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACC CTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAAT GCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACG CAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATG CTTCCGGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAATTTCACACAGG AAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCT AGAGTCGACCTGCAGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACGT CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATC CCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTC CCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCA CCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATA CTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTAC ACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAA TCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGG AAGGCCAGACGCGAATTATTTTGATGGCGTTCCTATTGGTTAAAAAATGAG CTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAACGTTTACAAT TTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGGCTTTTCTGATTATCAAC CGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGATTCTC TTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGATCTCTCA AAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATATCA TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACC TACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTT ATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAAT GTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTT GCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTAATGCTACTACTATT AGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTA AACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACT CGTTCGCAGAATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACC GTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGCATTATATTCAGCAA TTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAA AGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTG AAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTT TTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGAT TTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGGA TTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAAC ATTTTACTATTACCCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATT TTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTTACT ATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATT CCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTT

CGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCC AGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAAC CATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCT TATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGT TCTTGTCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGT ACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTG ACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCG ACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTT GGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCT TTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGTTTAATG GAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCT ACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGC GGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGG CGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAA TTCACCTCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGA GCCTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTA GTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAA ATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTA GATCGTTACGCTAACTATGAGGGCTGTCTGTGGAATGCTACAGGCGTTGTAGT TTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTG CTATCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGG CGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTC CGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAG CAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATAC TTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACTGTTT ATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTAC ACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCA AAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCT GGTGGTGGTTCTGGTGGCGGCTCTGAGGGTGGCTCTGAGGGTGGCGGTT CTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGG TGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGGCTATGACCGAA AATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTG TCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGC CTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAAT GGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAAT ATTTACCTTCCCTCCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCGCTG GTAAACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGT CTAACATACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTC CGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGC TTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTC TTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTA GCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTA ATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTT

GTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGG TAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGAT TTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCG GCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACAGCCGAT TATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGT TCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATG TTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTACTTTAT ATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTT GTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATAC TGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATT TCAAACCATTAAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAA AAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTACATA TAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACC TATGATTTTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTAT CGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATTTACA GAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAA AAGGTAATTCAAATGAAATTGTTAAATGTAATTAATTTTGTTTTCTTGATGTTT GTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGC GATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCC CGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATC TACGCAATTTCTTTATTTCTGTTTTACGTGCAAATAATTTTGATATGGTAGGTT CTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGAT GAATTGCCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGG TGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATA ACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTT AGTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGAT TTGCCAACTGACCAGATATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGG TGATGCTTTAGATTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAG GCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATCTTCTGCTGGTGGTTCGT TCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACT AATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCA GAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGA CTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAA TTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGT GATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGG ACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGATT CTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCC GCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCAT AGTACGCGCCCTGTAGCGGCGCGCATTAAGCGCGGGGGGGTGTGGTGGTTACGCG

CAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCT TCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAA CTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCC

S4.4.2 Sequences of staple strands

S4.4.2.1 Staple strand sequences of p3548 square tiles for multimerization

Name	Sequence
[SQ]_p3548_core	CTAAATTGTAAGCGTTAAAAATCAGCTCATTTTAAAAGAA
_1	Т
[SQ]_p3548_core	TATAAATCTTAACCAATAGTTTTTTTTTTTTTGTCTCATGTCAA
2	TATT
[SQ]_p3548_core 3	ATTGAAGCATTTTTTTTTTGCAAAATCCCT
[SQ]_p3548_core 4	GACTCCAACGTCAAAGGGCTTTTCTGGGTGAGC
[SQ]_p3548_core 5	AAGTGCTCCTTCAGCATCTTTTACTTTTTTTTTTTTCTATCAGG GCG
[SQ]_p3548_core 6	AGACCGAAGAGTCCACTATTAACCTAATCA
[SQ]_p3548_core 7	TAGAGCTTCTACGTGAACCATCACAGAACGTG
[SQ]_p3548_core 8	GGAGCGGGGAACGTGGCGATTTTTTTTCCACATAGCAGT TGCCCGG
[SQ]_p3548_core 9	ATGGCCCAGACGGGGAAAGCCGGCCGCTAGGG
[SQ]_p3548_core 10	AGTTTTTAACCCTAAAGGGAGCTGCGCGTA
[SQ]_p3548_core _11	GCGCAACTAGTGTAGCGGTCACGCCCCGATT
[SQ]_p3548_core _12	CGTCAATACGGTTTTTTTAGAAAGCGAAA
[SQ]_p3548_core 13	CCTCTTCGCTATTTTTTTAGGACTTCTCG
[SQ]_p3548_core 14	CGCTGGCAGTTGGGAAGGGCGATCATGTGCTG
[SQ]_p3548_core 15	ACCACCAGCGTCCCATTCGCCACAGGGTTT
[SQ]_p3548_core 16	CGAATTGGTTAAGTTGGGTAACGCTTCAGGCT
[SQ]_p3548_core 17	ACGTGTCAGGAAAAAACTCTTTTTTTTGCGAAAGGGGG GGTGCGGG
[SQ]_p3548_core 18	CAAGGCGAGTACCGGGCCCCCCCCGATTTTTGTGTAGT CGGA
[SQ]_p3548_core 19	ACCTTGTACACGTTAGGAATTTATCGATAAGC
[SQ]_p3548_core	TCCCAGTGCGTAATACGACTCACTCATCTG

Table S4.3. Core staples of p3548 square DNA origami tile.

_20	
[SQ]_p3548_core _21	TTTGGTGCAATGGTGAGCTATAGGG
[SQ]_p3548_core _22	GAGCGATTGACTTTTTTTTGCCTAGCCTCA
[SQ]_p3548_core 23	TCTGTACACAAGACTGGTGGCGGATCCCTG
[SQ]_p3548_core 24	GCGCAGCAATCGGGGGCAAGTTTTTTTTTCACCAATCGATG AAAATT
[SQ]_p3548_core 25	GCTTAACGGACTACGGACAAAATCA
[SQ]_p3548_core 26	CGTAAAAAGGCCGCGTTGCGAGCATCACAAAAATAAAGA TA
[SQ]_p3548_core 27	CAGGACTATCGACGCTCAATTTTTTTTTCAAAGGCGGTTT CGGCTG
[SQ]_p3548_core 28	CGGCGAGCGGTTTTTTTTGCGAAACCCGA
[SQ]_p3548_core 29	GATACCTGTCCGCCTTTCTTTTTTTTTTTTTTTTTTTTT
[SQ]_p3548_core 30	ATTCCACACAGTCGGGAAACCTGTCGTTTTTTAGCGTGG CGCT
[SQ]_p3548_core _31	CCAGGCGTGTTCCGACCCTGCCTCTCAGTT
[SQ]_p3548_core 32	TGCGCCTTGCTCACGCTGTAGGTAGCTTACCG
[SQ]_p3548_core 33	CACTGGCACTTGAGTCCAATTTTTTTTAAATTGTTATCCG TAATCA
[SQ]_p3548_core _34	TTCTCATAATCCGGTAACTATCGTGCAGCCAC
[SQ]_p3548_core _35	CGGTGTAAACCCCCCGTTCAGCGTATGTAG
[SQ]_p3548_core _36	GGTATCTGGGATTAGCAGAGCGAGCCGACCGC
[SQ]_p3548_core _37	TGGTCATAGCTTTTTTTTTCGACTTATCGC
[SQ]_p3548_core _38	CGGAAAAAGAGTTTTTTTTTTTTTGGCCGCA
[SQ]_p3548_core _39	TGGTAACACGCTCTGCTGAAGCCACAAACCAC
[SQ]_p3548_core _40	GCGGTGCGCTACACTAGAAGGATTGCAAGC
[SQ]_p3548_core _41	GACGCTCAGCGGTGGTTTTTTTGTCAGTATTT
[SQ]_p3548_core 42	GTGTTATCTCCTCCGATCGTTTTTTTTTGATCCGGCAAAGT TACCTT

[SQ]_p3548_core	CGCTGGTAGTGGAACGAAAACTCACGTTTTTTTGCCATT
_44	TCGCCAGTTAATAGTTTGCTTTTGGTCATGAGA
[SQ]_p3548_core _45	AGCAGATCTTTGATCTTTTCTATCACCTAG
[SQ]_p3548_core _46	TTATCAAAAGGATCTCGGGGGTCT
[SQ]_p3548_core 47	TGACAGTTACCTTTTTTTCCGGAAGGGCC
[SQ]_p3548_core _48	ATCCTTTAGTATATATGAGTAACTATCTCA
[SQ]_p3548_core _49	GAGCGCAGTATCAGCAATATTTTTTTTCAGTGAGGCACAC TTGGTC
[SQ]_p3548_core _50	GCGATCTCCCGTCGTGTAGATAACT
[SQ]_p3548_core 51	GCCAGGGAAAAAAGATACAAAAAGAAGTTATCCATTATT CG
[SQ]_p3548_core 52	GCCAGCAAAAAGCAACCCTGGCTTGAAGTC
[SQ]_p3548_core 53	GCCCGTAAGCAATTCGACGTCACCATGGTAAA
[SQ]_p3548_core _54	AGAGTGGTAAGGAAGCTGTACTGCCAATGACC
[SQ]_p3548_core _55	TGATGCACTATCCGAAAAAAGATGCAGCCC
[SQ]_p3548_core _56	AGTGAGGGAGACCGTCAGAATTCCGGGAGAAG
[SQ]_p3548_core _57	GAACAGTGTTAATTGCGCGCTTGGCGCTCACA
[SQ]_p3548_core _58	GGGGGATGAGCTCCAGCTTTTGAGCATAAA
[SQ]_p3548_core 59	CCGCTTTCCAACATACGAGCCGGATTCCCTTT
[SQ]_p3548_core 60	GTGTAAAATTAATTGCGTTGCGAGGCGGTT
[SQ]_p3548_core 61	GCCAACGCGCGGGGGGGGCTCACTGC
[SQ]_p3548_core 62	TGCGTATCGCTGCGCTCGGTCGAATACGGT
[SQ]_p3548_core 63	TATCCACGAGCAAAAGGCCAGCAAA
[SQ]_p3548_core 64	GGGCTTACCATCTGGCCCCACCGGCTCCAGATTAAGTGGT C
[SQ] p3548_core	CTGCAACGCCGGGAAGCTAGAGCGTTTGGT

_65	
[SQ]_p3548_core _66	CAAAAAGGTGGTGTCACGCTCGTTAAGTAGT
[SQ]_p3548_core 67	CAGGCATCCGGTTAGCTCCTTCGGACTCATGG
[SQ]_p3548_core _68	ATGGCTTGTTACATGATCCCCCTTACTGTC
[SQ]_p3548_core _69	GTGTATGCGCACTGCATAATTCTCATGTTGTG
[SQ]_p3548_core 70	TTATGGCAGGCGACCGAGTTGCTCAACTTTAA
[SQ]_p3548_core _71	ATGCCATTCAACCAAGTCATTCCTTCGGGG
[SQ]_p3548_core 72	CAACTGATATCATTGGAAAACGTTTGAGAATA
[SQ]_p3548_core _73	CGAAAACTCGATGTAACCCACTAATGCCGC
[SQ]_p3548_core _74	AAAAACAGGAAGGCAACGTGCACC
[SQ]_p3548_core _75	AAAAAGCATACTCTTCCTTTTAGCGGATA
[SQ]_p3548_core _76	CATATTTTCCGCGCACATTTCCCCG

Table S4.4. Edge staples of p3548 square DNA origami seed origami type R.

[SQ]_p3548_seed_origami_type	ATATAAACAAATAGGGGTGAATGTATTTAG
R_1	AAAA
[SQ]_p3548_seed_origami_type	CTGGAAATGTTGAATACTGGAATAAGGGCG
R_2	ACAC
[SQ]_p3548_seed_origami_type	TGGCTGTTGAGATCCAGTTCTCAAGGATCT
R_3	TACC
[SQ]_p3548_seed_origami_type	GCTGTGACTGGTGAGTACCCGTAAGATGCT
R_4	TTTC
[SQ]_p3548_seed_origami_type	ATCCAACGATCAAGGCGACATTCAGCTCCG
R_5	GTTC
[SQ]_p3548_seed_origami_type	CTCAGTCTATTAATTGTTTTTATCCGCCTCC
R_6	ATC
[SQ]_p3548_seed_origami_type	ACCCGCGAGACCCACGCTCAGTGCTGCAAT
R_7	GATA
[SQ]_p3548_seed_origami_type	CGGGTGGATAGTTGGAGCAGAGAGCTCAA
R_8	А
[SQ]_p3548_seed_origami_type	CCAACCAGGATAGGAACGAAACGCAGTCC
R_9	G

[SQ]_p3548_seed_origami_type R_10	TGTATCAAGATACCTTCATCGAACGACCCA
[SQ]_p3548_seed_origami_type R_11	GGCCGCCACCGCGGTGCCACTAGTTCTAGA
[SQ]_p3548_seed_origami_type R_12	GAGTGAGCTAACTCACGCCTGGGGTGCCTA
[SQ]_p3548_seed_origami_type R_13	TCCTCGCTCACTGACTTGGGCGCTCTTCCG
[SQ]_p3548_seed_origami_type R_14	GCAGGAAAGAACATGTAGAATCAGGGGAT A
[SQ]_p3548_seed_origami_type R_15	GCGTTAAATTTTTGTTTGTTAAAATT CCA
[SQ]_p3548_seed_origami_type R 16	GTTCCAGTTTGGAACAGATAGGGTTGAGTG TTTT
[SQ]_p3548_seed_origami_type R_17	AACCAGCTCAGAAAAAGTTCGTACCCACGT AGCC
[SQ]_p3548_seed_origami_type R 18	TGATACTGGCATCAGCGTGACTCGCCGGCA TCGG
[SQ]_p3548_seed_origami_type R_19	GTGTCGTAGACACCATAGTTGCCTGACTCG TCTAT TTCGTTCATCGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type R_20	GTGTCGTAGACACTTTTAAATCAATCTAAT AAATT AAAAATGAAGGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type R_21	GTGTCGTAGACACGGATCTCAAGAAGATCT ACGC GCAGAAAAAAGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type R_22	GTGTCGTAGACACTGGTGGCCTAACTACGT ACAG AGTTCTTGAAGGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type R_23	GTGTCGTAGACACCTGGGCTGTGTGCACGG GTCG TTCGCTCCAAGGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type R_24	GTGTCGTAGACACCCCTCGTGCGCTCTCCTT TCCC CCTGGAAGCTGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type	GTGTCGTAGACACGGCTCCGCCCCTGAC TGGC

Table	<i>S4.5</i> .	Edge sta	ples of	p3548 so	uare DN	A origami	seed o	rigami (type B.
1 00000		Eage sta		P22 10 50	1000001	r i ongann		ingenin (<i>j</i> p c D .

[SQ]_p3548_seed_origami_type	GCGTTAAATTTTTGTTTGTTAAAATT
B_1	CCA
[SQ]_p3548_seed_origami_type	GTTCCAGTTTGGAACAGATAGGGTTGAGTG
B_2	TTTT

[SQ]_p3548_seed_origami_type	TAAAGCACTAAATCGGTGGGGTCGAGGTGC
B_3	CGGG
[SQ]_p3548_seed_origami_type	TGCGCCGCTACAGGGCCACCCGCCGCGCTT
<u>B_4</u>	AATG
[SQ]_p3548_seed_origami_type	GACGGCCAGTGAGCGCCACGACGTTGTAAA
B_5	ACCT
[SQ]_p3548_seed_origami_type	AACCAGCTCAGAAAAAGTTCGTACCCACGT
<u>B_6</u>	AGCC
[SQ]_p3548_seed_origami_type	TGATACTGGCATCAGCGTGACTCGCCGGCA
B_7	TCGG
[SQ]_p3548_seed_origami_type	
B_8	TAUTIOCCIUACICUICIATIICUITCAIC
[SQ]_p3548_seed_origami_type	
B_9	
[SQ]_p3548_seed_origami_type	ATCTCAAGAAGATCTACGCGCAGAAAAAA
B_10	A
[SQ]_p3548_seed_origami_type	
B_11	GIGGCCIAACIACGIACAGAGIICIIGAAG
[SQ]_p3548_seed_origami_type	
B_12	GGGCIGIGIGCACGGGICGIICGCICCAAG
[SQ] p3548 seed origami type	CTCGTGCGCTCTCCTTTCCCCCTGGAAGCT
B_13	
[SQ] p3548 seed origami type	
B_14	CICCGCCCCTGACIGGCGIIIIICCAIA
[SQ] p3548 seed origami type	ATATAAACAAATAGGGGTGAATGTATTTAG
B 15	AAAA
[SO] p3548 seed origami type	CTGGAAATGTTGAATACTGGAATAAGGGCG
B 16	ACAC
[SO] p3548 seed origami type	CTCAGTCTATTAATTGTTTTTATCCGCCTCC
B 17	ATC
[SO] p3548 seed origami type	ACCCGCGAGACCCACGCTCAGTGCTGCAAT
B 18	GATA
[SQ]_p3548_seed_origami_type B_19	GTGTCGTAGACACCGGGTGGATAGTTGGAG
	CAGA
	GAGCTCAAAATGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type B_20	GTGTCGTAGACACCCAACCAGGATAGGAAC
	GAAA
	CGCAGTCCGCTGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type B_21	GTGTCGTAGACACTGTATCAAGATACCTTC
	ATCGA
	ACGACCCATGGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type B_22	GTGTCGTAGACACGGCCGCCACCGCGGTGC
	CACT
	AGTTCTAGAGCGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type B_23	GTGTCGTAGACACGAGTGAGCTAACTCACG CCTG GGGTGCCTAATGTGTCGTAGACAC
--------------------------------------	--
[SQ]_p3548_seed_origami_type B_24	GTGTCGTAGACACTCCTCGCTCACTGACTT GGGC GCTCTTCCGCTGTGTCGTAGACAC
[SQ]_p3548_seed_origami_type B_25	GTGTCGTAGACACGCAGGAAAGAACATGT AGAA TCAGGGGATAACGTGTCGTAGACAC

Table S4.6. Edge staples of p3548 square DNA origami seed origami type S.

[SQ]_p3548_seed_origami_type	GCGTTAAATTTTTGTTTATTTTGTTAAAATT
S_1	CCA
[SQ]_p3548_seed_origami_type	GTTCCAGTTTGGAACAGATAGGGTTGAGTG
S_2	ТТТТ
[SQ]_p3548_seed_origami_type	TAAAGCACTAAATCGGTGGGGTCGAGGTGC
S_3	CGGG
[SQ]_p3548_seed_origami_type	TGCGCCGCTACAGGGCCACCCGCCGCGCTT
S_4	AATG
[SQ]_p3548_seed_origami_type	GACGGCCAGTGAGCGCCACGACGTTGTAAA
S_5	ACCT
[SQ]_p3548_seed_origami_type	AACCAGCTCAGAAAAAGTTCGTACCCACGT
S_6	AGCC
[SQ]_p3548_seed_origami_type	TGATACTGGCATCAGCGTGACTCGCCGGCA
S_7	TCGG
[SQ]_p3548_seed_origami_type	ATATAAACAAATAGGGGTGAATGTATTTAG
S_8	AAAA
[SQ]_p3548_seed_origami_type	CTGGAAATGTTGAATACTGGAATAAGGGCG
S_9	ACAC
[SQ]_p3548_seed_origami_type	TGGCTGTTGAGATCCAGTTCTCAAGGATCTT
S_10	ACC
[SQ]_p3548_seed_origami_type	GCTGTGACTGGTGAGTACCCGTAAGATGCT
S_11	TTTC
[SQ]_p3548_seed_origami_type	ATCCAACGATCAAGGCGACATTCAGCTCCG
S_12	GTTC
[SQ]_p3548_seed_origami_type	CTCAGTCTATTAATTGTTTTTATCCGCCTCC
S_13	ATC
[SQ]_p3548_seed_origami_type	ACCCGCGAGACCCACGCTCAGTGCTGCAAT
S_14	GATA
[SO] p3548 seed origami type	GTGTCGTAGACACCGGGTGGATAGTTGGAG
s 15	CAGA
	GAGCTCAAAATGTGTCGTAGACAC
[SO] n35/18 seed origami type	GTGTCGTAGACACCCAACCAGGATAGGAAC
	GAAA
5_10	CGCAGTCCGCTGTGTCGTAGACAC

[SQ] p3548 seed origami type	GTGTCGTAGACACTGTATCAAGATACCTTC
S_17	ATCGA ACGACCCATGGTGTCGTAGACAC
[SO] p2548 good origami type	GTGTCGTAGACACGGCCGCCACCGCGGTGC
s 18	CACT
5_10	AGTTCTAGAGCGTGTCGTAGACAC
[SO] n3548 seed origami type	GTGTCGTAGACACGAGTGAGCTAACTCACG
$[5Q]_{p3346}_{seed}_{origanin_type}$	CCTG
5_17	GGGTGCCTAATGTGTCGTAGACAC
[SO] p3548 seed origami type	GTGTCGTAGACACTCCTCGCTCACTGACTTG
[15Q]_p35+6_seed_onganii_type	GGC
5_20	GCTCTTCCGCTGTGTCGTAGACAC
[SO] p3548 seed origami type	GTGTCGTAGACACGCAGGAAAGAACATGTA
s 21	GAA
5_21	TCAGGGGATAACGTGTCGTAGACAC
[SO] p3548 seed origami type	GTGTCGTAGACACCATAGTTGCCTGACTCG
s 22	ТСТА
5_22	TTTCGTTCATCGTGTCGTAGACAC
[SO] n2548 good origami tuna	GTGTCGTAGACACTTTTAAATCAATCTAAT
s 23	AAAT
5_23	TAAAAATGAAGGTGTCGTAGACAC
[SO] p3548 seed origami type	GTGTCGTAGACACGGATCTCAAGAAGATCT
$[5Q]_{p3546}_{seed}_{origanin_type}$	ACG
5_24	CGCAGAAAAAAGTGTCGTAGACAC
[SO] p3548 seed origami type	GTGTCGTAGACACTGGTGGCCTAACTACGT
s 25	ACA
5_25	GAGTTCTTGAAGGTGTCGTAGACAC
[SO] p2548 good origami type	GTGTCGTAGACACCTGGGCTGTGTGCACGG
s 26	GTC
5_20	GTTCGCTCCAAGGTGTCGTAGACAC
[SO] p2548 and origonit turns	GTGTCGTAGACACCCCTCGTGCGCTCTCCTT
s 27	TC
	CCCCTGGAAGCTGTGTCGTAGACAC
[SO] n3548 seed origami type	GTGTCGTAGACACGGCTCCGCCCCCTGAC
	TGG
5_20	CGTTTTTCCATAGTGTCGTAGACAC

Table S4.7. Edge staples of p3548 square	e DNA origami building units type 00.
--	---------------------------------------

[SQ]_p3548_building_units_type	GGAAATGTTGAATACTGGAATAAGGGCGA
00_1	CACCC
[SQ]_p3548_building_units_type	GCTGTTGAGATCCAGTTCTCAAGGATCTTA
00_2	CCTG
[SQ]_p3548_building_units_type	CCAACGATCAAGGCGACATTCAGCTCCGG
00_3	TTCGA

[SQ]_p3548_building_units_type	CAGTCTATTAATTGTTTTTATCCGCCTCCA
00_4	ТСТС
[SQ]_p3548_building_units_type	AACCAGGATAGGAACGAAACGCAGTCCGC
00_5	Т
[SQ]_p3548_building_units_type	TATCAAGATACCTTCATCGAACGACCCAT
00_6	G
[SQ]_p3548_building_units_type	GTGAGCTAACTCACGCCTGGGGTGCCTAA
00_7	Т
[SQ]_p3548_building_units_type	CTCCCTCACTCACTTCCCCCTCTTCCCCCT
00_8	
[SQ]_p3548_building_units_type	GTTCCAGTTTGGAACAGATAGGGTTGAGT
00_9	GTTTT
[SQ]_p3548_building_units_type	TAAAGCACTAAATCGGTGGGGTCGAGGTG
00_10	CCGGG
[SQ]_p3548_building_units_type	GACGGCCAGTGAGCGCCACGACGTTGTAA
00_11	AACCT
[SQ]_p3548_building_units_type	AACCAGCTCAGAAAAAGTTCGTACCCACG
00_12	TAGCC
[SQ]_p3548_building_units_type	ТТАААТСААТСТААТАААТТАААААТGAA
00_13	G
[SQ]_p3548_building_units_type	ATCTCAAGAAGATCTACGCGCAGAAAAAA
00_14	Α
[SQ]_p3548_building_units_type	GGGCTGTGTGCACGGGTCGTTCGCTCCAA
00_15	G
[SQ]_p3548_building_units_type	
00_16	

Table S4.8. Edge staples of p3548 square DNA origami building units type 11.

[SQ]_p3548_building_units_type	GGAAATGTTGAATACTGGAATAAGGGCGA
01_1	CACCC
[SQ]_p3548_building_units_type	GCTGTTGAGATCCAGTTCTCAAGGATCTTA
01_2	CCTG
[SQ]_p3548_building_units_type	CCAACGATCAAGGCGACATTCAGCTCCGG
01_3	TTCGA
[SQ]_p3548_building_units_type	CAGTCTATTAATTGTTTTTATCCGCCTCCA
01_4	TCTC
[SQ]_p3548_building_units_type	GTTCCAGTTTGGAACAGATAGGGTTGAGT
01_5	GTTTT
[SQ]_p3548_building_units_type	TAAAGCACTAAATCGGTGGGGTCGAGGTG
01_6	CCGGG
[SQ]_p3548_building_units_type	GACGGCCAGTGAGCGCCACGACGTTGTAA
01_7	AACCT
[SQ]_p3548_building_units_type	AACCAGCTCAGAAAAAGTTCGTACCCACG
01_8	TAGCC

[SQ]_p3548_building_units_type 01_9	TAGTTGCCTGACTCGTCTATTTCGTTCATC
[SQ]_p3548_building_units_type	TTAAATCAATCTAATAAATTAAAAATGAA
01_10	G
[SQ]_p3548_building_units_type 01_11	CTCGTGCGCTCTCCTTTCCCCCTGGAAGCT
[SQ]_p3548_building_units_type 01_12	CTCCGCCCCCTGACTGGCGTTTTTCCATA
[SQ]_p3548_building_units_type	CGGGTGGATAGTTGGAGCAGAGAGCTCAA
01_13	A
[SQ]_p3548_building_units_type	CCAACCAGGATAGGAACGAAACGCAGTCC
01_14	G
[SQ]_p3548_building_units_type 01_15	TCCTCGCTCACTGACTTGGGCGCTCTTCCG
[SQ]_p3548_building_units_type	GCAGGAAAGAACATGTAGAATCAGGGGAT
01_16	A

Table	S4.9.	Edge star	ples of	p3548 so	uare DNA	origami	building	units tv	pe 01.
	~			pee . 0		or Bernin	C CHICKING		P • • 1 •

[SQ]_p3548_building_units_type	AACCAGGATAGGAACGAAACGCAGTCCGC
10_1	Т
[SQ]_p3548_building_units_type	TATCAAGATACCTTCATCGAACGACCCAT
10_2	G
[SQ]_p3548_building_units_type	GTGAGCTAACTCACGCCTGGGGTGCCTAA
10_3	Т
[SQ]_p3548_building_units_type	
10_4	
[SQ]_p3548_building_units_type	GCGTTAAATTTTTGTTTGTTTATTTTGTTAAAATT
10_5	CCA
[SQ]_p3548_building_units_type	GTTCCAGTTTGGAACAGATAGGGTTGAGT
10_6	GTTTT
[SQ]_p3548_building_units_type	AACCAGCTCAGAAAAAGTTCGTACCCACG
10_7	TAGCC
[SQ]_p3548_building_units_type	TGATACTGGCATCAGCGTGACTCGCCGGC
10_8	ATCGG
[SQ]_p3548_building_units_type	
10_9	TAUTIOCCIUACICUICIATITCUITCATC
[SQ]_p3548_building_units_type	ТТАААТСААТСТААТАААТТАААААТGAA
10_10	G
[SQ]_p3548_building_units_type	
10_11	
[SQ]_p3548_building_units_type	
10_12	
[SQ]_p3548_building_units_type	ATATAAACAAATAGGGGTGAATGTATTTA
10_13	GAAAA

[SQ]_p3548_building_units_type	CTGGAAATGTTGAATACTGGAATAAGGGC
10_14	GACAC
[SQ]_p3548_building_units_type	CTCAGTCTATTAATTGTTTTTATCCGCCTCC
10_15	ATC
[SQ]_p3548_building_units_type	ACCCGCGAGACCCACGCTCAGTGCTGCAA
10_16	TGATA

Table S4.10. Edge staples of p3548 square DNA origami building units type 10.

[SQ]_p3548_building_units_type	GTTCCAGTTTGGAACAGATAGGGTTGAGT
11_1	GTTTT
[SQ]_p3548_building_units_type	TAAAGCACTAAATCGGTGGGGTCGAGGTG
11_2	CCGGG
[SQ]_p3548_building_units_type	GACGGCCAGTGAGCGCCACGACGTTGTAA
11_3	AACCT
[SQ]_p3548_building_units_type	AACCAGCTCAGAAAAAGTTCGTACCCACG
11_4	TAGCC
[SQ]_p3548_building_units_type	
11_5	TAGIIGCUIGACICGICIAIIICGIICAIC
[SQ]_p3548_building_units_type	ТТАААТСААТСТААТАААТТАААААТGAA
11_6	G
[SQ]_p3548_building_units_type	
11_7	
[SQ]_p3548_building_units_type	
11_8	
[SQ]_p3548_building_units_type	ATATAAACAAATAGGGGTGAATGTATTTA
11_9	GAAAA
[SQ]_p3548_building_units_type	CTGGAAATGTTGAATACTGGAATAAGGGC
11_10	GACAC
[SQ]_p3548_building_units_type	CTCAGTCTATTAATTGTTTTTATCCGCCTCC
11_11	ATC
[SQ]_p3548_building_units_type	ACCCGCGAGACCCACGCTCAGTGCTGCAA
11_12	TGATA
[SQ]_p3548_building_units_type	CGGGTGGATAGTTGGAGCAGAGAGCTCAA
11_13	Α
[SQ]_p3548_building_units_type	CCAACCAGGATAGGAACGAAACGCAGTCC
11_14	G
[SQ]_p3548_building_units_type	
11_15	
[SQ]_p3548_building_units_type	GCAGGAAAGAACATGTAGAATCAGGGGAT
11_16	A

S4.4.2.1 Staple strand sequences of M13mp18 square tiles for multimerization

Name	Sequence
[SQ]_M13_core 1	GCTGAGGCTTGCAGGGAGTTAAACGAAAGACAGCATCGC ATGAGGA
[SQ]_M13_core 2	AGGCAAAAGGACTAAAGACTTTTTGAACGA
[SQ]_M13_core 3	GGGTAGCAACTTTCGAGGTGAA
[SQ]_M13_core	AGTTTCCAAGGCACCAACCTAAGATTTGTA
[SQ]_M13_core 5	TGAGAAGTTTATCATTTTGGCTTTGAGAATAC
[SQ]_M13_core 6	GCGCAGACAACAAAGTACAACGGAAACGAAAG
[SQ]_M13_core 7	ACTAAAACACTTTTTTTTTCAGCGGAG
[SQ]_M13_core 8	TCATCGCCCATGTTACTTAGCCGTAATCTT
[SQ]_M13_core 9	AAGCGCGAGGTCAATCATAAGGGACAGGCGCA
[SQ]_M13_core 10	GATTTTGCTAAACAACTTTTTTCCCCAGCGATTATACC
[SQ]_M13_core 11	GCTTGCCCCTGACCTTCATCAAGAGGAACGAG
[SQ]_M13_core 12	GTAAATTGAACGGTGTACAGACACCGAA
[SQ]_M13_core 13	CTGACCAACTTACCGTAACA
[SQ]_M13_core 14	GACAAGAAAGCTGCTCATTCAGAAATCTAC
[SQ]_M13_core 15	TAGGCTGGTGACGAGAAACACCAGGCTCATTA
[SQ]_M13_core 16	TCAGTACCAATAGGTTTTGGACAGATGGGCTT
[SQ]_M13_core 17	TAGGAATAAGGACGTTGGGAAGAATGAATAAG
[SQ]_M13_core 18	TAACGCCCGATTTTAAGAACTGAACGAGTA
[SQ]_M13_core _19	GAGATGGTTTTTTTTTGGGGGTTTTGC
[SQ]_M13_core 20	GTTAATAAGAAAGATTCATCAGTTTAGACT
[SQ]_M13_core	TACCAGTCCCACATTCAACTAATGGAAGTTTT

Table S4.11. Core staples of M13mp18 square DNA origami tile.

_21	
[SQ]_M13_core 22	ACCTTATGAAAAGGAATTACGAGGAAAACCAA
[SQ]_M13_core 23	CCTCAAGAGAAGGATTTTTTTTTTTTTTAATCATTGTGAATT
[SQ]_M13_core _24	TGCTTTAAGGGTAATAGTAAAATGTTGAGATT
[SQ]_M13_core _25	ATAAATCGAGGCTTTTGCAAAACAGATACA
[SQ]_M13_core 26	AGATTACCCTGACTATTATAGTTTACCAGACGACGATACAT AGT
[SQ]_M13_core 27	AAGAGCAACATGAATGGAAAG
[SQ]_M13_core 28	GGATAGCATATTCATTGAATCCGAAGCAAA
[SQ]_M13_core 29	GCCAGAGGACAGTTCAGAAAACGATTTTAATT
[SQ]_M13_core 30	AATAGCGAAAAAATCAGGTCTTTAAGAGGAAGCCCGAAA GGCTCAACA
[SQ]_M13_core 31	ACCTTTTTTTTTAGCCCCCTATCCTCATTTTTTACCCTCGT
[SQ]_M13_core _32	CGGATGGCAAAGCGAACCAGACCGCCCTCAAA
[SQ]_M13_core 33	TGCTGTAACTTCAAATATCGCGGAATGACC
[SQ]_M13_core 34	CAGAAGCATTTTTCTGTCGTGATAAATCATTTTTCAAGAAA A
[SQ]_M13_core 35	CTCCAACCTTTTGATAAGAGGTTTTGACCA
[SQ]_M13_core _36	CGAGCTTCTTAGAGCTTAATTGCTTGATTCCC
[SQ]_M13_core _37	GCTTTCCAGTTTGCATCAAAA
[SQ]_M13_core _38	TGAAAAGGGAACGAGTAGATTTAGCATTTTTG
[SQ]_M13_core _39	GCAAAGAATAGTAGTAGCATTATTCCATATAACAGTGAATA TAA
[SQ]_M13_core _40	TGTTTTAAATATGCAATTTTTTTAAGCTTGCATGCCTGC
[SQ]_M13_core _41	TTAGATAATATTTTCATTTGGGCATAAAGC
[SQ]_M13_core _42	AATTCTGCTGGCATCAATTCTACTAATTAGCAAAATTAAGG GATAAAA
[SQ]_M13_core 43	AGTTTCAACATCCATTTTCGCTTCTGGACGTT

[SQ]_M13_core 44	GTAAAACGACTTTTTTTGGTGTCTGGA
[SQ]_M13_core 45	CAACGCAACAATAAAGCCTCAGAGGCGCGAGC
[SQ]_M13_core 46	TAAATCGTTTTGCGGGAGAAGCTCAAAAGG
[SQ]_M13_core 47	CAGCCAGCTTTACAGGCAAG
[SQ]_M13_core 48	ATCTACAGCTGATAAATTAATGATGTGTAGGTAAAGATCTT TATTT
[SQ]_M13_core 49	ATTTTTAGAACCCTCATTTTTTCCCGTCGGATTCTCCG
[SQ]_M13_core 50	GTGAGAAATATTCAACCGTTCTAAAGGCTA
[SQ]_M13_core 51	TGAGTACCGGAGAGTTTTGTTAAAATTCAACA
[SQ]_M13_core 52	TTAAATGTGATTTTTTTATGCAATGCC
[SQ]_M13_core 53	TCAGGTCCGATGAACGGTAATCGTAAAACT
[SQ]_M13_core 54	TTGTAAACGTTTTTTTGAGAG
[SQ]_M13_core _55	TCCAGAGCCTAATTTGCCAGTTACAAATAAGAAACGATAC ATAAAA
[SQ]_M13_core 56	GAGCGCTACTTTACAGAGAGAATATTTTTG
[SQ]_M13_core 57	TTTAACGTCATTAGGTTTTGAA
[SQ]_M13_core 58	ACAGGGACTGAACAAAGTCAGACAATAGCT
[SQ]_M13_core 59	TTTTATCCTCCCGATTTTATAGCAGCATATCA
[SQ]_M13_core 60	ACCGAGGAAGAAACAATGAAATAGGGGTAATT
[SQ]_M13_core 61	GAGAGATAACTTTTTTAGCAAGCCGT
[SQ]_M13_core 62	ATCTTACCCGAACAAAGTTACCTGGCAACA
[SQ]_M13_core 63	TAAGAGCAAACGCAATAATAACGGGTTAGCAA
[SQ]_M13_core 64	ACCAAGTACCGCACTCTTTTTTGAGTTAAGCCCAATAA
[SQ]_M13_core 65	ATATGGTTAATACATACATAAAGGAGAAGGAA
[SQ]_M13_core	GACATTCCTTATTACGCAGTATAATACC

_66	
[SQ]_M13_core 67	CAAAAGAACTTGCAGAACGC
[SQ]_M13_core 68	TATAAAATTGTCACAATCAATAGCAAAATC
[SQ]_M13_core 69	ACGTAGAATACCAGCGCCAAAGACCACCGACT
[SQ]_M13_core 70	TACCAGCAACATGTTTTTTAAGACTCAACCGA
[SQ]_M13_core 71	CACCGTAATTGGGAATTAGAGCCAGAAAATTC
[SQ]_M13_core 72	CCTTTAGGTGAATTATCACCGTAAAAGGGC
[SQ]_M13_core 73	TTGAGGGAGGTTTTTTTACAAATTCT
[SQ]_M13_core 74	ACCAGTAACCAATGAAACCATCACCCTCAG
[SQ]_M13_core 75	TGAGCCATTCAGTAGCGACAGAATCCACCACC
[SQ]_M13_core 76	CATTAAAGCGTCAGACTGTAGCGCCTTTTCAT
[SQ]_M13_core _77	AGCCTGTTTAGTATCATTTTTTTTTTTTGACGGAAATTATT
[SQ]_M13_core _78	GAGCCGCCCTCCCTCAGAGCCGCCGATAGCAG
[SQ]_M13_core _79	CAGGTCATCACCGGAACCAGAGCAAGTTTG
[SQ]_M13_core 80	CGCAGTATTCACAAACAAATAATATTAGCGTTTGCCATGTT TTC
[SQ]_M13_core 81	ATCGGCATTTTGCTTAGGTTG
[SQ]_M13_core 82	AACCGCCAGCCGCCACCAGAACAATAAGTT
[SQ]_M13_core 83	GGAACCGCGCCAGCATTGACAGGACATGGCTT
[SQ]_M13_core 84	AATCAAAAGACGATTGGCCTTGATCTCTGAATTTACCGTTC TGAGACT
[SQ]_M13_core 85	TCGGAACCACAGGAGTGTACTGGTCACCACCA
[SQ]_M13_core 86	TAAGAGGCCAGTAAGCGTCATAGGTTGAGG
[SQ]_M13_core 87	TTAACGGACAGTTAATGCCCCCAATAGGTG
[SQ]_M13_core 88	TTGATGATTATTATTCTGAAACATCCGTCGAG

[SQ]_M13_core 89	CCCTCAGATATAAGTATAGCCCGGTGCCTATT
[SQ]_M13_core _90	CTGAGTTCAGGGATAGCAAGCCCAGGCGGATAAGTGGAA AGTAT
[SQ]_M13_core _91	TATCACCAACCGCCACCCTCAGCATTCCAC
[SQ]_M13_core _92	AGGGTTGAGCCACCACCCTCATTTTTCGTCACCAGTACAA CTGTATGG
[SQ]_M13_core 93	TGAATTTTACTACAACGCCTGTAGAACCGCCA
[SQ]_M13_core 94	AGACAGCTCGTCTTTCCAGACGAAGGAATT
[SQ]_M13_core 95	TTTCTTGCCTTTAATTGTATCGTAGAAAGGAACAACTATTA GTAAA
[SQ]_M13_core 96	GCGAATAAAGGCTCCAAAAGGAAAACAGCT
[SQ]_M13_core 97	TGATACCCCCACGCATAACCGATATATTCG
[SQ]_M13_core 98	AAGAATACGTGGCACAGACAATAACTGATAGCCCTAAAAG GTGAGG
[SQ]_M13_core 99	TAAAGCATGCAGAAGATAAAACAGACATCG
[SQ]_M13_core 100	CCATTAAAAATTTTTACATTGG
[SQ]_M13_core 101	CGGTCAGGAGCCAGCAGCAAATAAGGAATT
[SQ]_M13_core 102	TCAAACCGTCTGAATTTTAACCACCACACCTT
[SQ]_M13_core 103	GATAATACGCAAATCAACAGTTGAGAAAAATC
[SQ]_M13_core _104	GCTGAACCTCTTTTTTGTAGAAGAAC
[SQ]_M13_core _105	GAGGAAGCTAATAGATTAGAGCCATTATCA
[SQ]_M13_core _106	GTCAGTTGATTTGAGGATTTAGAACCGAACGT
[SQ]_M13_core 107	GATTAGTAATAACATCTTTTTTCCTCAATCAATATCTG
[SQ]_M13_core 108	TGATGGCATTAAAAGTTTGAGTAACGTCAATA
[SQ]_M13_core 109	TTGGATTTATTAAATCCTTTGCGTATTA
[SQ]_M13_core 110	GACTTTACAACAGGAGGCCG
[SQ]_M13_core	TTTTGCGTCATCATATTCCTGATCAGATGA

_111	
[SQ]_M13_core 112	TATTAATTATTCATCAATATAATCTAAAGAAA
[SQ]_M13_core 113	AAAGGACAGAGCGGTTTTACAACTCGATACTT
[SQ]_M13_core 114	AATACCAAATTTTCAGGTTTAACGTTATCAGA
[SQ]_M13_core 115	TTATTCACACGTAAAACAGAAACTGATTGT
[SQ]_M13_core 116	CTGAATAATGTTTTTTACGTGGCGAG
[SQ]_M13_core 117	ATATACAAACGGATTCGCCTGAAATAACCT
[SQ]_M13_core 118	TTGCGTAGGTTACAAAATCGCGCAGGAAACAG
[SQ]_M13_core 119	ATTATTTGTTTCAATTACCTGAGCTAACAATT
[SQ]_M13_core 120	AGAGCTTGACGGGGAATTTTTTTAACCTACCATATCAAA
[SQ]_M13_core 121	AGCGATAGTCAATATATGTGAGTGTTGCTTTG
[SQ]_M13_core 122	TCAATAGATTACCTTTTTTAATGAGGCGAA
[SQ]_M13_core 123	GGTTATATAGGTCTGAGAGACTCAAAATTAATTACATTAAA AGA
[SQ]_M13_core 124	AGATGATGAATGCCCGAGATA
[SQ]_M13_core 125	TGCTTCTTCCCTTAGAATCCTTCAAATATA
[SQ]_M13_core 126	TACATAAACTTAGATTAAGACGCTATCGCAAG
[SQ]_M13_core 127	TCATTTGATGAATTTATCAAAATCATAACTATATGTAAATCT AGAAAA
[SQ]_M13_core 128	TAAGGCGTCGCGAGAAAACTTTTTGAAAACAT
[SQ]_M13_core 129	ATAATTAGCTGATGCAAATCCAGAGAAGAG
[SQ]_M13_core 130	TTTTAGTTGAAATACCGACCGTTTAACAAC
[SQ]_M13_core 131	ACAAAGAATAAATAAGAATAAACACAACAGTA
[SQ]_M13_core 132	CAAAAGGTTTGAGAATCGCCATATGTGATAAA
[SQ]_M13_core 133	GCCTGTGACGACGACAATAAATATAAAGCCAACGCTCCGG AATC

[SQ]_M13_core 134	GCCAACAAATAAGAGAATATAAAAATAATAATA
[SQ]_M13_core _135	GGGCTTAAAAAGTAATTCTGTCCATTATCAACAATAGATAG
[SQ]_M13_core _136	CAAGAACGAGTCCTGAACAAGAAAAGTACCGA
[SQ]_M13_core _137	CCCATCCTCGGCTGTCTTTCCTATTACCGC
[SQ]_M13_core _138	GCCTTAGAGGCGTTTTAGCGAATTTCATCGTAGGAATCTAT CATTC
[SQ]_M13_core 139	GCCCAATGTATTCTAAGAACGCAATCAAGA
[SQ]_M13_core 140	TTAGTTGATCTTACCAACGCTAACGAGCGT
[SQ]_M13_core 141	ATGTCAATCATATGTACCCCGGTTTGTATAAGCAAATATTAA ATCA
[SQ]_M13_core 142	AGCTTTCATCGCATTAAATTTTTGTTTAAA
[SQ]_M13_core 143	GCTCATTTCGCGTCTGGCCTTCTAATGGGA
[SQ]_M13_core 144	GACAGTATAACGGCGGATTGACCGCTGTAGCC
[SQ]_M13_core 145	TAGGTCAATCTGCCAGTTTGAGTGTTGGGA
[SQ]_M13_core 146	TGGGAACACGGCCTCAGGAAGATCCAAAGCGC
[SQ]_M13_core 147	GGCGATTAATTCAGGCTGCGCAACGGGACGAC
[SQ]_M13_core 148	CAGTCACGTGCCGGAAACCAGGGCACTC
[SQ]_M13_core 149	AGGGCGAGGCGAAAGGGGGGATGAGCTGTTT
[SQ]_M13_core 150	CATTCGCCAGTTGGGTAACGCCAGGGTACCGA
[SQ]_M13_core 151	TAAAGCCTTCGTAATCATGGTCATTGCTGCAA
[SQ]_M13_core 152	TCACATTTCTAGAGGATCCCCGGGTTTTCC
[SQ]_M13_core 153	CCTGTGTATACGAGCCGGAAGCCAGTGAGA
[SQ]_M13_core 154	GCTCGAATGGGGTGCCTAATGAGTGTATTGGG
[SQ]_M13_core 155	AGGTCGACAATTGCGTTGCGCTCAATCGGCCA
[SQ]_M13_core	GGTCCACGTGGTTTTTCTTTTCACATAAAGTG

_156	
[SQ]_M13_core 157	TCCTGTTGGAGAGGCGGTTTGCGAGCTAAC
[SQ]_M13_core 158	GGGTTGATCGGCAAAATCCCTTCCAGCTGCATTAATGACT GCCC
[SQ]_M13_core 159	CGGGCAAGCCCTGAGAGAGTTGCGAAAAAC
[SQ]_M13_core 160	CGCCAGGGCTGGTTTGCCCCAGCATATTAAAG
[SQ]_M13_core _161	ACGCGCGGTGATGGTGGTGGTTCCGAAAGTGTTGTTCCAGTTT CCCGATTT
[SQ]_M13_core 162	GGTGCCGTCTCCAACGTCAAAGGGCAGCAAGC
[SQ]_M13_core 163	GGGAGCCGGAACAAGAGTCCACGGCGAAAA
[SQ]_M13_core 164	CGTCTATCAAATCAAGTTTTTTCGGTCACG
[SQ]_M13_core _165	AACGTGGAAAAGCACTAAATCGGAAGGAGCGG
[SQ]_M13_core 166	CTTTGACGGCGCTGGCAAGTGTAGGGGGGTCGA
[SQ]_M13_core 167	ATTAAATTTCCTCGTTAGAATAGGGAAGAAAGCGAAACCC TAAA
[SQ]_M13_core 168	CTGCGCGCTACAGGGCGCGTACCTGAGAAG
[SQ]_M13_core 169	GCGCTAGGAGCACGTATAACGTGCGGGATTTTAGACAGGA ACTTCTTT
[SQ]_M13_core 170	GTAGCAATACGGTACGCCAGAATCTATGGTTG
[SQ]_M13_core 171	TGTTTTTGTCCATCACGCAAATAATATCCA
[SQ]_M13_core 172	CAGATTCATTTTGACGCTCAATTATCGGCCTTGCTGGTTAA CCGTT
[SQ]_M13_core _173	GAACAATTCATGGAAATACCTACACCAGTC
[SQ]_M13_core 174	ACACGACATAGAACCCTTCTGACCTGAAAG

Table S4.12. Edge staples of M13mp18 square DNA origami seed origami type R.

[SQ]_M13_seed_origami_type	CTTGTACCGCCACCCTCAGGTACTCAGGAGG
R_1	TTTA
[SQ]_M13_seed_origami_type	GCTAACAGTGCCCGTATAAGGTCAGTGCCTT
R_2	GAGT
[SQ]_M13_seed_origami_type	CACCAAGGCCGGAAACGTCGCACCATTACC
R_3	ATTAG

[SQ]_M13_seed_origami_type R_4	CGCACGGAATAAGTTTATTGAAACGCAAAG ACACC
[SQ]_M13_seed_origami_type R_5	CGCTATTACGCCAGCTTCGGTGCGGGCCT
[SQ]_M13_seed_origami_type R_6	CACAATTCCACACAACGAAATTGTTATCC
[SQ]_M13_seed_origami_type R_7	TACGTGAACCATCACCCAGGGCGATGGCC
[SQ]_M13_seed_origami_type R_8	CGCGCTTAATGCGCCGTAACCACCACACC
[SQ]_M13_seed_origami_type R_9	ACGTAATGCCACTACGATTAAACGGGTAAA ATAT
[SQ]_M13_seed_origami_type R_10	CCAAATCAACGTAACAACCGGATATTCATTA CGC
[SQ]_M13_seed_origami_type R 11	AATAACCTGTTTAGCTCATTTCGCAAATGGT CAG
[SQ]_M13_seed_origami_type R 12	AATCACCATCAATATGAGGCCGGAGACAGT CAAA
[SQ]_M13_seed_origami_type R_13	GTGTCGTAGACACTACAATTTTATCCTGACT ATTTT GCACCCAGCGTGTCGTAGACAC
[SQ]_M13_seed_origami_type R_14	GTGTCGTAGACACATAGAAGGCTTATCCGAG CAAG CAA
[SQ]_M13_seed_origami_type R_15	GTGTCGTAGACACAGAAACCAATCAATAAT AATTT ACGAGCATGTGTGTCGTAGACAC
[SQ]_M13_seed_origami_type R_16	GTGTCGTAGACACGCATTTTCGAGCCAGTTG TAATT TAGGCAGAGGTGTCGTAGACAC
[SQ]_M13_seed_origami_type R_17	GTGTCGTAGACACCCTAAATTTAATGGTTTA ATTTC ATCTTCTGAGTGTCGTAGACAC
[SQ]_M13_seed_origami_type R_18	GTGTCGTAGACACCATCGGGAGAAACAATG TAACA GTACCTTTTAGTGTCGTAGACAC
[SQ]_M13_seed_origami_type R_19	GTGTCGTAGACACAGAAGGAGCGGAATTAG AACA AAGAAACCACCGTGTCGTAGACAC
[SQ]_M13_seed_origami_type R_20	GTGTCGTAGACACTTAGGAGCACTAACAAGT TATC TAAAATATCTGTGTCGTAGACAC
[SQ]_M13_seed_origami_type R_21	GTGTCGTAGACACAACAGTGCCACGCTGATA TTAA CACCGCCTGCGTGTCGTAGACAC

[SO] M13 good origami type	GTGTCGTAGACACAGTCTTTAATGCGCGATT
[SQ]_WIS_seed_oliganii_type	TTTG
K_ 22	AATGGCTATTGTGTCGTAGACAC

|--|

[SQ]_M13_seed_origami_type	CCAAATCAACGTAACAACCGGATATTCATTA
B_1	CGCA
[SQ]_M13_seed_origami_type	CAACATTATTACAGGTAAACGAACTAACGG
B_2	AACCT
[SQ]_M13_seed_origami_type	GTACCTTTAATTGCTCAGGTCAGGATTAGAG
B_3	ACAT
[SQ]_M13_seed_origami_type	AATAACCTGTTTAGCTCATTTCGCAAATGGT
B_4	CAGA
[SQ]_M13_seed_origami_type	
B_5	TITICGAGCCAGITGIAATITAGGCAGAG
[SQ]_M13_seed_origami_type	
B_6	AAATTTAATGGTTTAATTTCATCTTCTGA
[SQ] M13 seed origami type	
B_7	CGGGAGAAACAATGTAACAGTACCTTTTA
[SQ]_M13_seed_origami_type	
B_8	AGGAGCGGAATTAGAACAAAGAAACCACC
[SQ]_M13_seed_origami_type	AAGAAAATCTCCAAAAAAATAATTTTTTCAC
B_9	GTT
[SQ]_M13_seed_origami_type	TTGTACCGCCACCCTCAGGTACTCAGGAGGT
B_10	TTA
[SQ]_M13_seed_origami_type	GCACGGAATAAGTTTATTGAAACGCAAAGA
B_11	CACC
[SQ]_M13_seed_origami_type	TTGAATTAACTGAACACCAGCGCATTAGACG
B_12	GGA
[SO] M13 good origami type	GTGTCGTAGACACCCCAAAAACAGGAAGAT
P 12	GATA
D_1 3	ATCAGAAAAGCGTGTCGTAGACAC
[SO] M13 good origami type	GTGTCGTAGACACCGCCATCAAAAATAATTT
P 14	TTAA
D_14	CCAATAGGAAGTGTCGTAGACAC
[SO] M13 good origami type	GTGTCGTAGACACCGCATCGTAACCGTGCCG
B 15	TTGG
D_1 3	TGTAGATGGGGTGTCGTAGACAC
[SO] M13 seed origani type	GTGTCGTAGACACCGCTATTACGCCAGCTTC
B 16	GGTG
D_10	CGGGCCTCTTGTGTCGTAGACAC
[SO] M12 good origoni turc	GTGTCGTAGACACCACAATTCCACAAACG
R 17	AAAT
D_1/	TGTTATCCGCTGTGTCGTAGACAC

[SQ]_M13_seed_origami_type B_18	GTGTCGTAGACACTACGTGAACCATCACCCA
	GGG
	CGATGGCCCACGTGTCGTAGACAC
[SQ]_M13_seed_origami_type B_19	GTGTCGTAGACACCGCGCTTAATGCGCCGTA
	ACC
	ACCACACCCGCGTGTCGTAGACAC
[SQ]_M13_seed_origami_type B_20	GTGTCGTAGACACCCGAGTAAAAGAGTCTA
	ТААТ
	CAGTGAGGCCAGTGTCGTAGACAC
[SQ]_M13_seed_origami_type B_21	GTGTCGTAGACACGCAACAGGAAAAACGCA
	TTAC
	CGCCAGCCATTGTGTCGTAGACAC
[SQ]_M13_seed_origami_type B_22	GTGTCGTAGACACATTCTGGCCAACAGAGC
	AGTA
	ATAAAAGGGACGTGTCGTAGACAC

Table S4.14. Edge staples of M13mp18 square DNA origami seed origami type S.

[SQ]_M13_seed_origami_type	CTTGTACCGCCACCCTCAGGTACTCAGGAGG
S_1	TTTA
[SQ]_M13_seed_origami_type	GCTAACAGTGCCCGTATAAGGTCAGTGCCTT
S_2	GAGT
[SQ]_M13_seed_origami_type	CACCAAGGCCGGAAACGTCGCACCATTACC
S_3	ATTAG
[SQ]_M13_seed_origami_type	CGCACGGAATAAGTTTATTGAAACGCAAAG
S_4	ACACC
[SQ]_M13_seed_origami_type	CCAAATCAACGTAACAACCGGATATTCATTA
S_5	CGCA
[SQ]_M13_seed_origami_type	CAACATTATTACAGGTAAACGAACTAACGG
S_6	AACCT
[SQ]_M13_seed_origami_type	GTACCTTTAATTGCTCAGGTCAGGATTAGAG
S_7	ACAT
[SQ]_M13_seed_origami_type	AATAACCTGTTTAGCTCATTTCGCAAATGGT
S_8	CAGA
[SO] M13 seed origami type	GTGTCGTAGACACCCCAAAAACAGGAAGAT
s o	GATA
5_9	ATCAGAAAAGCGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACCGCCATCAAAAATAATTT
s 10	TTAA
5_10	CCAATAGGAAGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACCGCATCGTAACCGTGCCG
s 11	TTGG
5_11	TGTAGATGGGGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACCGCTATTACGCCAGCTTC
s 12	GGTG
5_1 2	CGGGCCTCTTGTGTCGTAGACAC

[SQ]_M13_seed_origami_type S_13	GTGTCGTAGACACCACAATTCCACAAACGA
	AATT
	GTTATCCGCTGTGTCGTAGACAC
[SO] M12 good origomi type	GTGTCGTAGACACTACGTGAACCATCACCCA
S 14	GGGC
5_14	GATGGCCCACGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACCGCGCTTAATGCGCCGTA
s 15	ACCA
5_15	CCACACCCGCGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACCCGAGTAAAAGAGTCTAT
S 16	AAT
5_10	CAGTGAGGCCAGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACGCAACAGGAAAAACGCA
s 17	TTAC
5_17	CGCCAGCCATTGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACATTCTGGCCAACAGAGCA
S 18	GTAA
5_10	TAAAAGGGACGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACTACAATTTTATCCTGACT
s 19	ATTTT
5_17	GCACCCAGCGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACATAGAAGGCTTATCCGAG
s 20	CAA
5_20	GCAAATCAGATGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACAGAAACCAATCAATAAT
s 21	AATT
5_21	TACGAGCATGTGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACGCATTTTCGAGCCAGTTG
s 22	TAAT
	TTAGGCAGAGGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACCCTAAATTTAATGGTTTA
s 23	ATT
	TCATCTTCTGAGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACCATCGGGAGAAACAATG
S 24	TAA
<u> </u>	CAGTACCTTTTAGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACAGAAGGAGCGGAATTAG
s 25	AA
	CAAAGAAACCACCGTGTCGTAGACAC
[SQ]_M13_seed_origami_type S_26	GTGTCGTAGACACTTAGGAGCACTAACAAGT
	ТА
	TCTAAAATATCTGTGTCGTAGACAC
[SO] M13 seed origami type	GTGTCGTAGACACAACAGTGCCACGCTGATA
IS 27	TT

[SQ]_M13_seed_origami_type S_28	GTGTCGTAGACACAGTCTTTAATGCGCGATT
	TTT
	GAATGGCTATTGTGTCGTAGACAC

Table S4.15. Edge staples of M13mp18 square DNA origami building units type 00.

[SQ]_M13_building_units_type0	ACGATCTAAAGTTTTGCCTCATAGTTAGCG
0_1	TACG
[SQ]_M13_building_units_type0	AACAGTGCCCGTATAAGGTCAGTGCCTTGA
0_2	GTCA
[SQ]_M13_building_units_type0	CAAGGCCGGAAACGTCGCACCATTACCATT
0_3	AGTA
[SQ]_M13_building_units_type0	AAAAGTAAGCAGATAGCGAAGCCCTTTTTA
0_4	AGCC
[SQ]_M13_building_units_type0	
0_5	
[SQ]_M13_building_units_type0	
0_6	
[SQ]_M13_building_units_type0	CGTGAACCATCACCCAGGGCGATGGCCCA
0_7	С
[SQ]_M13_building_units_type0	GAGTAAAAGAGTCTATAATCAGTGAGGCC
0_8	Α
[SQ]_M13_building_units_type0	AAATCCGCGACCTGCTCTGATAAATTGTGT
0_9	CGAG
[SQ]_M13_building_units_type0	CAACATTATTACAGGTAAACGAACTAACGG
0_10	AACC
[SQ]_M13_building_units_type0	GTACCTTTAATTGCTCAGGTCAGGATTAGA
0_11	GACA
[SQ]_M13_building_units_type0	TATGACCCTGTAATACGTTGTACCAAAAAC
0_12	ATTT
[SQ]_M13_building_units_type0	
0_13	AAACCAAICAAIAAIAAIIIACOAOCAIOI
[SQ]_M13_building_units_type0	
0_14	TAATTIAATOOTTIAATTICATCTICTOA
[SQ]_M13_building_units_type0	
0_15	
[SQ]_M13_building_units_type0	
0_16	

[SQ]_M13_building_units_type0	ACGATCTAAAGTTTTGCCTCATAGTTAGCG
1_1	TACG
[SQ]_M13_building_units_type0	AACAGTGCCCGTATAAGGTCAGTGCCTTGA
1_2	GTCA
[SQ]_M13_building_units_type0	CAAGGCCGGAAACGTCGCACCATTACCATT
1_3	AGTA

[SQ]_M13_building_units_type0	AAAAGTAAGCAGATAGCGAAGCCCTTTTTA
1_4	AGCC
[SQ]_M13_building_units_type0	AAATCCGCGACCTGCTCTGATAAATTGTGT
1_5	CGAG
[SQ]_M13_building_units_type0	CAACATTATTACAGGTAAACGAACTAACGG
1_6	AACC
[SQ]_M13_building_units_type0	GTACCTTTAATTGCTCAGGTCAGGATTAGA
1_7	GACA
[SQ]_M13_building_units_type0	TATGACCCTGTAATACGTTGTACCAAAAAC
1_8	ATTT
[SQ]_M13_building_units_type0	AGAAGGCTTATCCGAGCAAGCAAATCAGA
1_9	Т
[SQ]_M13_building_units_type0	ΔΤΤΤΤΟGΔGCCΔGTTGTΔΔΤΤΤΔGGCΔGΔG
1_10	Пиневлосской опалитиковского
[SQ]_M13_building_units_type0	AAGGAGCGGAATTAGAACAAAGAAACCAC
1_11	С
[SQ]_M13_building_units_type0	САСТСССАСССТСАТАТТААСАСССССТСС
1_12	
[SQ]_M13_building_units_type0	CGCCATCAAAAATAATTTTTAACCAATAGG
1_13	
[SQ]_M13_building_units_type0	CGCTATTACGCCAGCTTCGGTGCGGGCCTC
1_14	
[SQ]_M13_building_units_type0	CGCGCTTAATGCGCCGTAACCACCACACCC
1_15	
[SQ]_M13_building_units_type0	GCAACAGGAAAAACGCATTACCGCCAGCC
1_16	A

Table S4.17. Edge staples of M13mp18 square DNA origami building units type 01.

[SQ]_M13_building_units_type1 0_1	CATCGTAACCGTGCCGTTGGTGTAGATGGG
[SQ]_M13_building_units_type1 0_2	CAATTCCACACAACGAAATTGTTATCCGCT
[SQ]_M13_building_units_type1 0_3	CGTGAACCATCACCCAGGGCGATGGCCCAC
[SQ]_M13_building_units_type1	GAGTAAAAGAGTCTATAATCAGTGAGGCC
0_4	А
[SQ]_M13_building_units_type1	ACGTAATGCCACTACGATTAAACGGGTAAA
0_5	ATAT
[SQ]_M13_building_units_type1	CCAAATCAACGTAACAACCGGATATTCATT
0_6	ACGC
[SQ]_M13_building_units_type1	AATAACCTGTTTAGCTCATTTCGCAAATGG
0_7	TCAG
[SQ]_M13_building_units_type1	AATCACCATCAATATGAGGCCGGAGACAG
0_8	TCAAA

[SQ]_M13_building_units_type1	AGAAGGCTTATCCGAGCAAGCAAATCAGA
0_9	Т
[SQ]_M13_building_units_type1 0_10	ATTTTCGAGCCAGTTGTAATTTAGGCAGAG
[SQ]_M13_building_units_type1	AAGGAGCGGAATTAGAACAAAGAAACCAC
0_11	С
[SQ]_M13_building_units_type1	CAGTGCCACGCTGATATTAACACCGCCTGC
0_12	CAUTOCCACOCTOATATTAACACCOCCTOC
[SQ]_M13_building_units_type1	AAGAAAATCTCCAAAAAAATAATTTTTTCA
0_13	CGTT
[SQ]_M13_building_units_type1	TTGTACCGCCACCCTCAGGTACTCAGGAGG
0_14	TTTA
[SQ]_M13_building_units_type1	GCACGGAATAAGTTTATTGAAACGCAAAG
0_15	ACACC
[SQ]_M13_building_units_type1	TTGAATTAACTGAACACCAGCGCATTAGAC
0_16	GGGA

Table S4.18. Edge staples of M13mp18 square DNA origami building units type 10.

[SQ]_M13_building_units_type1	ACGTAATGCCACTACGATTAAACGGGTAAA
1_1	ATAT
[SQ]_M13_building_units_type1	CCAAATCAACGTAACAACCGGATATTCATT
1_2	ACGC
[SQ]_M13_building_units_type1	AATAACCTGTTTAGCTCATTTCGCAAATGG
1_3	TCAG
[SQ]_M13_building_units_type1	AATCACCATCAATATGAGGCCGGAGACAG
1_4	TCAAA
[SQ]_M13_building_units_type1	
1_5	AAACCAAICAAIAAIAAIIIACOAOCAIOI
[SQ]_M13_building_units_type1	
1_6	TAATTTATUUTTATTTATTTATTTATUU
[SQ]_M13_building_units_type1	
1_7	
[SQ]_M13_building_units_type1	
1_8	
[SQ]_M13_building_units_type1	AAGAAAATCTCCAAAAAAATAATTTTTTCA
1_9	CGTT
[SQ]_M13_building_units_type1	TTGTACCGCCACCCTCAGGTACTCAGGAGG
1_10	ТТТА
[SQ]_M13_building_units_type1	GCACGGAATAAGTTTATTGAAACGCAAAG
1_11	ACACC
[SQ]_M13_building_units_type1	TTGAATTAACTGAACACCAGCGCATTAGAC
1_12	GGGA
[SQ]_M13_building_units_type1	
1_13	

[SQ]_M13_building_units_type1 1_14	CGCTATTACGCCAGCTTCGGTGCGGGCCTC
[SQ]_M13_building_units_type1 1_15	CGCGCTTAATGCGCCGTAACCACCACACCC
[SQ]_M13_building_units_type1	GCAACAGGAAAAACGCATTACCGCCAGCC
1_16	Α

4.5 References

1 Qi, X. *et al.* Programming molecular topologies from single-stranded nucleic acids. *Nat. Commun.* **9**, 4579, (2018).

2 Williams, S. *et al.* in *DNA Computing. DNA 2008. Lecture Notes in Computer Science* Vol. 5347 90-101 (Springer, Berlin, Heidelberg, 2009).

APPENDIX D

PERMISSIONS TO USE COPYRIGHTED MATERIALS

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Apr 12, 2023

This Agreement between Mr. Yue Tang ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	5526751188688
License date	Apr 12, 2023
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	ChemPhysChem
Licensed Content Title	DNA Tile Based Self-Assembly: Building Complex Nanoarchitectures
Licensed Content Author	Hao Yan, Sherri Rinker, Yan Liu, et al
Licensed Content Date	Aug 3, 2006
Licensed Content Volume	7
Licensed Content Issue	8
Licensed Content Pages	7
Type of use	Dissertation/Thesis
Requestor type	University/Academic

Format	Electronic
Portion	Figure/table
Number of figures/tables	1
Will you be translating?	No
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 1, page 1642
	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
Requestor Location	TEMPE, AZ 85281 United States Attn: Mr. Yue Tang
Publisher Tax ID	EU826007151
Total	0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with

the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at <u>http://myaccount.copyright.com</u>).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner.For STM Signatory Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc,

the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto

- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.
- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and

enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.

- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.
- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last

known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The <u>Creative Commons Attribution License (CC-BY)</u> allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com.

	Home Help V Live Chat Yue Tang V
htsLink	
	DNA double-crossover molecules
	Author: Tsu Ju Fu, Nadrian C. Seeman
	Publication: Biochemistry
Most Trusted. Most Cited. Most Read.	Publisher: American Chemical Society
	Date: Apr 1, 1993
	Copyright © 1993, American Chemical Society
PERMISSION/LICENSE IS his type of permission/licen harged for your order. Pleas Permission is granted for you	GRANTED FOR YOUR ORDER AT NO CHARGE se, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: bur request in both print and electronic formats, and translations.
PERMISSION/LICENSE IS This type of permission/licen harged for your order. Pleas Permission is granted for yo If figures and/or tables were Please print this page for yo Appropriate credit for the r rom (COMPLET REFERENCE) nformation in place of the cc One-time permission is grai granted (such as derivative w	GRANTED FOR YOUR ORDER AT NO CHARGE se, instead of the standard Terms and Conditions, is sent to you because no fee is being er note the following: bur request in both print and electronic formats, and translations. er equested, they may be adapted or used in part. ur records and send a copy of it to your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission : (TATION), copyright (YEAR) American Chemical Society." Insert appropriate apitalized words. ned only for the use specified in your RightsLink request. No additional uses are orks or other editions). For any uses, please submit a new request.
PERMISSION/LICENSE IS This type of permission/licen harged for your order. Pleas Permission is granted for you If figures and/or tables were Please print this page for you Appropriate credit for the re- room (COMPLETE REFERENCE information in place of the c. One-time permission is gran ranted (such as derivative w f credit is given to another si- room that source.	GRANTED FOR YOUR ORDER AT NO CHARGE se, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: bur request in both print and electronic formats, and translations, e requested, they may be adapted or used in part. ur records and send a copy of it to your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission is CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate applatized words. netd only for the use specified in your RightsLink request. No additional uses are forks or other editions). For any uses, please submit a new request. burce for the material you requested from RightsLink, permission must be obtained

© 2023 Copyright - Al Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.

License Number	5530451157764
License date	Apr 15, 2023
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires
Licensed Content Author	Hao Yan, Sung Ha Park, Gleb Finkelstein, John H. Reif, et al.
Licensed Content Date	Sep 26, 2003
Licensed Content Volume	301
Licensed Content Issue	5641
Volume number	301
Issue number	5641
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Electronic
Portion	Text Excerpt
Number of pages requested	1
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 1
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMPE AZ 85281

Total

Terms and Conditions

American Association for the Advancement of Science TERMS AND CONDITIONS

United States Attn: Mr. Yue Tang 0.00 USD

Regarding your request, we are pleased to grant you non-exclusive, non-transferable permission, to republish the AAAS material identified above in your work identified above, subject to the terms and conditions herein. We must be contacted for permission for any uses other than those specifically identified in your request above.

The following credit line must be printed along with the AAAS material: "From [Full Reference Citation]. Reprinted with permission from AAAS."

All required credit lines and notices must be visible any time a user accesses any part of the AAAS material and must appear on any printed copies and authorized user might make.

This permission does not apply to figures / photos / artwork or any other content or materials included in your work that are credited to non-AAAS sources. If the requested material is sourced to or references non-AAAS sources, you must obtain authorization from that source as well before using that material. You agree to hold harmless and indemnify AAAS against any claims arising from your use of any content in your work that is credited to non-AAAS sources. If the AAAS material covered by this permission was published in Science during the years 1974 - 1994, you must also obtain permission from the author, who may grant or withhold permission, and who may or may not charge a fee if permission is granted. See original article for author's address. This condition does not apply to news articles.

The AAS material may not be modified or altered except that figures and tables may be modified with permission from the

author. Author permission for any such changes must be secured prior to your use. Whenever possible, we ask that electronic uses of the AAAS material permitted herein include a hyperlink to the original work on

AAAS's website (hyperlink may be embedded in the reference citation). AAAS material reproduced in your work identified herein must not account for more than 30% of the total contents of that work.

AAAS must publish the full paper prior to use of any text.

AAAS material must not imply any endorsement by the American Association for the Advancement of Science.

This permission is not valid for the use of the AAAS and/or Science logos.

AAAS makes no representations or warranties as to the accuracy of any information contained in the AAAS material covered by this permission, including any warranties of

merchantability or fitness for a particular purpose.

If permission fees for this use are waived, please note that AAAS reserves the right to charge for reproduction of this material in the future.

Permission is not valid unless payment is received within sixty (60) days of the issuance of this permission. If payment is not received within this time period then all rights granted herein shall be revoked and this permission will be considered null and void.

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and Payment terms and conditions, all rights granted herein shall be revoked and this permission will be considered null and void.

AAAS reserves the right to terminate this permission and all rights granted herein at its discretion, for any purpose, at any time. In the event that AAAS elects to terminate this permission, you will have no further right to publish, publicly perform, publicly display, distribute or otherwise use any matter in which the AAAS content had been included, and all fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to the contact information as supplied by you during the request process and termination shall be immediate upon sending the notice. Neither AAAS nor CCC shall be liable for any costs, expenses, or damages you may incur as a result of the termination of this permission, beyond the refund noted above. This Permission may not be amended except by written document signed by both parties.

The terms above are applicable to all permissions granted for the use of AAAS material. Below you will find additional conditions that apply to your particular type of use.

FOR A THESIS OR DISSERTATION

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions of your dissertation or thesis. A full text article may be used in print versions only of a dissertation or thesis.

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / UMI, provided the AAAS material covered by this permission remains in situ.

If you are an Original Author on the AAAS article being reproduced, please refer to your License to Publish for rules on reproducing your paper in a dissertation or thesis.

FOR JOURNALS:

Permission covers both print and electronic versions of your journal article, however the AAAS material may not be used in any manner other than within the context of your article.

FOR BOOKS/TEXTBOOKS:

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights in all languages in both print and electronic formats (electronic formats are defined below).

If this license is to reuse a text excerpt or a full text article, then permission is granted for non-exclusive world rights in English only. You have the option of securing either print or electronic rights or both, but electronic rights are not automatically granted and do garner additional fees. Permission for translations of text excerpts or full text articles into other languages must be obtained secarately.

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only in cases where the electronic version is equivalent to or substitutes for the print version of the book/textbook. The AAAS material reproduced as permitted herein must remain in situ and must not be exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit), except in the case of permitted textbook companions as noted below.

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

If your book is an academic textbook, permission covers the following companions to your textbook, provided such companions are distributed only in conjunction with your textbook at no additional cost to the user:

- Password-protected website

- Instructor's image CD/DVD and/or PowerPoint resource

- Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for non-commercial, classroom purposes only. Any other uses require the prior written permission from AAAS.

If your license is for the use of AAAS Figures/Tables, then the electronic rights granted herein permit use of the Licensed Material in any Custom Databases that you distribute the electronic versions of your textbook through, so long as the Licensed Material remains within the context of a chapter of the title identified in your request and cannot be downloaded by a user as an independent image file.

Rights also extend to copies/files of your Work (as described above) that you are required to provide for use by the visually and/or print disabled in compliance with state and federal laws.

This permission only covers a single edition of your work as identified in your request.

FOR NEWSLETTERS:

Permission covers print and/or electronic versions, provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR ANNUAL REPORTS:

Permission covers print and electronic versions provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR PROMOTIONAL/MARKETING USES:

Permission covers the use of AAAS material in promotional or marketing pieces such as information packets, media kits, product slide kits, brochures, or flyers limited to a single print run. The AAAS Material may not be used in any manner which implies endorsement or promotion by the American Association for the Advancement of Science (AAAS) or Science of any product or service. AAAS does not permit the reproduction of its name, logo or text on promotional literature.

If permission to use a full text article is permitted, The Science article covered by this permission must not be altered in any way. No additional printing may be set onto an article copy other than the copyright credit line required above. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to, the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the article copies.

Additionally, article copies must be a freestanding part of any information package (i.e. media kit) into which they are inserted. They may not be physically attached to anything, such as an advertising insert, or have anything attached to them, such as a sample product. Article copies must be easily removable from any kits or informational packages in which they are used. The only exception is that article copies may be inserted into three-ring binders.

FOR CORPORATE INTERNAL USE:

The AAAS material covered by this permission may not be altered in any way. No additional printing may be set onto an article copy other than the required credit line. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto article cooles.

If you are making article copies, copies are restricted to the number indicated in your request and must be distributed only to internal employees for internal use.

If you are using AAAS Material in Presentation Slides, the required credit line must be visible on the slide where the AAAS material will be reprinted

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher." Access to any such CD, DVD, Flash Drive or Web page must be restricted to your organization's employees only. FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted AAAS material must be restricted to attendees of your event only (if you have been granted electronic rights for use of a full text article on your website, your website must be password protected, or access restricted so that only attendees can access the content on your site).

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher."

FOR POLICY REPORTS:

These rights are granted only to non-profit organizations and/or government agencies. Permission covers print and electronic versions of a report, provided the required credit line appears in both versions and provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately.

FOR CLASSROOM PHOTOCOPIES:

Permission covers distribution in print copy format only. Article copies must be freestanding and not part of a course pack. They may not be physically attached to anything or have anything attached to them.

FOR COURSEPACKS OR COURSE WEBSITES:

These rights cover use of the AAAS material in one class at one institution. Permission is valid only for a single semester after which the AAAS material must be removed from the Electronic Course website, unless new permission is obtained for an

additional semester. If the material is to be distributed online, access must be restricted to students and instructors enrolled in that particular course by some means of password or access control.

FOR WEBSITES:

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

Permissions for the use of Full Text articles on third party websites are granted on a case by case basis and only in cases where access to the AAAS Material is restricted by some means of password or access control. Alternately, an E-Print may be

purchased through our reprints department (<u>brocheleau@rockwaterinc.com</u>). REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE AN 'ORIGINAL AUTHOR' OF A SCIENCE PAPER

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of authors listed on the License Agreement as a "Licensed content author" or that you are acting on that author's behalf to use the Licensed content in a new work that one of the authors listed on the License Agreement as a "Licensed content author" has written.

Original Authors may post the 'Accepted Version' of their full text article on their personal or on their University website and not on any other website. The 'Accepted Version' is the version of the paper accepted for publication by AAAS including changes resulting from peer review but prior to AAAS's copy editing and production (in other words not the AAAS published version). FOR MOVIES / FILM / TELEVISION:

Permission is granted to use, record, film, photograph, and/or tape the AAAS material in connection with your program/film and in any medium your program/film may be shown or heard, including but not limited to broadcast and cable television, radio, print, world wide web, and videocassette.

The required credit line should run in the program/film's end credits.

FOR MUSEUM EXHIBITIONS:

Permission is granted to use the AAAS material as part of a single exhibition for the duration of that exhibit. Permission for use of the material in promotional materials for the exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).

FOR TRANSLATIONS:

Translation rights apply only to the language identified in your request summary above.

The following disclaimer must appear with your translation, on the first page of the article, after the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed by AAAS as accurate. In crucial matters, please refer to the official English-language version originally published by AAAS."

FOR USE ON A COVER:

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter issue, book, textbook, or annual report in print and electronic formats provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately

By using the AAAS Material identified in your request, you agree to abide by all the terms and conditions herein. Questions about these terms can be directed to the AAAS Permissions department <u>permissions@aaas.org</u>. Other Terms and Conditions:

v 2

Questions? E-mail us at customercare@copyright.com.

	Home Help V Live Chat Yue Tang V
htsLink	
	Self-Assembly of Hexagonal DNA Two-Dimensional (2D) Arrays
	Author: Yu He, Yi Chen, Haipeng Liu, et al
	Publication: Journal of the American Chemical Society
Most Trusted. Most Cited. Most Read.	Publisher: American Chemical Society
	Date: Sep 1, 2005
	Copyright © 2005, American Chemical Society
PERMISSION/LICENSE IS his type of permission/licen harged for your order. Plea: Permission is granted for yo	GRANTED FOR YOUR ORDER AT NO CHARGE see, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: our request in both print and electronic formats, and translations.
PERMISSION/LICENSE IS This type of permission/licen tharged for your order. Pleas Permission is granted for yo If figures and/or tables were Please print this page for yo Appropriate credit for the r rom (COMPLETE REFERENC) Information in place of the c. One-time permission is gra granted (such as derivative w	GRANTED FOR YOUR ORDER AT NO CHARGE ise, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: our request in both print and electronic formats, and translations, e requested, they may be adapted or used in part. our records and send a copy of k to your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E (TATAION, Copyright (YERA) American Chemical Society." Insert appropriate apitalized words. Inted only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request.
PERMISSION/LICENSE IS This type of permission/licen harged for your order. Plea: Permission is granted for yo If figures and/or tables wen Please print this page for yo Appropriate credit for the r orm (COMPLETE REFERENCI Information in place of the c. One-time permission is gra ranted (such as derivative w f credit is given to another s rom that source.	GRANTED FOR YOUR ORDER AT NO CHARGE use, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: bur request in both print and electronic formats, and translations. e requested, they may be adapted or used in part. gruested and send a copy of it o your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E CITATION), Copyright (YEAR) American Chemical Society." Insert appropriate apitalized words. nted only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request. ource for the material you requested from RightsLink, permission must be obtained

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

ntsLink	Home Help V Live Chat Yue Tang V
	Highly Connected Two-Dimensional Crystals of DNA Six-Point- Stars
	Author: Yu He, Ye Tian, Alexander E. Ribbe, et al
ACS Publications	Publication: Journal of the American Chemical Society
 Most Trusted, Most Cited, Most Read. 	Publisher: American Chemical Society
	Date: Dec 1, 2006
	Copyright © 2006, American Chemical Society
his type of permission/licen	use, instead of the standard Terms and Conditions, is sent to you because no fee is being
This type of permission/licen tharged for your order. Pleas Permission is granted for your If figures and/or tables were Please print this page for your Appropriate credit for the ri- rom (COMPLETR EFERENCE) formation in place of the co- One-time permission is gran yanted (such as derivative we f credit is given to another si	se, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: our request in both print and electronic formats, and translations. e requested, they may be adapted or used in part. our records and send a copy of it oyour publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate apitalized words. nted only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request.
This type of permission/licen tharged for your order. Pleas Permission is granted for yo If figures and/or tables were Please print this page for yo Appropriate credit for the r rom (COMPLET REFERENCE) nformation in place of the c One-time permission is gra ranted (such as derivative f credit is given to another si rom that source.	ise, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: our request in both print and electronic formats, and translations. e requested, they may be adapted or used in part. our records and send a copy of it oyour publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E CITATION). Copyright YEAR) American Chemical Society." Insert appropriate apitalized words. nted only for the use specified in your RightsLink request. No additional uses are works or other editions). For any uses, please submit a new request. ource for the material you requested from RightsLink, permission must be obtained

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com
SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number	5530460117498
License date	Apr 15, 2023
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature
Licensed Content Title	Folding DNA to create nanoscale shapes and patterns
Licensed Content Author	Paul W. K. Rothemund
Licensed Content Date	Mar 16, 2006
Type of Use	Thesis/Dissertation
Requestor type	non-commercial (non-profit)
Format	electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 2.
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMPE, AZ 85281

United States Attn: Mr. Yue Tang 0.00 USD

Terms and Conditions

Total

Springer Nature Customer Service Centre GmbH Terms and Conditions

The following terms and conditions ("Terms and Conditions") together with the terms specified in your [RightsLink] constitute the License ("License") between you as Licensee and Springer Nature Customer Service Centre GmbH as Licensor. By clicking 'accept' and completing the transaction for your use of the material ("Licensed Material"), you confirm your acceptance of and obligation to be bound by these Terms and Conditions.

1. Grant and Scope of License

1. 1. The Licensor grants you a personal, non-exclusive, non-transferable, non-sublicensable, revocable, world-wide License to reproduce, distribute, communicate to the public, make available, broadcast, electronically transmit or create derivative works using the Licensed Material for the purpose(s) specified in your RightsLink Licence Details only. Licenses are granted for the specific use requested in the order and for no other use, subject to these Terms and Conditions. You acknowledge and agree that the rights granted to you under this Licensed Material in whole or in collective works, or create derivative works of the Licensed Material in whole or in

part unless expressly stated in your RightsLink Licence Details. You may use the Licensed Material only as permitted under this Agreement and will not reproduce, distribute, display, perform, or otherwise use or exploit any Licensed Material in any way, in whole or in part, except as expressly permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent permitted by these Terms and Conditions, by your RightsLink Licence Details and by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed Material, e.g. where a license has been purchased for print use only, separate permission must be obtained for electronic re-use. Similarly, a License is only valid in the language selected and does not apply for editions in other languages unless additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is expressly excluded from the License.

 S. Rights for additional reuses such as custom editions, computer/mobile applications, film or TV reuses and/or any other derivative rights requests require additional permission and may be subject to an additional fee. Please apply to journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You acknowledge and agree that nothing in this License limits or restricts Licensor's rights in or use of the Licensed Material in any way. Neither this License, nor any act, omission, or statement by Licensor or you, conveys any ownership right to you in any Licensed Material, or to any element or portion thereof. As between Licensor and you, Licensor owns and retains all right, title, and interest in and to the Licensed Material subject to the license granted in Section 1.1. Your permission to use the Licensed Material is expressly conditioned on you not impairing Licensor's or the applicable copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or formatting purposes provided such alterations do not alter the original meaning or intention of the Licensed Material and the new figure(s) are still accurate and representative of the Licensed Material. Any other changes including but not limited to, cropping, adapting, and/or omitting material that affect the meaning, intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such reuse must include a clear acknowledgment of this permission visible at the same time as the figures/tables/illustration or abstract and which must indicate that the Licensed Material is not part of the governing OA license but has been reproduced with permission. This may be indicated according to any standard referencing system but must include at a minimum 'Book/Journal title, Author, Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM Permissions Guidelines ("STM PG") as amended from time to time and made available at <u>https://www.stm-assoc.org/intellectual-</u> property/permissions/permissions-quidelines/.

4. 2. For content reuse requests that qualify for permission under the STM PG, and which may be updated from time to time, the STM PG supersede the terms and conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer apply at the time of publication, further permission must be sought from the Rightsholder. Contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical	Reuse up to distribution or time period indicated in License
communications project	

Reuse in a dissertation/thesis	Lifetime of thesis
Reuse in a journal/magazine	Lifetime of journal/magazine
Reuse in a book/textbook	Lifetime of edition
Reuse on a website	1 year unless otherwise specified in the License
Reuse in a presentation/slide kit/poster	Lifetime of presentation/slide kit/poster. Note: publication whether electronic or in print of presentation/slide kit/poster may require further permission.
Reuse in conference proceedings	Lifetime of conference proceedings
Reuse in an annual report	Lifetime of annual report
Reuse in training/CME materials	Reuse up to distribution or time period indicated in License
Reuse in newsmedia	Lifetime of newsmedia
Reuse in coursepack/classroom materials	Reuse up to distribution and/or time period indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed Material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract and must be hyperlinked to the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing system and at a minimum should include "Author, Article/Book Title, Journal name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms apply: Print rights of the Version of Record are provided for; electronic rights for use only on institutional repository as defined by the Sherpa guideline (<u>www.sherpa.ac.uk/romeo/</u>) and only up to what is required by the awarding institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required. Please contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according to current citation standards and include the following acknowledgement: 'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All amounts payable by you under this License are exclusive of any sales, use, withholding, value added or similar taxes, government fees or levies or other assessments. Collection and/or remittance of such taxes to the relevant tax authority shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of the Licensed Material. You are solely responsible for ensuring that the material you wish to license is original to the Licensor and does not carry the copyright of another entity or third party (as credited in the published version). If the credit line on any part of the Licensed Material indicates that it was reprinted or adapted with permission from another source, then you should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS, INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND ANY IMPOLED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, INEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the applicable period shown in Clause 5.1 above. Thereafter, this license will be terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be construed, interpreted and determined in accordance with the laws of the Federal Republic of Germany without reference to the stipulations of the CISG (United Nations Convention on Contracts for the International Sale of Goods) or to Germany's choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising out of this License shall be decided exclusively by the courts of or having jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues please contact <u>springernaturesupport@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-878-646-2777. For questions on Springer Nature licensing please visit <u>https://www.springernature.com/gp/partners/rights-permissions-third-partydistribution</u>

Other Conditions:

Version 1.4 - Dec 2022

ntsLink	Home Help V Live Chat Yue Tang V
	Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container
	Author: Yonggang Ke, Jaswinder Sharma, Minghui Liu, et al
ACS Publications	Publication: Nano Letters
 Most trusted. Most Cited. Most Read. 	Publisher: American Chemical Society
	Date: Jun 1, 2009
	Copyright © 2009, American Chemical Society
PERMISSION/LICENSE IS This type of permission/licen tharged for your order. Pleas	GRANTED FOR YOUR ORDER AT NO CHARGE use, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following:
PERMISSION/LICENSE IS This type of permission/licen charged for your order. Pleas Permission is granted for yo If figures and/or tables were Please print this page for yo Appropriate credit for the nor rom (COMPLETE REFERENCE formation in place of the ci- one-time permission is gran granted (such as derivative w	GRANTED FOR YOUR ORDER AT NO CHARGE ise, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: our request in both print and electronic formats, and translations. e requested, they may be adapted or used in part. our records and send a copy of it to your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E (TIATION). Copyright (YEAR) American Chemical Society." Insert appropriate apitalized words. nted only for the use specified in your RightsLink request. No additional uses are works or other editions). For any uses, please submit a new request.
PERMISSION/LICENSE IS This type of permission/licen tharged for your order. Pleas Permission is granted for you If figures and/or tables were Please print this page for you Appropriate credit for the ri- rom (COMPLETE REFERENCE) formation in place of the ca One-time permission is granger granted (such as derivative f credit is given to another si- rom that source.	GRANTED FOR YOUR ORDER AT NO CHARGE use, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: Dur request in both print and electronic formats, and translations, e requested, they may be adapted or used in part. For records and send a copy of it to your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission e (ITATION). Copyright (YEAR) American Chemical Society." Insert appropriate apitalized words. neted only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request. Ource for the material your equested from RightsLink, permission must be obtained

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number	5530460335893
License date	Apr 15, 2023
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature
Licensed Content Title	Self-assembly of DNA into nanoscale three-dimensional shapes
Licensed Content Author	Shawn M. Douglas et al
Licensed Content Date	May 21, 2009
Type of Use	Thesis/Dissertation
Requestor type	non-commercial (non-profit)
Format	electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 2.
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMDE A7 05201

TEMPE, AZ 85281 United States Attn: Mr. Yue Tang 0.00 USD

Terms and Conditions

Total

Springer Nature Customer Service Centre GmbH Terms and Conditions

The following terms and conditions ("Terms and Conditions") together with the terms specified in your [RightsLink] constitute the License ("License") between you as Licensee and Springer Nature Customer Service Centre GmbH as Licensor. By clicking 'accept' and completing the transaction for your use of the material ("Licensed Material"), you confirm your acceptance of and obligation to be bound by these Terms and Conditions.

1. Grant and Scope of License

1. 1. The Licensor grants you a personal, non-exclusive, non-transferable, non-sublicensable, revocable, world-wide License to reproduce, distribute, communicate to the public, make available, broadcast, electronically transmit or create derivative works using the Licensed Material for the purpose(s) specified in your RightsLink Licence Details only. Licenses are granted for the specific use requested in the order and for no other use, subject to these Terms and Conditions. You acknowledge and agree that the rights granted to you under this Licensed Material in whole or in collective works, or create derivative works of the Licensed Material in whole or in

part unless expressly stated in your RightsLink Licence Details. You may use the Licensed Material only as permitted under this Agreement and will not reproduce, distribute, display, perform, or otherwise use or exploit any Licensed Material in any way, in whole or in part, except as expressly permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent permitted by these Terms and Conditions, by your RightsLink Licence Details and by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed Material, e.g. where a license has been purchased for print use only, separate permission must be obtained for electronic re-use. Similarly, a License is only valid in the language selected and does not apply for editions in other languages unless additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is expressly excluded from the License.

1. 5. Rights for additional reuses such as custom editions, computer/mobile applications, film or TV reuses and/or any other derivative rights requests require additional permission and may be subject to an additional fee. Please apply to journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You acknowledge and agree that nothing in this License limits or restricts Licensor's rights in or use of the Licensed Material in any way. Neither this License, nor any act, omission, or statement by Licensor or you, conveys any ownership right to you in any Licensed Material, or to any element or portion thereof. As between Licensor and you, Licensor owns and retains all right, title, and interest in and to the Licensed Material subject to the license granted in Section 1.1. Your permission to use the Licensed Material is expressly conditioned on you not impairing Licensor's or the applicable copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or formatting purposes provided such alterations do not alter the original meaning or intention of the Licensed Material and the new figure(s) are still accurate and representative of the Licensed Material. Any other changes including but not limited to, cropping, adapting, and/or omitting material that affect the meaning, intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such reuse must include a clear acknowledgment of this permission visible at the same time as the figures/tables/illustration or abstract and which must indicate that the Licensed Material is not part of the governing OA license but has been reproduced with permission. This may be indicated according to any standard referencing system but must include at a minimum 'Book/Journal title, Author, Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM Permissions Guidelines ("STM PG") as amended from time to time and made available at <u>https://www.stm-assoc.org/intellectualproperty/permissions/permissions-guidelines/.</u>

4. 2. For content reuse requests that qualify for permission under the STM PG, and which may be updated from time to time, the STM PG supersede the terms and conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer apply at the time of publication, further permission must be sought from the Rightsholder. Contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical	Reuse up to distribution or time period indicated in License
communications project	

Reuse in a dissertation/thesis	Lifetime of thesis
Reuse in a journal/magazine	Lifetime of journal/magazine
Reuse in a book/textbook	Lifetime of edition
Reuse on a website	1 year unless otherwise specified in the License
Reuse in a presentation/slide kit/poster	Lifetime of presentation/slide kit/poster. Note: publication whether electronic or in print of presentation/slide kit/poster may require further permission.
Reuse in conference proceedings	Lifetime of conference proceedings
Reuse in an annual report	Lifetime of annual report
Reuse in training/CME materials	Reuse up to distribution or time period indicated in License
Reuse in newsmedia	Lifetime of newsmedia
Reuse in coursepack/classroom materials	Reuse up to distribution and/or time period indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed Material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract and must be hyperlinked to the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing system and at a minimum should include "Author, Article/Book Title, Journal name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms apply: Print rights of the Version of Record are provided for; electronic rights for use only on institutional repository as defined by the Sherpa guideline (<u>www.sherpa.ac.uk/romeo/</u>) and only up to what is required by the awarding institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required. Please contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according to current citation standards and include the following acknowledgement: 'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All amounts payable by you under this License are exclusive of any sales, use, withholding, value added or similar taxes, government fees or levies or other assessments. Collection and/or remittance of such taxes to the relevant tax authority shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of the Licensed Material. You are solely responsible for ensuring that the material you wish to license is original to the Licensor and does not carry the copyright of another entity or third party (as credited in the published version). If the credit line on any part of the Licensed Material indicates that it was reprinted or adapted with permission from another source, then you should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS, INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND ANY IMPOLED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, INEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the applicable period shown in Clause 5.1 above. Thereafter, this license will be terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be construed, interpreted and determined in accordance with the laws of the Federal Republic of Germany without reference to the stipulations of the CISG (United Nations Convention on Contracts for the International Sale of Goods) or to Germany's choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising out of this License shall be decided exclusively by the courts of or having jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues please contact <u>springernaturesupport@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-878-646-2777. For questions on Springer Nature licensing please visit <u>https://www.springernature.com/gp/partners/rights-permissions-third-partydistribution</u>

Other Conditions:

Version 1.4 - Dec 2022

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.

License Number	5530460845123
License date	Apr 15, 2023
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	DNA Origami with Complex Curvatures in Three-Dimensional Space
Licensed Content Author	Dongran Han, Suchetan Pal, Jeanette Nangreave, Zhengtao Deng, et al.
Licensed Content Date	Apr 15, 2011
Licensed Content Volume	332
Licensed Content Issue	6027
Volume number	332
Issue number	6027
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Electronic
Portion	Text Excerpt
Number of pages requested	1
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 3.
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMPE, AZ 85281

Total

Terms and Conditions

American Association for the Advancement of Science TERMS AND CONDITIONS

United States Attn: Mr. Yue Tang 0.00 USD

Regarding your request, we are pleased to grant you non-exclusive, non-transferable permission, to republish the AAAS material identified above in your work identified above, subject to the terms and conditions herein. We must be contacted for permission for any uses other than those specifically identified in your request above.

The following credit line must be printed along with the AAAS material: "From [Full Reference Citation]. Reprinted with permission from AAAS."

All required credit lines and notices must be visible any time a user accesses any part of the AAAS material and must appear on any printed copies and authorized user might make.

This permission does not apply to figures / photos / artwork or any other content or materials included in your work that are credited to non-AAAS sources. If the requested material is sourced to or references non-AAAS sources, you must obtain authorization from that source as well before using that material. You agree to hold harmless and indemnify AAAS against any claims arising from your use of any content in your work that is credited to non-AAAS sources. If the AAAS material covered by this permission was published in Science during the years 1974 - 1994, you must also obtain permission from the author, who may grant or withhold permission, and who may or may not charge a fee if permission is granted. See original article for author's address. This condition does not apply to news articles.

The AAS material may not be modified or altered except that figures and tables may be modified with permission from the

author. Author permission for any such changes must be secured prior to your use. Whenever possible, we ask that electronic uses of the AAAS material permitted herein include a hyperlink to the original work on

AAAS's website (hyperlink may be embedded in the reference citation). AAAS material reproduced in your work identified herein must not account for more than 30% of the total contents of that work.

AAAS must publish the full paper prior to use of any text.

AAAS material must not imply any endorsement by the American Association for the Advancement of Science.

This permission is not valid for the use of the AAAS and/or Science logos.

AAAS makes no representations or warranties as to the accuracy of any information contained in the AAAS material covered by this permission, including any warranties of

merchantability or fitness for a particular purpose.

If permission fees for this use are waived, please note that AAAS reserves the right to charge for reproduction of this material in the future.

Permission is not valid unless payment is received within sixty (60) days of the issuance of this permission. If payment is not received within this time period then all rights granted herein shall be revoked and this permission will be considered null and void.

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and Payment terms and conditions, all rights granted herein shall be revoked and this permission will be considered null and void.

AAAS reserves the right to terminate this permission and all rights granted herein at its discretion, for any purpose, at any time. In the event that AAAS elects to terminate this permission, you will have no further right to publish, publicly perform, publicly display, distribute or otherwise use any matter in which the AAAS content had been included, and all fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to the contact information as supplied by you during the request process and termination shall be immediate upon sending the notice. Neither AAAS no rCCC shall be liable for any costs, expenses, or damages you may incur as a result of the termination of this permission, beyond the refund noted above. This Permission may not be amended except by written document signed by both parties.

The terms above are applicable to all permissions granted for the use of AAAS material. Below you will find additional conditions that apply to your particular type of use.

FOR A THESIS OR DISSERTATION

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions of your dissertation or thesis. A full text article may be used in print versions only of a dissertation or thesis.

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / UMI, provided the AAAS material covered by this permission remains in situ.

If you are an Original Author on the AAAS article being reproduced, please refer to your License to Publish for rules on reproducing your paper in a dissertation or thesis.

FOR JOURNALS:

Permission covers both print and electronic versions of your journal article, however the AAAS material may not be used in any manner other than within the context of your article.

FOR BOOKS/TEXTBOOKS:

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights in all languages in both print and electronic formats (electronic formats are defined below).

If this license is to reuse a text excerpt or a full text article, then permission is granted for non-exclusive world rights in English only. You have the option of securing either print or electronic rights or both, but electronic rights are not automatically granted and do garner additional fees. Permission for translations of text excerpts or full text articles into other languages must be obtained secarately.

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only in cases where the electronic version is equivalent to or substitutes for the print version of the book/textbook. The AAAS material reproduced as permitted herein must remain in situ and must not be exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit), except in the case of permitted textbook companions as noted below.

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

If your book is an academic textbook, permission covers the following companions to your textbook, provided such companions are distributed only in conjunction with your textbook at no additional cost to the user:

- Password-protected website

- Instructor's image CD/DVD and/or PowerPoint resource

- Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for non-commercial, classroom purposes only. Any other uses require the prior written permission from AAAS.

If your license is for the use of AAAS Figures/Tables, then the electronic rights granted herein permit use of the Licensed Material in any Custom Databases that you distribute the electronic versions of your textbook through, so long as the Licensed Material remains within the context of a chapter of the title identified in your request and cannot be downloaded by a user as an independent image file.

Rights also extend to copies/files of your Work (as described above) that you are required to provide for use by the visually and/or print disabled in compliance with state and federal laws.

This permission only covers a single edition of your work as identified in your request.

FOR NEWSLETTERS:

Permission covers print and/or electronic versions, provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR ANNUAL REPORTS:

Permission covers print and electronic versions provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR PROMOTIONAL/MARKETING USES:

Permission covers the use of AAAS material in promotional or marketing pieces such as information packets, media kits, product slide kits, brochures, or flyers limited to a single print run. The AAAS Material may not be used in any manner which implies endorsement or promotion by the American Association for the Advancement of Science (AAAS) or Science of any product or service. AAAS does not permit the reproduction of its name, logo or text on promotional literature.

If permission to use a full text article is permitted, The Science article covered by this permission must not be altered in any way. No additional printing may be set onto an article copy other than the copyright credit line required above. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to, the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the article copies.

Additionally, article copies must be a freestanding part of any information package (i.e. media kit) into which they are inserted. They may not be physically attached to anything, such as an advertising insert, or have anything attached to them, such as a sample product. Article copies must be easily removable from any kits or informational packages in which they are used. The only exception is that article copies may be inserted into three-ring binders.

FOR CORPORATE INTERNAL USE:

The AAAS material covered by this permission may not be altered in any way. No additional printing may be set onto an article copy other than the required credit line. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto article cooles.

If you are making article copies, copies are restricted to the number indicated in your request and must be distributed only to internal employees for internal use.

If you are using AAAS Material in Presentation Slides, the required credit line must be visible on the slide where the AAAS material will be reprinted

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher." Access to any such CD, DVD, Flash Drive or Web page must be restricted to your organization's employees only. FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted AAAS material must be restricted to attendees of your event only (if you have been granted electronic rights for use of a full text article on your website, your website must be password protected, or access restricted so that only attendees can access the content on your site).

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher."

FOR POLICY REPORTS:

These rights are granted only to non-profit organizations and/or government agencies. Permission covers print and electronic versions of a report, provided the required credit line appears in both versions and provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately.

FOR CLASSROOM PHOTOCOPIES:

Permission covers distribution in print copy format only. Article copies must be freestanding and not part of a course pack. They may not be physically attached to anything or have anything attached to them.

FOR COURSEPACKS OR COURSE WEBSITES:

These rights cover use of the AAAS material in one class at one institution. Permission is valid only for a single semester after which the AAAS material must be removed from the Electronic Course website, unless new permission is obtained for an

additional semester. If the material is to be distributed online, access must be restricted to students and instructors enrolled in that particular course by some means of password or access control.

FOR WEBSITES:

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

Permissions for the use of Full Text articles on third party websites are granted on a case by case basis and only in cases where access to the AAAS Material is restricted by some means of password or access control. Alternately, an E-Print may be

purchased through our reprints department (<u>brocheleau@rockwaterinc.com</u>). REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE AN 'ORIGINAL AUTHOR' OF A SCIENCE PAPER

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of authors listed on the License Agreement as a "Licensed content author" or that you are acting on that author's behalf to use the Licensed content in a new work that one of the authors listed on the License Agreement as a "Licensed content author" has written.

Original Authors may post the 'Accepted Version' of their full text article on their personal or on their University website and not on any other website. The 'Accepted Version' is the version of the paper accepted for publication by AAAS including changes resulting from peer review but prior to AAAS's copy editing and production (in other words not the AAAS published version). FOR MOVIES / FILM / TELEVISION:

Permission is granted to use, record, film, photograph, and/or tape the AAAS material in connection with your program/film and in any medium your program/film may be shown or heard, including but not limited to broadcast and cable television, radio, print, world wide web, and videocassette.

The required credit line should run in the program/film's end credits.

FOR MUSEUM EXHIBITIONS:

Permission is granted to use the AAAS material as part of a single exhibition for the duration of that exhibit. Permission for use of the material in promotional materials for the exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).

FOR TRANSLATIONS:

Translation rights apply only to the language identified in your request summary above.

The following disclaimer must appear with your translation, on the first page of the article, after the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed by AAAS as accurate. In crucial matters, please refer to the official English-language version originally published by AAAS."

FOR USE ON A COVER:

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter issue, book, textbook, or annual report in print and electronic formats provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately

By using the AAAS Material identified in your request, you agree to abide by all the terms and conditions herein. Questions about these terms can be directed to the AAAS Permissions department <u>permissions@aaas.org</u>. Other Terms and Conditions:

v 2

SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number	5530460951647
License date	Apr 15, 2023
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature Nanotechnology
Licensed Content Title	Complex wireframe DNA origami nanostructures with multi-arm junction vertices
Licensed Content Author	Fei Zhang et al
Licensed Content Date	Jul 20, 2015
Type of Use	Thesis/Dissertation
Requestor type	non-commercial (non-profit)
Format	electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 3
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMPE, AZ 85281 United States Attr: Mr. Yuo Tang

Total Terms and Conditions

Springer Nature Customer Service Centre GmbH Terms and Conditions

0.00 USD

The following terms and conditions ("Terms and Conditions") together with the terms specified in your [RightsLink] constitute the License ("License") between you as Licensee and Springer Nature Customer Service Centre GmbH as Licensor. By clicking 'accept' and completing the transaction for your use of the material ("Licensed Material"), you confirm your acceptance of and obligation to be bound by these Terms and Conditions.

1. Grant and Scope of License

1. 1. The Licensor grants you a personal, non-exclusive, non-transferable, non-sublicensable, revocable, world-wide License to reproduce, distribute, communicate to the public, make available, broadcast, electronically transmit or create derivative works using the Licensed Material for the purpose(s) specified in your RightsLink Licence Details only. Licenses are granted for the specific use requested in the order and for no other use, subject to these Terms and Conditions. You acknowledge and agree that the rights granted to you under this Licensed Material in whole or in collective works, or create derivative works of the Licensed Material in whole or in

part unless expressly stated in your RightsLink Licence Details. You may use the Licensed Material only as permitted under this Agreement and will not reproduce, distribute, display, perform, or otherwise use or exploit any Licensed Material in any way, in whole or in part, except as expressly permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent permitted by these Terms and Conditions, by your RightsLink Licence Details and by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed Material, e.g. where a license has been purchased for print use only, separate permission must be obtained for electronic re-use. Similarly, a License is only valid in the language selected and does not apply for editions in other languages unless additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is expressly excluded from the License.

 S. Rights for additional reuses such as custom editions, computer/mobile applications, film or TV reuses and/or any other derivative rights requests require additional permission and may be subject to an additional fee. Please apply to journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You acknowledge and agree that nothing in this License limits or restricts Licensor's rights in or use of the Licensed Material in any way. Neither this License, nor any act, omission, or statement by Licensor or you, conveys any ownership right to you in any Licensed Material, or to any element or portion thereof. As between Licensor and you, Licensor owns and retains all right, title, and interest in and to the Licensed Material subject to the license granted in Section 1.1. Your permission to use the Licensed Material is expressly conditioned on you not impairing Licensor's or the applicable copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or formatting purposes provided such alterations do not alter the original meaning or intention of the Licensed Material and the new figure(s) are still accurate and representative of the Licensed Material. Any other changes including but not limited to, cropping, adapting, and/or omitting material that affect the meaning, intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such reuse must include a clear acknowledgment of this permission visible at the same time as the figures/tables/illustration or abstract and which must indicate that the Licensed Material is not part of the governing OA license but has been reproduced with permission. This may be indicated according to any standard referencing system but must include at a minimum 'Book/Journal title, Author, Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM Permissions Guidelines ("STM PG") as amended from time to time and made available at <u>https://www.stm-assoc.org/intellectualproperty/permissions/permissions-guidelines/.</u>

4. 2. For content reuse requests that qualify for permission under the STM PG, and which may be updated from time to time, the STM PG supersede the terms and conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer apply at the time of publication, further permission must be sought from the Rightsholder. Contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical	Reuse up to distribution or time period indicated in License
communications project	

Reuse in a dissertation/thesis	Lifetime of thesis
Reuse in a journal/magazine	Lifetime of journal/magazine
Reuse in a book/textbook	Lifetime of edition
Reuse on a website	1 year unless otherwise specified in the License
Reuse in a presentation/slide kit/poster	Lifetime of presentation/slide kit/poster. Note: publication whether electronic or in print of presentation/slide kit/poster may require further permission.
Reuse in conference proceedings	Lifetime of conference proceedings
Reuse in an annual report	Lifetime of annual report
Reuse in training/CME materials	Reuse up to distribution or time period indicated in License
Reuse in newsmedia	Lifetime of newsmedia
Reuse in coursepack/classroom materials	Reuse up to distribution and/or time period indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed Material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract and must be hyperlinked to the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing system and at a minimum should include "Author, Article/Book Title, Journal name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms apply: Print rights of the Version of Record are provided for; electronic rights for use only on institutional repository as defined by the Sherpa guideline (<u>www.sherpa.ac.uk/romeo/</u>) and only up to what is required by the awarding institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required. Please contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according to current citation standards and include the following acknowledgement: 'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All amounts payable by you under this License are exclusive of any sales, use, withholding, value added or similar taxes, government fees or levies or other assessments. Collection and/or remittance of such taxes to the relevant tax authority shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of the Licensed Material. You are solely responsible for ensuring that the material you wish to license is original to the Licensor and does not carry the copyright of another entity or third party (as credited in the published version). If the credit line on any part of the Licensed Material indicates that it was reprinted or adapted with permission from another source, then you should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS, INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND ANY IMPOLED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, INEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the applicable period shown in Clause 5.1 above. Thereafter, this license will be terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be construed, interpreted and determined in accordance with the laws of the Federal Republic of Germany without reference to the stipulations of the CISG (United Nations Convention on Contracts for the International Sale of Goods) or to Germany's choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising out of this License shall be decided exclusively by the courts of or having jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues please contact <u>springernaturesupport@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-878-646-2777. For questions on Springer Nature licensing please visit <u>https://www.springernature.com/gp/partners/rights-permissions-third-partydistribution</u>

Other Conditions:

Version 1.4 - Dec 2022

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.

License Number	5530461036677
License date	Apr 15, 2023
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components
Licensed Content Author	Thomas Gerling, Klaus F. Wagenbauer, Andrea M. Neuner, Hendrik Dietz
Licensed Content Date	Mar 27, 2015
Licensed Content Volume	347
Licensed Content Issue	6229
Volume number	347
Issue number	6229
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Electronic
Portion	Text Excerpt
Number of pages requested	1
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 1
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMPE, AZ 85281 United States

Total

Terms and Conditions

American Association for the Advancement of Science TERMS AND CONDITIONS

Attn: Mr. Yue Tang 0.00 USD

Regarding your request, we are pleased to grant you non-exclusive, non-transferable permission, to republish the AAAS material identified above in your work identified above, subject to the terms and conditions herein. We must be contacted for permission for any uses other than those specifically identified in your request above.

The following credit line must be printed along with the AAAS material: "From [Full Reference Citation]. Reprinted with permission from AAAS."

All required credit lines and notices must be visible any time a user accesses any part of the AAAS material and must appear on any printed copies and authorized user might make.

This permission does not apply to figures / photos / artwork or any other content or materials included in your work that are credited to non-AAAS sources. If the requested material is sourced to or references non-AAAS sources, you must obtain authorization from that source as well before using that material. You agree to hold harmless and indemnify AAAS against any claims arising from your use of any content in your work that is credited to non-AAAS sources. If the AAAS material covered by this permission was published in Science during the years 1974 - 1994, you must also obtain permission from the author, who may grant or withhold permission, and who may or may not charge a fee if permission is granted. See original article for author's address. This condition does not apply to news articles.

The AAS material may not be modified or altered except that figures and tables may be modified with permission from the

author. Author permission for any such changes must be secured prior to your use. Whenever possible, we ask that electronic uses of the AAAS material permitted herein include a hyperlink to the original work on

AAAS's website (hyperlink may be embedded in the reference citation). AAAS material reproduced in your work identified herein must not account for more than 30% of the total contents of that work.

AAAS must publish the full paper prior to use of any text.

AAAS material must not imply any endorsement by the American Association for the Advancement of Science.

This permission is not valid for the use of the AAAS and/or Science logos.

AAAS makes no representations or warranties as to the accuracy of any information contained in the AAAS material covered by this permission, including any warranties of

merchantability or fitness for a particular purpose.

If permission fees for this use are waived, please note that AAAS reserves the right to charge for reproduction of this material in the future.

Permission is not valid unless payment is received within sixty (60) days of the issuance of this permission. If payment is not received within this time period then all rights granted herein shall be revoked and this permission will be considered null and void.

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and Payment terms and conditions, all rights granted herein shall be revoked and this permission will be considered null and void.

AAAS reserves the right to terminate this permission and all rights granted herein at its discretion, for any purpose, at any time. In the event that AAAS elects to terminate this permission, you will have no further right to publish, publicly perform, publicly display, distribute or otherwise use any matter in which the AAAS content had been included, and all fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to the contact information as supplied by you during the request process and termination shall be immediate upon sending the notice. Neither AAAS no rCCC shall be liable for any costs, expenses, or damages you may incur as a result of the termination of this permission, beyond the refund noted above. This Permission may not be amended except by written document signed by both parties.

The terms above are applicable to all permissions granted for the use of AAAS material. Below you will find additional conditions that apply to your particular type of use.

FOR A THESIS OR DISSERTATION

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions of your dissertation or thesis. A full text article may be used in print versions only of a dissertation or thesis.

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / UMI, provided the AAAS material covered by this permission remains in situ.

If you are an Original Author on the AAAS article being reproduced, please refer to your License to Publish for rules on reproducing your paper in a dissertation or thesis.

FOR JOURNALS:

Permission covers both print and electronic versions of your journal article, however the AAAS material may not be used in any manner other than within the context of your article.

FOR BOOKS/TEXTBOOKS:

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights in all languages in both print and electronic formats (electronic formats are defined below).

If this license is to reuse a text excerpt or a full text article, then permission is granted for non-exclusive world rights in English only. You have the option of securing either print or electronic rights or both, but electronic rights are not automatically granted and do garner additional fees. Permission for translations of text excerpts or full text articles into other languages must be obtained secarately.

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only in cases where the electronic version is equivalent to or substitutes for the print version of the book/textbook. The AAAS material reproduced as permitted herein must remain in situ and must not be exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit), except in the case of permitted textbook companions as noted below.

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

If your book is an academic textbook, permission covers the following companions to your textbook, provided such companions are distributed only in conjunction with your textbook at no additional cost to the user:

- Password-protected website

- Instructor's image CD/DVD and/or PowerPoint resource

- Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for non-commercial, classroom purposes only. Any other uses require the prior written permission from AAAS.

If your license is for the use of AAAS Figures/Tables, then the electronic rights granted herein permit use of the Licensed Material in any Custom Databases that you distribute the electronic versions of your textbook through, so long as the Licensed Material remains within the context of a chapter of the title identified in your request and cannot be downloaded by a user as an independent image file.

Rights also extend to copies/files of your Work (as described above) that you are required to provide for use by the visually and/or print disabled in compliance with state and federal laws.

This permission only covers a single edition of your work as identified in your request.

FOR NEWSLETTERS:

Permission covers print and/or electronic versions, provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR ANNUAL REPORTS:

Permission covers print and electronic versions provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR PROMOTIONAL/MARKETING USES:

Permission covers the use of AAAS material in promotional or marketing pieces such as information packets, media kits, product slide kits, brochures, or flyers limited to a single print run. The AAAS Material may not be used in any manner which implies endorsement or promotion by the American Association for the Advancement of Science (AAAS) or Science of any product or service. AAAS does not permit the reproduction of its name, logo or text on promotional literature.

If permission to use a full text article is permitted, The Science article covered by this permission must not be altered in any way. No additional printing may be set onto an article copy other than the copyright credit line required above. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to, the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the article copies.

Additionally, article copies must be a freestanding part of any information package (i.e. media kit) into which they are inserted. They may not be physically attached to anything, such as an advertising insert, or have anything attached to them, such as a sample product. Article copies must be easily removable from any kits or informational packages in which they are used. The only exception is that article copies may be inserted into three-ring binders.

FOR CORPORATE INTERNAL USE:

The AAAS material covered by this permission may not be altered in any way. No additional printing may be set onto an article copy other than the required credit line. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto article copies.

If you are making article copies, copies are restricted to the number indicated in your request and must be distributed only to internal employees for internal use.

If you are using AAAS Material in Presentation Slides, the required credit line must be visible on the slide where the AAAS material will be reprinted

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher." Access to any such CD, DVD, Flash Drive or Web page must be restricted to your organization's employees only. FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted AAAS material must be restricted to attendees of your event only (if you have been granted electronic rights for use of a full text article on your website, your website must be password protected, or access restricted so that only attendees can access the content on your site).

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher."

FOR POLICY REPORTS:

These rights are granted only to non-profit organizations and/or government agencies. Permission covers print and electronic versions of a report, provided the required credit line appears in both versions and provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately.

FOR CLASSROOM PHOTOCOPIES:

Permission covers distribution in print copy format only. Article copies must be freestanding and not part of a course pack. They may not be physically attached to anything or have anything attached to them.

FOR COURSEPACKS OR COURSE WEBSITES:

These rights cover use of the AAAS material in one class at one institution. Permission is valid only for a single semester after which the AAAS material must be removed from the Electronic Course website, unless new permission is obtained for an

additional semester. If the material is to be distributed online, access must be restricted to students and instructors enrolled in that particular course by some means of password or access control.

FOR WEBSITES:

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

Permissions for the use of Full Text articles on third party websites are granted on a case by case basis and only in cases where access to the AAAS Material is restricted by some means of password or access control. Alternately, an E-Print may be

purchased through our reprints department (<u>brocheleau@rockwaterinc.com</u>). REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE AN 'ORIGINAL AUTHOR' OF A SCIENCE PAPER

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of authors listed on the License Agreement as a "Licensed content author" or that you are acting on that author's behalf to use the Licensed content in a new work that one of the authors listed on the License Agreement as a "Licensed content author" has written.

Original Authors may post the 'Accepted Version' of their full text article on their personal or on their University website and not on any other website. The 'Accepted Version' is the version of the paper accepted for publication by AAAS including changes resulting from peer review but prior to AAAS's copy editing and production (in other words not the AAAS published version). FOR MOVIES / FILM / TELEVISION:

Permission is granted to use, record, film, photograph, and/or tape the AAAS material in connection with your program/film and in any medium your program/film may be shown or heard, including but not limited to broadcast and cable television, radio, print, world wide web, and videocassette.

The required credit line should run in the program/film's end credits.

FOR MUSEUM EXHIBITIONS:

Permission is granted to use the AAAS material as part of a single exhibition for the duration of that exhibit. Permission for use of the material in promotional materials for the exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).

FOR TRANSLATIONS:

Translation rights apply only to the language identified in your request summary above.

The following disclaimer must appear with your translation, on the first page of the article, after the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed by AAAS as accurate. In crucial matters, please refer to the official English-language version originally published by AAAS."

FOR USE ON A COVER:

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter issue, book, textbook, or annual report in print and electronic formats provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately

By using the AAAS Material identified in your request, you agree to abide by all the terms and conditions herein. Questions about these terms can be directed to the AAAS Permissions department <u>permissions@aaas.org</u>. Other Terms and Conditions:

v 2

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.

License Number	5530461417969
License date	Apr 15, 2023
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp
Licensed Content Author	Philipp C. Nickels, Bettina Wünsch, Phil Holzmeister, Wooli Bae, et al.
Licensed Content Date	Oct 21, 2016
Licensed Content Volume	354
Licensed Content Issue	6310
Volume number	354
Issue number	6310
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Electronic
Portion	Text Excerpt
Number of pages requested	1
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 3
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMPE. AZ 85281

Total

Terms and Conditions

American Association for the Advancement of Science TERMS AND CONDITIONS

United States Attn: Mr. Yue Tang 0.00 USD

Regarding your request, we are pleased to grant you non-exclusive, non-transferable permission, to republish the AAAS material identified above in your work identified above, subject to the terms and conditions herein. We must be contacted for permission for any uses other than those specifically identified in your request above.

The following credit line must be printed along with the AAAS material: "From [Full Reference Citation]. Reprinted with permission from AAAS."

All required credit lines and notices must be visible any time a user accesses any part of the AAAS material and must appear on any printed copies and authorized user might make.

This permission does not apply to figures / photos / artwork or any other content or materials included in your work that are credited to non-AAAS sources. If the requested material is sourced to or references non-AAAS sources, you must obtain authorization from that source as well before using that material. You agree to hold harmless and indemnify AAAS against any claims arising from your use of any content in your work that is credited to non-AAAS sources. If the AAAS material covered by this permission was published in Science during the years 1974 - 1994, you must also obtain permission from the author, who may grant or withhold permission, and who may or may not charge a fee if permission is granted. See original article for author's address. This condition does not apply to news articles.

The AAS material may not be modified or altered except that figures and tables may be modified with permission from the

author. Author permission for any such changes must be secured prior to your use. Whenever possible, we ask that electronic uses of the AAAS material permitted herein include a hyperlink to the original work on

AAAS's website (hyperlink may be embedded in the reference citation). AAAS material reproduced in your work identified herein must not account for more than 30% of the total contents of that work.

AAAS must publish the full paper prior to use of any text.

AAAS material must not imply any endorsement by the American Association for the Advancement of Science.

This permission is not valid for the use of the AAAS and/or Science logos.

AAAS makes no representations or warranties as to the accuracy of any information contained in the AAAS material covered by this permission, including any warranties of

merchantability or fitness for a particular purpose.

If permission fees for this use are waived, please note that AAAS reserves the right to charge for reproduction of this material in the future.

Permission is not valid unless payment is received within sixty (60) days of the issuance of this permission. If payment is not received within this time period then all rights granted herein shall be revoked and this permission will be considered null and void.

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and Payment terms and conditions, all rights granted herein shall be revoked and this permission will be considered null and void.

AAAS reserves the right to terminate this permission and all rights granted herein at its discretion, for any purpose, at any time. In the event that AAAS elects to terminate this permission, you will have no further right to publish, publicly perform, publicly display, distribute or otherwise use any matter in which the AAAS content had been included, and all fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to the contact information as supplied by you during the request process and termination shall be immediate upon sending the notice. Neither AAAS no rCCC shall be liable for any costs, expenses, or damages you may incur as a result of the termination of this permission, beyond the refund noted above. This Permission may not be amended except by written document signed by both parties.

The terms above are applicable to all permissions granted for the use of AAAS material. Below you will find additional conditions that apply to your particular type of use.

FOR A THESIS OR DISSERTATION

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions of your dissertation or thesis. A full text article may be used in print versions only of a dissertation or thesis.

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / UMI, provided the AAAS material covered by this permission remains in situ.

If you are an Original Author on the AAAS article being reproduced, please refer to your License to Publish for rules on reproducing your paper in a dissertation or thesis.

FOR JOURNALS:

Permission covers both print and electronic versions of your journal article, however the AAAS material may not be used in any manner other than within the context of your article.

FOR BOOKS/TEXTBOOKS:

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights in all languages in both print and electronic formats (electronic formats are defined below).

If this license is to reuse a text excerpt or a full text article, then permission is granted for non-exclusive world rights in English only. You have the option of securing either print or electronic rights or both, but electronic rights are not automatically granted and do garner additional fees. Permission for translations of text excerpts or full text articles into other languages must be obtained secarately.

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only in cases where the electronic version is equivalent to or substitutes for the print version of the book/textbook. The AAAS material reproduced as permitted herein must remain in situ and must not be exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit), except in the case of permitted textbook companions as noted below.

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

If your book is an academic textbook, permission covers the following companions to your textbook, provided such companions are distributed only in conjunction with your textbook at no additional cost to the user:

- Password-protected website

- Instructor's image CD/DVD and/or PowerPoint resource

- Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for non-commercial, classroom purposes only. Any other uses require the prior written permission from AAAS.

If your license is for the use of AAAS Figures/Tables, then the electronic rights granted herein permit use of the Licensed Material in any Custom Databases that you distribute the electronic versions of your textbook through, so long as the Licensed Material remains within the context of a chapter of the title identified in your request and cannot be downloaded by a user as an independent image file.

Rights also extend to copies/files of your Work (as described above) that you are required to provide for use by the visually and/or print disabled in compliance with state and federal laws.

This permission only covers a single edition of your work as identified in your request.

FOR NEWSLETTERS:

Permission covers print and/or electronic versions, provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR ANNUAL REPORTS:

Permission covers print and electronic versions provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR PROMOTIONAL/MARKETING USES:

Permission covers the use of AAAS material in promotional or marketing pieces such as information packets, media kits, product slide kits, brochures, or flyers limited to a single print run. The AAAS Material may not be used in any manner which implies endorsement or promotion by the American Association for the Advancement of Science (AAAS) or Science of any product or service. AAAS does not permit the reproduction of its name, logo or text on promotional literature.

If permission to use a full text article is permitted, The Science article covered by this permission must not be altered in any way. No additional printing may be set onto an article copy other than the copyright credit line required above. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to, the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the article copies.

Additionally, article copies must be a freestanding part of any information package (i.e. media kit) into which they are inserted. They may not be physically attached to anything, such as an advertising insert, or have anything attached to them, such as a sample product. Article copies must be easily removable from any kits or informational packages in which they are used. The only exception is that article copies may be inserted into three-ring binders.

FOR CORPORATE INTERNAL USE:

The AAAS material covered by this permission may not be altered in any way. No additional printing may be set onto an article copy other than the required credit line. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto article copies.

If you are making article copies, copies are restricted to the number indicated in your request and must be distributed only to internal employees for internal use.

If you are using AAAS Material in Presentation Slides, the required credit line must be visible on the slide where the AAAS material will be reprinted

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher." Access to any such CD, DVD, Flash Drive or Web page must be restricted to your organization's employees only. FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted AAAS material must be restricted to attendees of your event only (if you have been granted electronic rights for use of a full text article on your website, your website must be password protected, or access restricted so that only attendees can access the content on your site).

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher."

FOR POLICY REPORTS:

These rights are granted only to non-profit organizations and/or government agencies. Permission covers print and electronic versions of a report, provided the required credit line appears in both versions and provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately.

FOR CLASSROOM PHOTOCOPIES:

Permission covers distribution in print copy format only. Article copies must be freestanding and not part of a course pack. They may not be physically attached to anything or have anything attached to them.

FOR COURSEPACKS OR COURSE WEBSITES:

These rights cover use of the AAAS material in one class at one institution. Permission is valid only for a single semester after which the AAAS material must be removed from the Electronic Course website, unless new permission is obtained for an

additional semester. If the material is to be distributed online, access must be restricted to students and instructors enrolled in that particular course by some means of password or access control.

FOR WEBSITES:

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

Permissions for the use of Full Text articles on third party websites are granted on a case by case basis and only in cases where access to the AAAS Material is restricted by some means of password or access control. Alternately, an E-Print may be

purchased through our reprints department (<u>brocheleau@rockwaterinc.com</u>). REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE AN 'ORIGINAL AUTHOR' OF A SCIENCE PAPER

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of authors listed on the License Agreement as a "Licensed content author" or that you are acting on that author's behalf to use the Licensed content in a new work that one of the authors listed on the License Agreement as a "Licensed content author" has written.

Original Authors may post the 'Accepted Version' of their full text article on their personal or on their University website and not on any other website. The 'Accepted Version' is the version of the paper accepted for publication by AAAS including changes resulting from peer review but prior to AAAS's copy editing and production (in other words not the AAAS published version). FOR MOVIES / FILM / TELEVISION:

Permission is granted to use, record, film, photograph, and/or tape the AAAS material in connection with your program/film and in any medium your program/film may be shown or heard, including but not limited to broadcast and cable television, radio, print, world wide web, and videocassette.

The required credit line should run in the program/film's end credits.

FOR MUSEUM EXHIBITIONS:

Permission is granted to use the AAAS material as part of a single exhibition for the duration of that exhibit. Permission for use of the material in promotional materials for the exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).

FOR TRANSLATIONS:

Translation rights apply only to the language identified in your request summary above.

The following disclaimer must appear with your translation, on the first page of the article, after the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed by AAAS as accurate. In crucial matters, please refer to the official English-language version originally published by AAAS."

FOR USE ON A COVER:

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter issue, book, textbook, or annual report in print and electronic formats provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately

By using the AAAS Material identified in your request, you agree to abide by all the terms and conditions herein. Questions about these terms can be directed to the AAAS Permissions department <u>permissions@aaas.org</u>. Other Terms and Conditions:

v 2

SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number	5530470154708
License date	Apr 15, 2023
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature Chemistry
Licensed Content Title	Self-organized architectures from assorted DNA-framed nanoparticles
Licensed Content Author	Wenyan Liu et al
Licensed Content Date	Jun 13, 2016
Type of Use	Thesis/Dissertation
Requestor type	non-commercial (non-profit)
Format	electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 3
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
	TEMPE, AZ 85281 United States

Total Terms and Conditions

Springer Nature Customer Service Centre GmbH Terms and Conditions

0.00 USD

The following terms and conditions ("Terms and Conditions") together with the terms specified in your [RightsLink] constitute the License ("License") between you as Licensee and Springer Nature Customer Service Centre GmbH as Licensor. By clicking 'accept' and completing the transaction for your use of the material ("Licensed Material"), you confirm your acceptance of and obligation to be bound by these Terms and Conditions.

1. Grant and Scope of License

1. 1. The Licensor grants you a personal, non-exclusive, non-transferable, non-sublicensable, revocable, world-wide License to reproduce, distribute, communicate to the public, make available, broadcast, electronically transmit or create derivative works using the Licensed Material for the purpose(s) specified in your RightsLink Licence Details only. Licenses are granted for the specific use requested in the order and for no other use, subject to these Terms and Conditions. You acknowledge and agree that the rights granted to you under this Licensed Material in whole or in collective works, or create derivative works of the Licensed Material in whole or in

part unless expressly stated in your RightsLink Licence Details. You may use the Licensed Material only as permitted under this Agreement and will not reproduce, distribute, display, perform, or otherwise use or exploit any Licensed Material in any way, in whole or in part, except as expressly permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent permitted by these Terms and Conditions, by your RightsLink Licence Details and by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed Material, e.g. where a license has been purchased for print use only, separate permission must be obtained for electronic re-use. Similarly, a License is only valid in the language selected and does not apply for editions in other languages unless additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is expressly excluded from the License.

1. 5. Rights for additional reuses such as custom editions, computer/mobile applications, film or TV reuses and/or any other derivative rights requests require additional permission and may be subject to an additional fee. Please apply to journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You acknowledge and agree that nothing in this License limits or restricts Licensor's rights in or use of the Licensed Material in any way. Neither this License, nor any act, omission, or statement by Licensor or you, conveys any ownership right to you in any Licensed Material, or to any element or portion thereof. As between Licensor and you, Licensor owns and retains all right, title, and interest in and to the Licensed Material subject to the license granted in Section 1.1. Your permission to use the Licensed Material is expressly conditioned on you not impairing Licensor's or the applicable copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or formatting purposes provided such alterations do not alter the original meaning or intention of the Licensed Material and the new figure(s) are still accurate and representative of the Licensed Material. Any other changes including but not limited to, cropping, adapting, and/or omitting material that affect the meaning, intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such reuse must include a clear acknowledgment of this permission visible at the same time as the figures/tables/illustration or abstract and which must indicate that the Licensed Material is not part of the governing OA license but has been reproduced with permission. This may be indicated according to any standard referencing system but must include at a minimum 'Book/Journal title, Author, Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM Permissions Guidelines ("STM PG") as amended from time to time and made available at <u>https://www.stm-assoc.org/intellectual-property/permissions/permissions-quidelines/.</u>

4. 2. For content reuse requests that qualify for permission under the STM PG, and which may be updated from time to time, the STM PG supersede the terms and conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer apply at the time of publication, further permission must be sought from the Rightsholder. Contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical	Reuse up to distribution or time period indicated in License
communications project	

Reuse in a dissertation/thesis	Lifetime of thesis
Reuse in a journal/magazine	Lifetime of journal/magazine
Reuse in a book/textbook	Lifetime of edition
Reuse on a website	1 year unless otherwise specified in the License
Reuse in a presentation/slide kit/poster	Lifetime of presentation/slide kit/poster. Note: publication whether electronic or in print of presentation/slide kit/poster may require further permission.
Reuse in conference proceedings	Lifetime of conference proceedings
Reuse in an annual report	Lifetime of annual report
Reuse in training/CME materials	Reuse up to distribution or time period indicated in License
Reuse in newsmedia	Lifetime of newsmedia
Reuse in coursepack/classroom materials	Reuse up to distribution and/or time period indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed Material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract and must be hyperlinked to the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing system and at a minimum should include "Author, Article/Book Title, Journal name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms apply: Print rights of the Version of Record are provided for; electronic rights for use only on institutional repository as defined by the Sherpa guideline (<u>www.sherpa.ac.uk/romeo/</u>) and only up to what is required by the awarding institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required. Please contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according to current citation standards and include the following acknowledgement: 'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All amounts payable by you under this License are exclusive of any sales, use, withholding, value added or similar taxes, government fees or levies or other assessments. Collection and/or remittance of such taxes to the relevant tax authority shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of the Licensed Material. You are solely responsible for ensuring that the material you wish to license is original to the Licensor and does not carry the copyright of another entity or third party (as credited in the published version). If the credit line on any part of the Licensed Material indicates that it was reprinted or adapted with permission from another source, then you should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS, INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND ANY IMPOLED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, INEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the applicable period shown in Clause 5.1 above. Thereafter, this license will be terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be construed, interpreted and determined in accordance with the laws of the Federal Republic of Germany without reference to the stipulations of the CISG (United Nations Convention on Contracts for the International Sale of Goods) or to Germany's choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising out of this License shall be decided exclusively by the courts of or having jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues please contact <u>springernaturesupport@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-878-646-2777. For questions on Springer Nature licensing please visit <u>https://www.springernature.com/gp/partners/rights-permissions-third-partydistribution</u>

Other Conditions:

Version 1.4 - Dec 2022

SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number	5530470253487
License date	Apr 15, 2023
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature Methods
Licensed Content Title	Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT
Licensed Content Author	Ralf Jungmann et al
Licensed Content Date	Feb 2, 2014
Type of Use	Thesis/Dissertation
Requestor type	non-commercial (non-profit)
Format	electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 3
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234
Total	TEMPE, AZ 85281 United States Attn: Wr. Yue Tang
Iotai	0.00 000

Terms and Conditions

Springer Nature Customer Service Centre GmbH Terms and Conditions

The following terms and conditions ("Terms and Conditions") together with the terms specified in your [RightsLink] constitute the License ("License") between you as Licensee and Springer Nature Customer Service Centre GmbH as Licensor. By clicking 'accept' and completing the transaction for your use of the material ("Licensed Material"), you confirm your acceptance of and obligation to be bound by these Terms and Conditions.

1. Grant and Scope of License

1. 1. The Licensor grants you a personal, non-exclusive, non-transferable, non-sublicensable, revocable, world-wide License to reproduce, distribute, communicate to the public, make available, broadcast, electronically transmit or create derivative works using the Licensed Material for the purpose(s) specified in your RightsLink Licence Details only. Licenses are granted for the specific use requested in the order and for no other use, subject to these Terms and Conditions. You acknowledge and agree that the rights granted to you under this Licensed Material in whole or in collective works, or create derivative works of the Licensed Material in whole or in

part unless expressly stated in your RightsLink Licence Details. You may use the Licensed Material only as permitted under this Agreement and will not reproduce, distribute, display, perform, or otherwise use or exploit any Licensed Material in any way, in whole or in part, except as expressly permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent permitted by these Terms and Conditions, by your RightsLink Licence Details and by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed Material, e.g. where a license has been purchased for print use only, separate permission must be obtained for electronic re-use. Similarly, a License is only valid in the language selected and does not apply for editions in other languages unless additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is expressly excluded from the License.

 S. Rights for additional reuses such as custom editions, computer/mobile applications, film or TV reuses and/or any other derivative rights requests require additional permission and may be subject to an additional fee. Please apply to journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You acknowledge and agree that nothing in this License limits or restricts Licensor's rights in or use of the Licensed Material in any way. Neither this License, nor any act, omission, or statement by Licensor or you, conveys any ownership right to you in any Licensed Material, or to any element or portion thereof. As between Licensor and you, Licensor owns and retains all right, title, and interest in and to the Licensed Material subject to the license granted in Section 1.1. Your permission to use the Licensed Material is expressly conditioned on you not impairing Licensor's or the applicable copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or formatting purposes provided such alterations do not alter the original meaning or intention of the Licensed Material and the new figure(s) are still accurate and representative of the Licensed Material. Any other changes including but not limited to, cropping, adapting, and/or omitting material that affect the meaning, intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such reuse must include a clear acknowledgment of this permission visible at the same time as the figures/tables/illustration or abstract and which must indicate that the Licensed Material is not part of the governing OA license but has been reproduced with permission. This may be indicated according to any standard referencing system but must include at a minimum 'Book/Journal title, Author, Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM Permissions Guidelines ("STM PG") as amended from time to time and made available at <u>https://www.stm-assoc.org/intellectualproperty/permissions/permissions-guidelines/.</u>

4. 2. For content reuse requests that qualify for permission under the STM PG, and which may be updated from time to time, the STM PG supersede the terms and conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer apply at the time of publication, further permission must be sought from the Rightsholder. Contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical	Reuse up to distribution or time period indicated in License
communications project	

Reuse in a dissertation/thesis	Lifetime of thesis
Reuse in a journal/magazine	Lifetime of journal/magazine
Reuse in a book/textbook	Lifetime of edition
Reuse on a website	1 year unless otherwise specified in the License
Reuse in a presentation/slide kit/poster	Lifetime of presentation/slide kit/poster. Note: publication whether electronic or in print of presentation/slide kit/poster may require further permission.
Reuse in conference proceedings	Lifetime of conference proceedings
Reuse in an annual report	Lifetime of annual report
Reuse in training/CME materials	Reuse up to distribution or time period indicated in License
Reuse in newsmedia	Lifetime of newsmedia
Reuse in coursepack/classroom materials	Reuse up to distribution and/or time period indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed Material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract and must be hyperlinked to the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing system and at a minimum should include "Author, Article/Book Title, Journal name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms apply: Print rights of the Version of Record are provided for; electronic rights for use only on institutional repository as defined by the Sherpa guideline (<u>www.sherpa.ac.uk/romeo/</u>) and only up to what is required by the awarding institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required. Please contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according to current citation standards and include the following acknowledgement: 'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All amounts payable by you under this License are exclusive of any sales, use, withholding, value added or similar taxes, government fees or levies or other assessments. Collection and/or remittance of such taxes to the relevant tax authority shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of the Licensed Material. You are solely responsible for ensuring that the material you wish to license is original to the Licensor and does not carry the copyright of another entity or third party (as credited in the published version). If the credit line on any part of the Licensed Material indicates that it was reprinted or adapted with permission from another source, then you should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS, INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND ANY IMPOLED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, INEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the applicable period shown in Clause 5.1 above. Thereafter, this license will be terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be construed, interpreted and determined in accordance with the laws of the Federal Republic of Germany without reference to the stipulations of the CISG (United Nations Convention on Contracts for the International Sale of Goods) or to Germany's choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising out of this License shall be decided exclusively by the courts of or having jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues please contact <u>springernaturesupport@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-878-646-2777. For questions on Springer Nature licensing please visit <u>https://www.springernature.com/gp/partners/rights-permissions-third-partydistribution</u>

Other Conditions:

Version 1.4 - Dec 2022

	Home Help V Live Chat Yue Tang V
ITSLINK	
	Interenzyme Substrate Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA Nanostructures
	Author: Jinglin Fu, Minghui Liu, Yan Liu, et al
ACS Publications	Publication: Journal of the American Chemical Society
Most Trusted. Most Cited. Most Read.	Publisher: American Chemical Society
	Date: Mar 1, 2012
	Copyright © 2012, American Chemical Society
ERMISSION/LICENSE IS nis type of permission/licen narged for your order. Pleas	GRANTED FOR YOUR ORDER AT NO CHARGE ise, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following:
ERMISSION/LICENSE IS his type of permission/licen harged for your order. Pleas Permission is granted for yo fi figures and/or tables were Please print this page for yo Appropriate credit for the ro om (COMPLET REFERENCE) formation in place of the co One-time permission is gran ranted (such as derivative w	GRANTED FOR YOUR ORDER AT NO CHARGE see, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: Dur request in both print and electronic formats, and translations, e requested, they may be adapted or used in part. Dur records and send a copy of it to your publisher/graduate school, equested material should be given as follows: "Reprinted (adapted) with permission C (TATION), Copyright (YERA) American Chemical Society: "Insert appropriate apitalized words. Inted only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request.
ERMISSION/LICENSE IS his type of permission/licen harged for your order. Pleas Permission is granted for yo ffigures and/or tables were Please print this page for yo Appropriate credit for the ro m (COMPLET REFERENCE) formation in place of the co One-time permission is gra ranted (such as derivative w credit is given to another si om that source.	GRANTED FOR YOUR ORDER AT NO CHARGE use, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: bur request in both print and electronic formats, and translations. e requested, they may be adapted or used in part. ur records and send a copy of it o your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E (TTATION), Copyright (YEAR) American Chemical Society." Insert appropriate apitalized words. net only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request. ource for the material you requested from RightsLink, permission must be obtained

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.

License Number	5530470431520
License date	Apr 15, 2023
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays
Licensed Content Author	Yonggang Ke, Stuart Lindsay, Yung Chang, Yan Liu, et al.
Licensed Content Date	Jan 11, 2008
Licensed Content Volume	319
Licensed Content Issue	5860
Volume number	319
Issue number	5860
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Electronic
Portion	Text Excerpt
Number of pages requested	1
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 2
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234

Total

Terms and Conditions

American Association for the Advancement of Science TERMS AND CONDITIONS

TEMPE, AZ 85281 United States Attn: Mr. Yue Tang 0.00 USD

Regarding your request, we are pleased to grant you non-exclusive, non-transferable permission, to republish the AAAS material identified above in your work identified above, subject to the terms and conditions herein. We must be contacted for permission for any uses other than those specifically identified in your request above.

The following credit line must be printed along with the AAAS material: "From [Full Reference Citation]. Reprinted with permission from AAAS."

All required credit lines and notices must be visible any time a user accesses any part of the AAAS material and must appear on any printed copies and authorized user might make.

This permission does not apply to figures / photos / artwork or any other content or materials included in your work that are credited to non-AAAS sources. If the requested material is sourced to or references non-AAAS sources, you must obtain authorization from that source as well before using that material. You agree to hold harmless and indemnify AAAS against any claims arising from your use of any content in your work that is credited to non-AAAS sources. If the AAAS material covered by this permission was published in Science during the years 1974 - 1994, you must also obtain permission from the author, who may grant or withhold permission, and who may or may not charge a fee if permission is granted. See original article for author's address. This condition does not apply to news articles.

The AAS material may not be modified or altered except that figures and tables may be modified with permission from the

author. Author permission for any such changes must be secured prior to your use. Whenever possible, we ask that electronic uses of the AAAS material permitted herein include a hyperlink to the original work on

AAAS's website (hyperlink may be embedded in the reference citation). AAAS material reproduced in your work identified herein must not account for more than 30% of the total contents of that work.

AAAS must publish the full paper prior to use of any text.

AAAS material must not imply any endorsement by the American Association for the Advancement of Science.

This permission is not valid for the use of the AAAS and/or Science logos.

AAAS makes no representations or warranties as to the accuracy of any information contained in the AAAS material covered by this permission, including any warranties of

merchantability or fitness for a particular purpose.

If permission fees for this use are waived, please note that AAAS reserves the right to charge for reproduction of this material in the future.

Permission is not valid unless payment is received within sixty (60) days of the issuance of this permission. If payment is not received within this time period then all rights granted herein shall be revoked and this permission will be considered null and void.

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and Payment terms and conditions, all rights granted herein shall be revoked and this permission will be considered null and void.

AAAS reserves the right to terminate this permission and all rights granted herein at its discretion, for any purpose, at any time. In the event that AAAS elects to terminate this permission, you will have no further right to publish, publicly perform, publicly display, distribute or otherwise use any matter in which the AAAS content had been included, and all fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to the contact information as supplied by you during the request process and termination shall be immediate upon sending the notice. Neither AAAS no rCCC shall be liable for any costs, expenses, or damages you may incur as a result of the termination of this permission, beyond the refund noted above. This Permission may not be amended except by written document signed by both parties.

The terms above are applicable to all permissions granted for the use of AAAS material. Below you will find additional conditions that apply to your particular type of use.

FOR A THESIS OR DISSERTATION

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions of your dissertation or thesis. A full text article may be used in print versions only of a dissertation or thesis.

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / UMI, provided the AAAS material covered by this permission remains in situ.

If you are an Original Author on the AAAS article being reproduced, please refer to your License to Publish for rules on reproducing your paper in a dissertation or thesis.

FOR JOURNALS:

Permission covers both print and electronic versions of your journal article, however the AAAS material may not be used in any manner other than within the context of your article.

FOR BOOKS/TEXTBOOKS:

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights in all languages in both print and electronic formats (electronic formats are defined below).

If this license is to reuse a text excerpt or a full text article, then permission is granted for non-exclusive world rights in English only. You have the option of securing either print or electronic rights or both, but electronic rights are not automatically granted and do garner additional fees. Permission for translations of text excerpts or full text articles into other languages must be obtained secarately.

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only in cases where the electronic version is equivalent to or substitutes for the print version of the book/textbook. The AAAS material reproduced as permitted herein must remain in situ and must not be exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit), except in the case of permitted textbook companions as noted below.

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

If your book is an academic textbook, permission covers the following companions to your textbook, provided such companions are distributed only in conjunction with your textbook at no additional cost to the user:

- Password-protected website

- Instructor's image CD/DVD and/or PowerPoint resource

- Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for non-commercial, classroom purposes only. Any other uses require the prior written permission from AAAS.
If your license is for the use of AAAS Figures/Tables, then the electronic rights granted herein permit use of the Licensed Material in any Custom Databases that you distribute the electronic versions of your textbook through, so long as the Licensed Material remains within the context of a chapter of the title identified in your request and cannot be downloaded by a user as an independent image file.

Rights also extend to copies/files of your Work (as described above) that you are required to provide for use by the visually and/or print disabled in compliance with state and federal laws.

This permission only covers a single edition of your work as identified in your request.

FOR NEWSLETTERS:

Permission covers print and/or electronic versions, provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR ANNUAL REPORTS:

Permission covers print and electronic versions provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR PROMOTIONAL/MARKETING USES:

Permission covers the use of AAAS material in promotional or marketing pieces such as information packets, media kits, product slide kits, brochures, or flyers limited to a single print run. The AAAS Material may not be used in any manner which implies endorsement or promotion by the American Association for the Advancement of Science (AAAS) or Science of any product or service. AAAS does not permit the reproduction of its name, logo or text on promotional literature.

If permission to use a full text article is permitted, The Science article covered by this permission must not be altered in any way. No additional printing may be set onto an article copy other than the copyright credit line required above. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to, the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the article copies.

Additionally, article copies must be a freestanding part of any information package (i.e. media kit) into which they are inserted. They may not be physically attached to anything, such as an advertising insert, or have anything attached to them, such as a sample product. Article copies must be easily removable from any kits or informational packages in which they are used. The only exception is that article copies may be inserted into three-ring binders.

FOR CORPORATE INTERNAL USE:

The AAAS material covered by this permission may not be altered in any way. No additional printing may be set onto an article copy other than the required credit line. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto article cooles.

If you are making article copies, copies are restricted to the number indicated in your request and must be distributed only to internal employees for internal use.

If you are using AAAS Material in Presentation Slides, the required credit line must be visible on the slide where the AAAS material will be reprinted

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher." Access to any such CD, DVD, Flash Drive or Web page must be restricted to your organization's employees only. FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted AAAS material must be restricted to attendees of your event only (if you have been granted electronic rights for use of a full text article on your website, your website must be password protected, or access restricted so that only attendees can access the content on your site).

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher."

FOR POLICY REPORTS:

These rights are granted only to non-profit organizations and/or government agencies. Permission covers print and electronic versions of a report, provided the required credit line appears in both versions and provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately.

FOR CLASSROOM PHOTOCOPIES:

Permission covers distribution in print copy format only. Article copies must be freestanding and not part of a course pack. They may not be physically attached to anything or have anything attached to them.

FOR COURSEPACKS OR COURSE WEBSITES:

These rights cover use of the AAAS material in one class at one institution. Permission is valid only for a single semester after which the AAAS material must be removed from the Electronic Course website, unless new permission is obtained for an additional semester. If the material is to be distributed online, access must be restricted to students and instructors enrolled in that particular course by some means of password or access control.

FOR WEBSITES:

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

Permissions for the use of Full Text articles on third party websites are granted on a case by case basis and only in cases where access to the AAAS Material is restricted by some means of password or access control. Alternately, an E-Print may be

purchased through our reprints department (<u>brocheleau@rockwaterinc.com</u>). REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE AN 'ORIGINAL AUTHOR' OF A SCIENCE PAPER

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of authors listed on the License Agreement as a "Licensed content author" or that you are acting on that author's behalf to use the Licensed content in a new work that one of the authors listed on the License Agreement as a "Licensed content author" has written.

Original Authors may post the 'Accepted Version' of their full text article on their personal or on their University website and not on any other website. The 'Accepted Version' is the version of the paper accepted for publication by AAAS including changes resulting from peer review but prior to AAAS's copy editing and production (in other words not the AAAS published version). FOR MOVIES / FILM / TELEVISION:

Permission is granted to use, record, film, photograph, and/or tape the AAAS material in connection with your program/film and in any medium your program/film may be shown or heard, including but not limited to broadcast and cable television, radio, print, world wide web, and videocassette.

The required credit line should run in the program/film's end credits.

FOR MUSEUM EXHIBITIONS:

Permission is granted to use the AAAS material as part of a single exhibition for the duration of that exhibit. Permission for use of the material in promotional materials for the exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).

FOR TRANSLATIONS:

Translation rights apply only to the language identified in your request summary above.

The following disclaimer must appear with your translation, on the first page of the article, after the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed by AAAS as accurate. In crucial matters, please refer to the official English-language version originally published by AAAS."

FOR USE ON A COVER:

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter issue, book, textbook, or annual report in print and electronic formats provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately

By using the AAAS Material identified in your request, you agree to abide by all the terms and conditions herein. Questions about these terms can be directed to the AAAS Permissions department <u>permissions@aaas.org</u>. Other Terms and Conditions: v 2

٧Z

Questions? E-mail us at customercare@copyright.com.

CC	â? 🛱 🚨
ntsLink	Home Help V Live Chat Yue lang V
	Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy
	Author: Akinori Kuzuya et al
SPRINGER NATURE	Publication: Nature Communications
	Publisher: Springer Nature
	Date: Aug 23, 2011
	Copyright © 2011, The Author(s)
Creative Commons	
The request you have made been distributed under a Cr. non-commercial/educationa that the author and the orig icense version number). Yoo hat the author and the orig icense terms, please see htt	is considered to be non-commercial/educational. As the article you have requested has eative Commons license (Artibuiton-Noncommercial), you may reuse this material for al purposes without obtaining additional permission from Springer Nature, providing inal source of publication are fully acknowledged (please see the article itself for the u may reuse this material without obtaining permission from Springer Nature, providing inal source of publication are fully acknowledged, as per the terms of the license. For tp://rceativecommons.org/

© 2023 Copyright - Al Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

ntsLink	State table are star table				
	DNA Origami Nanopores				
ACS Publications	Author: Christian. R. Engst, Marc Ablay, Giorgio Divitini, et al				
	Publication: Nano Letters				
	Publisher: American Chemical Society				
	Date: Jan 1, 2012				
	Copyright © 2012, American Chemical Society				
PERMISSION/LICENSE IS This type of permission/licen harged for your order. Plea: Permission is granted for yo If figures and/or tables wer	GRANTED FOR YOUR ORDER AT NO CHARGE ise, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: pur request in both print and electronic formats, and translations. e requested ther may be adarted or used in part.				
PERMISSION/LICENSE IS This type of permission/licen charged for your order. Pleas Permission is granted for yo If figures and/or tables were Please print this page for yo Appropriate credit for the r rom (COMPLETE REFERENC) normation in place of the c. One-time permission is gra granted (such as derivative w	GRANTED FOR YOUR ORDER AT NO CHARGE use, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: our request in both print and electronic formats, and translations. er equested, they may be adapted or used in part. ur records and send a copy of it to your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E (TATRION, Copyright (YEAR) American Chemical Society." Insert appropriate apitalized words. Inted only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request.				
PERMISSION/LICENSE IS This type of permission/licen tharged for your order. Pleas Permission is granted for your If figures and/or tables wen Please print this page for your Appropriate credit for the r rom (COMPLETE REFERENCI Information in place of the c. One-time permission is gra ranted (such as derivative w f credit is given to another s rom that source.	GRANTED FOR YOUR ORDER AT NO CHARGE use, instead of the standard Terms and Conditions, is sent to you because no fee is being se note the following: bur request in both print and electronic formats, and translations. e requested, they may be adapted or used in part. ur records and sond a copy of it to your publisher/graduate school. equested material should be given as follows: "Reprinted (adapted) with permission E CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate aptalized words. neted only for the use specified in your RightsLink request. No additional uses are vorks or other editions). For any uses, please submit a new request. oucree for the material you requested from RightsLink, permission must be obtained				

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.

License Number	5530470795504
License date	Apr 15, 2023
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures
Licensed Content Author	Martin Langecker, Vera Arnaut, Thomas G. Martin, Jonathan List, et al.
Licensed Content Date	Nov 16, 2012
Licensed Content Volume	338
Licensed Content Issue	6109
Volume number	338
Issue number	6109
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Electronic
Portion	Text Excerpt
Number of pages requested	1
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 3
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234

Total

Terms and Conditions

American Association for the Advancement of Science TERMS AND CONDITIONS

TEMPE, AZ 85281 United States Attn: Mr. Yue Tang 0.00 USD

Regarding your request, we are pleased to grant you non-exclusive, non-transferable permission, to republish the AAAS material identified above in your work identified above, subject to the terms and conditions herein. We must be contacted for permission for any uses other than those specifically identified in your request above.

The following credit line must be printed along with the AAAS material: "From [Full Reference Citation]. Reprinted with permission from AAAS."

All required credit lines and notices must be visible any time a user accesses any part of the AAAS material and must appear on any printed copies and authorized user might make.

This permission does not apply to figures / photos / artwork or any other content or materials included in your work that are credited to non-AAAS sources. If the requested material is sourced to or references non-AAAS sources, you must obtain authorization from that source as well before using that material. You agree to hold harmless and indemnify AAAS against any claims arising from your use of any content in your work that is credited to non-AAAS sources. If the AAAS material covered by this permission was published in Science during the years 1974 - 1994, you must also obtain permission from the author, who may grant or withhold permission, and who may or may not charge a fee if permission is granted. See original article for author's address. This condition does not apply to news articles.

The AAS material may not be modified or altered except that figures and tables may be modified with permission from the

author. Author permission for any such changes must be secured prior to your use. Whenever possible, we ask that electronic uses of the AAAS material permitted herein include a hyperlink to the original work on

AAAS's website (hyperlink may be embedded in the reference citation). AAAS material reproduced in your work identified herein must not account for more than 30% of the total contents of that work.

AAAS must publish the full paper prior to use of any text.

AAAS material must not imply any endorsement by the American Association for the Advancement of Science.

This permission is not valid for the use of the AAAS and/or Science logos.

AAAS makes no representations or warranties as to the accuracy of any information contained in the AAAS material covered by this permission, including any warranties of

merchantability or fitness for a particular purpose.

If permission fees for this use are waived, please note that AAAS reserves the right to charge for reproduction of this material in the future.

Permission is not valid unless payment is received within sixty (60) days of the issuance of this permission. If payment is not received within this time period then all rights granted herein shall be revoked and this permission will be considered null and void.

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and Payment terms and conditions, all rights granted herein shall be revoked and this permission will be considered null and void.

AAAS reserves the right to terminate this permission and all rights granted herein at its discretion, for any purpose, at any time. In the event that AAAS elects to terminate this permission, you will have no further right to publish, publicly perform, publicly display, distribute or otherwise use any matter in which the AAAS content had been included, and all fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to the contact information as supplied by you during the request process and termination shall be immediate upon sending the notice. Neither AAAS no rCCC shall be liable for any costs, expenses, or damages you may incur as a result of the termination of this permission, beyond the refund noted above. This Permission may not be amended except by written document signed by both parties.

The terms above are applicable to all permissions granted for the use of AAAS material. Below you will find additional conditions that apply to your particular type of use.

FOR A THESIS OR DISSERTATION

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions of your dissertation or thesis. A full text article may be used in print versions only of a dissertation or thesis.

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / UMI, provided the AAAS material covered by this permission remains in situ.

If you are an Original Author on the AAAS article being reproduced, please refer to your License to Publish for rules on reproducing your paper in a dissertation or thesis.

FOR JOURNALS:

Permission covers both print and electronic versions of your journal article, however the AAAS material may not be used in any manner other than within the context of your article.

FOR BOOKS/TEXTBOOKS:

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights in all languages in both print and electronic formats (electronic formats are defined below).

If this license is to reuse a text excerpt or a full text article, then permission is granted for non-exclusive world rights in English only. You have the option of securing either print or electronic rights or both, but electronic rights are not automatically granted and do garner additional fees. Permission for translations of text excerpts or full text articles into other languages must be obtained secarately.

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only in cases where the electronic version is equivalent to or substitutes for the print version of the book/textbook. The AAAS material reproduced as permitted herein must remain in situ and must not be exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit), except in the case of permitted textbook companions as noted below.

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

If your book is an academic textbook, permission covers the following companions to your textbook, provided such companions are distributed only in conjunction with your textbook at no additional cost to the user:

- Password-protected website

- Instructor's image CD/DVD and/or PowerPoint resource

- Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for non-commercial, classroom purposes only. Any other uses require the prior written permission from AAAS.

If your license is for the use of AAAS Figures/Tables, then the electronic rights granted herein permit use of the Licensed Material in any Custom Databases that you distribute the electronic versions of your textbook through, so long as the Licensed Material remains within the context of a chapter of the title identified in your request and cannot be downloaded by a user as an independent image file.

Rights also extend to copies/files of your Work (as described above) that you are required to provide for use by the visually and/or print disabled in compliance with state and federal laws.

This permission only covers a single edition of your work as identified in your request.

FOR NEWSLETTERS:

Permission covers print and/or electronic versions, provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR ANNUAL REPORTS:

Permission covers print and electronic versions provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR PROMOTIONAL/MARKETING USES:

Permission covers the use of AAAS material in promotional or marketing pieces such as information packets, media kits, product slide kits, brochures, or flyers limited to a single print run. The AAAS Material may not be used in any manner which implies endorsement or promotion by the American Association for the Advancement of Science (AAAS) or Science of any product or service. AAAS does not permit the reproduction of its name, logo or text on promotional literature.

If permission to use a full text article is permitted, The Science article covered by this permission must not be altered in any way. No additional printing may be set onto an article copy other than the copyright credit line required above. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to, the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the article copies.

Additionally, article copies must be a freestanding part of any information package (i.e. media kit) into which they are inserted. They may not be physically attached to anything, such as an advertising insert, or have anything attached to them, such as a sample product. Article copies must be easily removable from any kits or informational packages in which they are used. The only exception is that article copies may be inserted into three-ring binders.

FOR CORPORATE INTERNAL USE:

The AAAS material covered by this permission may not be altered in any way. No additional printing may be set onto an article copy other than the required credit line. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto article copies.

If you are making article copies, copies are restricted to the number indicated in your request and must be distributed only to internal employees for internal use.

If you are using AAAS Material in Presentation Slides, the required credit line must be visible on the slide where the AAAS material will be reprinted

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher." Access to any such CD, DVD, Flash Drive or Web page must be restricted to your organization's employees only. FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted AAAS material must be restricted to attendees of your event only (if you have been granted electronic rights for use of a full text article on your website, your website must be password protected, or access restricted so that only attendees can access the content on your site).

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher."

FOR POLICY REPORTS:

These rights are granted only to non-profit organizations and/or government agencies. Permission covers print and electronic versions of a report, provided the required credit line appears in both versions and provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately.

FOR CLASSROOM PHOTOCOPIES:

Permission covers distribution in print copy format only. Article copies must be freestanding and not part of a course pack. They may not be physically attached to anything or have anything attached to them.

FOR COURSEPACKS OR COURSE WEBSITES:

These rights cover use of the AAAS material in one class at one institution. Permission is valid only for a single semester after which the AAAS material must be removed from the Electronic Course website, unless new permission is obtained for an

additional semester. If the material is to be distributed online, access must be restricted to students and instructors enrolled in that particular course by some means of password or access control.

FOR WEBSITES:

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

Permissions for the use of Full Text articles on third party websites are granted on a case by case basis and only in cases where access to the AAAS Material is restricted by some means of password or access control. Alternately, an E-Print may be purchased through our reprints department (<u>brocheleau@rockwaterinc.com</u>).

REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE AN 'ORIGINAL AUTHOR' OF A SCIENCE PAPER

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of authors listed on the License Agreement as a "Licensed content author" or that you are acting on that author's behalf to use the Licensed content in a new work that one of the authors listed on the License Agreement as a "Licensed content author" has written.

Original Authors may post the 'Accepted Version' of their full text article on their personal or on their University website and not on any other website. The 'Accepted Version' is the version of the paper accepted for publication by AAAS including changes resulting from peer review but prior to AAAS's copy editing and production (in other words not the AAAS published version). FOR MOVIES / FILM / TELEVISION:

Permission is granted to use, record, film, photograph, and/or tape the AAAS material in connection with your program/film and in any medium your program/film may be shown or heard, including but not limited to broadcast and cable television, radio, print, world wide web, and videocassette.

The required credit line should run in the program/film's end credits.

FOR MUSEUM EXHIBITIONS:

Permission is granted to use the AAAS material as part of a single exhibition for the duration of that exhibit. Permission for use of the material in promotional materials for the exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).

FOR TRANSLATIONS:

Translation rights apply only to the language identified in your request summary above.

The following disclaimer must appear with your translation, on the first page of the article, after the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed by AAAS as accurate. In crucial matters, please refer to the official English-language version originally published by AAAS."

FOR USE ON A COVER:

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter issue, book, textbook, or annual report in print and electronic formats provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately

By using the AAAS Material identified in your request, you agree to abide by all the terms and conditions herein. Questions about these terms can be directed to the AAAS Permissions department <u>permissions@aaas.org</u>. Other Terms and Conditions:

v 2

Questions? E-mail us at customercare@copyright.com.

htsLink	Home Help V Live Ch	at Yue Tang ∨
	DNA Origami as a Carrier for Circumvention of	f Drug Resistance
	Author: Qiao Jiang, Chen Song, Jeanette Nangreave, et al	
	Publication: Journal of the American Chemical Society	
Most Trusted. Most Cited. Most Read.	Publisher: American Chemical Society	
	Date: Aug 1, 2012	
	Copyright © 2012, American Chemical Society	
PERMISSION/LICENSE IS his type of permission/licen harged for your order. Pleas Permission is granted for yo	GRANTED FOR YOUR ORDER AT NO CHARGE se, instead of the standard Terms and Conditions, is sent to you e note the following: ur request in both print and electronic formats, and translation	i because no fee is being
PERMISSION/LICENSE IS This type of permission/licen tharged for your order. Pleas Permission is granted for you If figures and/or tables were Please print this page for you Appropriate credit for the ri rom (COMPLETE REFERENCE nformation in place of the c. One-time permission is gra aranted (such as derivative	GRANTED FOR YOUR ORDER AT NO CHARGE se, instead of the standard Terms and Conditions, is sent to you e note the following: ur request in both print and electronic formats, and translation r requested, they may be adapted or used in part. ur records and sond a copy of it to your publisher/graduate sch quested material should be given as follows: "Reprinted (adapt TATAION). Copyright (YEAR) American Chemical Society." Inse pitalized words. To any uses, please submit a new requ	u because no fee is being is. nool. ted) with permission rt appropriate Iditional uses are est.
PERMISSION/LICENSE IS This type of permission/licen harged for your order. Pleas Permission is granted for you If figures and/or tables were Please print this page for you Appropriate credit for the re- ror (COMPLETE REFRENCE Information in place of the c2 One-time permission is gran ranted (such as derivative wa for redit is given to another so rom that source.	GRANTED FOR YOUR ORDER AT NO CHARGE se, instead of the standard Terms and Conditions, is sent to you e note the following: ur request in both print and electronic formats, and translation r requested, they may be adapted or used in part. ur records and send a copy of it to your publisher/graduate sch quested material should be given as follows: "Reprinted (adapt CITATION). Copyright (YEAR) American Chemical Society." Inse pitalized words. ted only for the use specified in your RightsLink request. No ad orks or other editions). For any uses, please submit a new requ purce for the material you requested from RightsLink, permissio	u because no fee is being nool. ted) with permission rt appropriate Iditional uses are est. nn must be obtained

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.

License Number	5530470929503
License date	Apr 15, 2023
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads
Licensed Content Author	Shawn M. Douglas, Ido Bachelet, George M. Church
Licensed Content Date	Feb 17, 2012
Licensed Content Volume	335
Licensed Content Issue	6070
Volume number	335
Issue number	6070
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Electronic
Portion	Text Excerpt
Number of pages requested	1
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 1
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234

Total

Terms and Conditions

American Association for the Advancement of Science TERMS AND CONDITIONS

TEMPE, AZ 85281 United States Attn: Mr. Yue Tang 0.00 USD

Regarding your request, we are pleased to grant you non-exclusive, non-transferable permission, to republish the AAAS material identified above in your work identified above, subject to the terms and conditions herein. We must be contacted for permission for any uses other than those specifically identified in your request above.

The following credit line must be printed along with the AAAS material: "From [Full Reference Citation]. Reprinted with permission from AAAS."

All required credit lines and notices must be visible any time a user accesses any part of the AAAS material and must appear on any printed copies and authorized user might make.

This permission does not apply to figures / photos / artwork or any other content or materials included in your work that are credited to non-AAAS sources. If the requested material is sourced to or references non-AAAS sources, you must obtain authorization from that source as well before using that material. You agree to hold harmless and indemnify AAAS against any claims arising from your use of any content in your work that is credited to non-AAAS sources. If the AAAS material covered by this permission was published in Science during the years 1974 - 1994, you must also obtain permission from the author, who may grant or withhold permission, and who may or may not charge a fee if permission is granted. See original article for author's address. This condition does not apply to news articles.

The AAS material may not be modified or altered except that figures and tables may be modified with permission from the

author. Author permission for any such changes must be secured prior to your use. Whenever possible, we ask that electronic uses of the AAAS material permitted herein include a hyperlink to the original work on

AAAS's website (hyperlink may be embedded in the reference citation). AAAS material reproduced in your work identified herein must not account for more than 30% of the total contents of that work.

AAAS must publish the full paper prior to use of any text.

AAAS material must not imply any endorsement by the American Association for the Advancement of Science.

This permission is not valid for the use of the AAAS and/or Science logos.

AAAS makes no representations or warranties as to the accuracy of any information contained in the AAAS material covered by this permission, including any warranties of

merchantability or fitness for a particular purpose.

If permission fees for this use are waived, please note that AAAS reserves the right to charge for reproduction of this material in the future.

Permission is not valid unless payment is received within sixty (60) days of the issuance of this permission. If payment is not received within this time period then all rights granted herein shall be revoked and this permission will be considered null and void.

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and Payment terms and conditions, all rights granted herein shall be revoked and this permission will be considered null and void.

AAAS reserves the right to terminate this permission and all rights granted herein at its discretion, for any purpose, at any time. In the event that AAAS elects to terminate this permission, you will have no further right to publish, publicly perform, publicly display, distribute or otherwise use any matter in which the AAAS content had been included, and all fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to the contact information as supplied by you during the request process and termination shall be immediate upon sending the notice. Neither AAAS no rCCC shall be liable for any costs, expenses, or damages you may incur as a result of the termination of this permission, beyond the refund noted above. This Permission may not be amended except by written document signed by both parties.

The terms above are applicable to all permissions granted for the use of AAAS material. Below you will find additional conditions that apply to your particular type of use.

FOR A THESIS OR DISSERTATION

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions of your dissertation or thesis. A full text article may be used in print versions only of a dissertation or thesis.

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / UMI, provided the AAAS material covered by this permission remains in situ.

If you are an Original Author on the AAAS article being reproduced, please refer to your License to Publish for rules on reproducing your paper in a dissertation or thesis.

FOR JOURNALS:

Permission covers both print and electronic versions of your journal article, however the AAAS material may not be used in any manner other than within the context of your article.

FOR BOOKS/TEXTBOOKS:

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights in all languages in both print and electronic formats (electronic formats are defined below).

If this license is to reuse a text excerpt or a full text article, then permission is granted for non-exclusive world rights in English only. You have the option of securing either print or electronic rights or both, but electronic rights are not automatically granted and do garner additional fees. Permission for translations of text excerpts or full text articles into other languages must be obtained secarately.

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only in cases where the electronic version is equivalent to or substitutes for the print version of the book/textbook. The AAAS material reproduced as permitted herein must remain in situ and must not be exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit), except in the case of permitted textbook companions as noted below.

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

If your book is an academic textbook, permission covers the following companions to your textbook, provided such companions are distributed only in conjunction with your textbook at no additional cost to the user:

- Password-protected website

- Instructor's image CD/DVD and/or PowerPoint resource

- Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for non-commercial, classroom purposes only. Any other uses require the prior written permission from AAAS.

If your license is for the use of AAAS Figures/Tables, then the electronic rights granted herein permit use of the Licensed Material in any Custom Databases that you distribute the electronic versions of your textbook through, so long as the Licensed Material remains within the context of a chapter of the title identified in your request and cannot be downloaded by a user as an independent image file.

Rights also extend to copies/files of your Work (as described above) that you are required to provide for use by the visually and/or print disabled in compliance with state and federal laws.

This permission only covers a single edition of your work as identified in your request.

FOR NEWSLETTERS:

Permission covers print and/or electronic versions, provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR ANNUAL REPORTS:

Permission covers print and electronic versions provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately (for example, if permission covers the use of a full text article, the article may not be offered for access or for purchase as a stand-alone unit)

FOR PROMOTIONAL/MARKETING USES:

Permission covers the use of AAAS material in promotional or marketing pieces such as information packets, media kits, product slide kits, brochures, or flyers limited to a single print run. The AAAS Material may not be used in any manner which implies endorsement or promotion by the American Association for the Advancement of Science (AAAS) or Science of any product or service. AAAS does not permit the reproduction of its name, logo or text on promotional literature.

If permission to use a full text article is permitted, The Science article covered by this permission must not be altered in any way. No additional printing may be set onto an article copy other than the copyright credit line required above. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to, the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the article copies.

Additionally, article copies must be a freestanding part of any information package (i.e. media kit) into which they are inserted. They may not be physically attached to anything, such as an advertising insert, or have anything attached to them, such as a sample product. Article copies must be easily removable from any kits or informational packages in which they are used. The only exception is that article copies may be inserted into three-ring binders.

FOR CORPORATE INTERNAL USE:

The AAAS material covered by this permission may not be altered in any way. No additional printing may be set onto an article copy other than the required credit line. Any alterations must be approved in advance and in writing by AAAS. This includes, but is not limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto article copies.

If you are making article copies, copies are restricted to the number indicated in your request and must be distributed only to internal employees for internal use.

If you are using AAAS Material in Presentation Slides, the required credit line must be visible on the slide where the AAAS material will be reprinted

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher." Access to any such CD, DVD, Flash Drive or Web page must be restricted to your organization's employees only. FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted AAAS material must be restricted to attendees of your event only (if you have been granted electronic rights for use of a full text article on your website, your website must be password protected, or access restricted so that only attendees can access the content on your site).

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from

the publisher."

FOR POLICY REPORTS:

These rights are granted only to non-profit organizations and/or government agencies. Permission covers print and electronic versions of a report, provided the required credit line appears in both versions and provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately.

FOR CLASSROOM PHOTOCOPIES:

Permission covers distribution in print copy format only. Article copies must be freestanding and not part of a course pack. They may not be physically attached to anything or have anything attached to them.

FOR COURSEPACKS OR COURSE WEBSITES:

These rights cover use of the AAAS material in one class at one institution. Permission is valid only for a single semester after which the AAAS material must be removed from the Electronic Course website, unless new permission is obtained for an

additional semester. If the material is to be distributed online, access must be restricted to students and instructors enrolled in that particular course by some means of password or access control.

FOR WEBSITES:

You must include the following notice in any electronic versions, either adjacent to the reprinted AAAS material or in the terms and conditions for use of your electronic products: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher."

Permissions for the use of Full Text articles on third party websites are granted on a case by case basis and only in cases where access to the AAAS Material is restricted by some means of password or access control. Alternately, an E-Print may be purchased through our reprints department (<u>brocheleau@rockwaterinc.com</u>).

REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE AN 'ORIGINAL AUTHOR' OF A SCIENCE PAPER

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of authors listed on the License Agreement as a "Licensed content author" or that you are acting on that author's behalf to use the Licensed content in a new work that one of the authors listed on the License Agreement as a "Licensed content author" has written.

Original Authors may post the 'Accepted Version' of their full text article on their personal or on their University website and not on any other website. The 'Accepted Version' is the version of the paper accepted for publication by AAAS including changes resulting from peer review but prior to AAAS's copy editing and production (in other words not the AAAS published version). FOR MOVIES / FILM / TELEVISION:

Permission is granted to use, record, film, photograph, and/or tape the AAAS material in connection with your program/film and in any medium your program/film may be shown or heard, including but not limited to broadcast and cable television, radio, print, world wide web, and videocassette.

The required credit line should run in the program/film's end credits.

FOR MUSEUM EXHIBITIONS:

Permission is granted to use the AAAS material as part of a single exhibition for the duration of that exhibit. Permission for use of the material in promotional materials for the exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).

FOR TRANSLATIONS:

Translation rights apply only to the language identified in your request summary above.

The following disclaimer must appear with your translation, on the first page of the article, after the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed by AAAS as accurate. In crucial matters, please refer to the official English-language version originally published by AAAS."

FOR USE ON A COVER:

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter issue, book, textbook, or annual report in print and electronic formats provided the AAAS material reproduced as permitted herein remains in situ and is not exploited separately

By using the AAAS Material identified in your request, you agree to abide by all the terms and conditions herein. Questions about these terms can be directed to the AAAS Permissions department <u>permissions@aaas.org</u>. Other Terms and Conditions:

v 2

Questions? E-mail us at customercare@copyright.com.

	n Home	f Help ∨	Live Chat	Yue Tang 🗸
ntsLink				
	Cellular Immunostimulation b Origami Structures	y CpG-Se	quence-Co	ated DNA
	Author: Verena J. Schüller, Simon Heidegger, Nadja Sandholzer, et al			
ACS Publications	Publication: ACS Nano			
 Most Trusted. Most Cited. Most Read. 	Publisher: American Chemical Society			
	Date: Dec 1, 2011			
	Copyright © 2011, American Chemical Society			
ERMISSION/LICENSE IS his type of permission/licen arged for your order. Pleas	GRANTED FOR YOUR ORDER AT NO se, instead of the standard Terms and Cor se note the following:	CHARGE	ent to you bec	ause no fee is being
ERMISSION/LICENSE IS sis type of permission/licen arged for your order. Pleas vermission is granted for y permission is granted for y hypoporiate credit for the hypoporiate credit for the hypoporiate credit for the opported to the second of formation in place of the C. One-time permission is gra anted (such as derivative	GRANTED FOR YOUR ORDER AT NO se, instead of the standard Terms and Cor se note the following: Jur request in both print and electronic for r requested, they may be adapted or used pur records and send a copy of it to your p equested material should be given as follo C (TATION). Copyright (YEAR) American CI gaitalized words. netd only for the use specified in your Righ rorks or other editors). For any Uses, plea	CHARGE nditions, is si rmats, and ti lin part. ublisher/gra ws: "Reprint hemical Soci ntsLink requise submit a	ent to you bed ranslations. duate school. ed (adapted) ti ety." Insert ap est. No additio new request.	ause no fee is being with permission propriate unal uses are
ERMISSION/LICENSE IS is type of permission/licen arged for your order. Plea: termission is granted for yo figures and/or tables were lease print this page for yo pypropriate credit for the r mm {COMPLETE REFERENCI formation in place of the c. one-time permission is gra anted (such as derivative w credit is given to another s m that source.	GRANTED FOR YOUR ORDER AT NO se, instead of the standard Terms and Cor se note the following: our request in both print and electronic for requested, they may be adapted or used for records and send a copy of it to your p equested material should be given as follo C (TI/ATION). Copyright (YEAR) American Cl apitalized words. nted only for the use specified in your Righ rorks or other editions). For any uses, plea ource for the material you requested from	CHARGE Inditions, is si mats, and ti in part. Ublisher/gra ws: "Reprint hemical Soci ntsLink requi se submit a RightsLink,	ent to you bec ranslations. duate school. ed (adapted) i ety." Insert ap est. No additio new request. permission m	ause no fee is being with permission propriate unal uses are ust be obtained

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy | For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at customercare@copyright.com

SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Apr 15, 2023

This Agreement between Mr. Yue Tang ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number	5530471204147
License date	Apr 15, 2023
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature Chemistry
Licensed Content Title	Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities
Licensed Content Author	Ali Aghebat Rafat et al
Licensed Content Date	Jul 13, 2020
Type of Use	Thesis/Dissertation
Requestor type	non-commercial (non-profit)
Format	electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Rational Design and Application of DNA Origami Tessellation
Institution name	Arizona State University
Expected presentation date	Apr 2023
Portions	Figure 1
Requestor Location	Mr. Yue Tang 1201 S MCCLINTOCK DR APT 234

Total

Terms and Conditions

Springer Nature Customer Service Centre GmbH Terms and Conditions

TEMPE, AZ 85281 United States Attn: Mr. Yue Tang 0.00 USD

The following terms and conditions ("Terms and Conditions") together with the terms specified in your [RightsLink] constitute the License ("License") between you as Licensee and Springer Nature Customer Service Centre GmbH as Licensor. By clicking 'accept' and completing the transaction for your use of the material ("Licensed Material"), you confirm your acceptance of and obligation to be bound by these Terms and Conditions.

1. Grant and Scope of License

1. 1. The Licensor grants you a personal, non-exclusive, non-transferable, non-sublicensable, revocable, world-wide License to reproduce, distribute, communicate to the public, make available, broadcast, electronically transmit or create derivative works using the Licensed Material for the purpose(s) specified in your RightsLink Licence Details only. Licenses are granted for the specific use requested in the order and for no other use, subject to these Terms and Conditions. You acknowledge and agree that the rights granted to you under this License do not include the right

to modify, edit, translate, include in collective works, or create derivative works of the Licensed Material in whole or in part unless expressly stated in your RightsLink Licence Details. You may use the Licensed Material only as permitted under this Agreement and will not reproduce, distribute, display, perform, or otherwise use or exploit any Licensed Material in any way, in whole or in part, except as expressly permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent permitted by these Terms and Conditions, by your RightsLink Licence Details and by any applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed Material, e.g. where a license has been purchased for print use only, separate permission must be obtained for electronic re-use. Similarly, a License is only valid in the language selected and does not apply for editions in other languages unless additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is expressly excluded from the License.

1. 5. Rights for additional reuses such as custom editions, computer/mobile applications, film or TV reuses and/or any other derivative rights requests require additional permission and may be subject to an additional fee. Please apply to journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You acknowledge and agree that nothing in this License limits or restricts Licensor's rights in or use of the Licensed Material in any way. Neither this License, nor any eact, omission, or statement by Licensor or you, conveys any ownership right to you in any Licensed Material, or to any element or portion thereof. As between Licensor and you, Licensor owns and retains all right, title, and interest in and to the Licensed Material subject to the license granted in Section 1.1. Your permission to use the Licensed Material is expressly conditioned on you not impairing Licensor's or the applicable copyright owner's rights in the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or formatting purposes provided such alterations do not alter the original meaning or intention of the Licensed Material and the new figure(s) are still accurate and representative of the Licensed Material. Any other changes including but not limited to, cropping, adapting, and/or omitting material that affect the meaning, intention or moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such reuse must include a clear acknowledgment of this permission visible at the same time as the figures/tables/illustration or abstract and which must indicate that the Licensed Material is not part of the governing OA license but has been reproduced with permission. This may be indicated according to any standard referencing system but must include at a minimum 'Book/Journal title, Author, Journal Name (if applicable), Volume (if applicable), Publisher, Year, reproduced with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM Permissions Guidelines ("STM PG") as amended from time to time and made available at <u>https://www.stm-assoc.org/intellectual-</u> property/permissions/permissions-guidelines/_

4. 2. For content reuse requests that qualify for permission under the STM PG, and which may be updated from time to time, the STM PG supersede the terms and conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer apply at the time of publication, further permission must be sought from the Rightsholder. Contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical communications project	Reuse up to distribution or time period indicated in License
Reuse in a dissertation/thesis	Lifetime of thesis
Reuse in a journal/magazine	Lifetime of journal/magazine
Reuse in a book/textbook	Lifetime of edition
Reuse on a website	1 year unless otherwise specified in the License
Reuse in a presentation/slide kit/poster	Lifetime of presentation/slide kit/poster. Note: publication whether electronic or in print of presentation/slide kit/poster may require further permission.
Reuse in conference proceedings	Lifetime of conference proceedings
Reuse in an annual report	Lifetime of annual report
Reuse in training/CME materials	Reuse up to distribution or time period indicated in License
Reuse in newsmedia	Lifetime of newsmedia
Reuse in coursepack/classroom materials	Reuse up to distribution and/or time period indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed Material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract and must be hyperlinked to the journal/book's homepage.

6. 2. Acknowledgement may be provided according to any standard referencing system and at a minimum should include "Author, Article/Book Title, Journal name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms apply: Print rights of the Version of Record are provided for; electronic rights for use only on institutional repository as defined by the Sherpa guideline (<u>www.sherpa.ac.uk/romeo/</u>) and only up to what is required by the awarding institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required. Please contact journalpermissions@springernature.com or bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according to current citation standards and include the following acknowledgement: 'Reproduced with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All amounts payable by you under this License are exclusive of any sales, use, withholding, value added or similar taxes, government fees or levies or other assessments. Collection and/or remittance of such taxes to the relevant tax authority shall be the responsibility of the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of the Licensed Material. You are solely responsible for ensuring that the material you wish to license is original to the Licensor and does not carry the copyright of another entity or third party (as credited in the published version). If the credit line on any part of the Licensed Material indicates that it was reprinted or adapted with permission from another source, then you should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS, INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND ANY IMPLIED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the applicable period shown in Clause 5.1 above. Thereafter, this license will be terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be construed, interpreted and determined in accordance with the laws of the Federal Republic of Germany without reference to the stipulations of the CISG (United Nations Convention on Contracts for the International Sale of Goods) or to Germany's choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising out of this License shall be decided exclusively by the courts of or having jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues please contact <u>springernaturesupport@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777. For questions on Springer Nature licensing please visit <u>https://www.springernature.com/gp/partners/rights-permissions-third-partydistribution</u>

Other Conditions:

Version 1.4 - Dec 2022

Questions? E-mail us at customercare@copyright.com.

PNAS Permissions

Dear Dr. Tang,

8:37 AM (5 hours ago) 🛧 🕤 🚦

Thank you for your message. Permission is granted for your use of the material as described in your request. Please include a complete citation for the original PNAS article when reusing the material, and include "Copyright (2008) National Academy of Sciences, U.S.A." as a copyright note. Because this material published between 1993 and 2008, a copyright note is needed. There is no charge for this material, either. Let us know if you have any questions.

Best regards, Eric Cain for Diane Sullenberger PNAS Executive Editor

From: Yue Tang <<u>ytang86@asu.edu></u> Sent: Saturday, April 15, 2023 3:58 PM To: PNAS Permissions <<u>PNASPermissions@nas.edu</u>> Subject: Permission to use figures in the dissertation

Hello,

This is Yue Tang, a PhD student from Arizona State University. I am writing to request permission to reuse the figure in my dissertation.

Material information: PNAS, Conformational flexibility facilitates self-assembly of complex DNA nanostructures, Chuan Zhang, Min Su, Yu He, Xin Zhao, Ping-an Fang, Alexander E. Ribbe, Wen Jiang, and Chengde Mao. August 5, 2008. 105 (31) 10665-10669. Figure 1 and Figure 4.

Personal information: Yue Tang, PhD candidate, Arizona State University. Email: <u>ytang86@asu.edu</u>. Tel: 614-256-4800, Mail: 1001 S McAlister Ave, Biodesign Institute A_A115, Tempe, AZ, 85287.

Information about the reused material: Type: Dissertation; Title: Rational Design and Application of DNA Origami Tessellation; Author: Yue Tang Number of copies: 1 Nonprofit use

Best,

Yue Tang

APPENDIX E

CO-AUTHER APPROVAL

I verified that the following co-authors have approved me to our publications in my dissertation.

Hao Yan (Arizona State University)

Shuoxing Jiang (Nanjing University)