Description
Alkanolamines are useful as building blocks for a variety of applications, ranging from medical applications such as drug and gene delivery. In this work, Escherichia coli was investigated as a viable candidate for the production of 5-amino-1-pentanol (5-AP). Taking advantage

Alkanolamines are useful as building blocks for a variety of applications, ranging from medical applications such as drug and gene delivery. In this work, Escherichia coli was investigated as a viable candidate for the production of 5-amino-1-pentanol (5-AP). Taking advantage of the existing L-lysine degradation pathway, a novel route to 5-AP was constructed by co-expressing the genes cadA (encoding lysine decarboxylase, responsible for the conversion of L-lysine to cadaverine) and patA (encoding putrescine aminotransferase, responsible for the conversion of cadaverine to 5-amino-1-pentanal), followed by the endogenous reduction of 5-amino-pentanal (5-APL) to 5-AP. To avoid the competing conversion of 5-APL to 5-amino-1-pentanoate and avoid accumulation of byproduct 1-Δ-piperideine, further host engineering was performed to delete the gene patD also known as prr (encoding 5-amino-pentanal dehydrogenase). Flask scale fermentation experiments in minimal medium of the newly constructed pathway was conducted where 62.6 mg/L 5-AP was observed to be produced. It was hypothesized that 5-AP production could be boosted by optimizing production medium to M10 media. However, change in the culture medium resulted in the production of just 51 mg/L 5-AP. Shifts observed in HPLC chromatogram peaks made it difficult to conclude exact titers of 5-AP and can be further improved by exploring different analysis methods and optimization of the method currently in place.
Reuse Permissions
  • 10.47 MB application/pdf

    Download restricted until 2024-05-01.

    Details

    Title
    • Engineering Escherichia coli BL21(DE3) for the Production of 5-Amino-1-Pentanol
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2022
    • Field of study: Chemical Engineering

    Machine-readable links