Matching Items (17)

151979-Thumbnail Image.png

Self-assembly at ionic liquid-based interfaces: fundamentals and applications

Description

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.

Contributors

Agent

Created

Date Created
  • 2013

157715-Thumbnail Image.png

Investigating strategies to enhance microbial production of and tolerance towards aromatic biochemicals

Description

Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have

Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing native and non-native pathways to produce natural and non-natural bioproducts, the diversity of biochemical aromatics which can be produced is constantly being improved upon. One such compound, 2-Phenylethanol (2PE), is a key molecule used in the fragrance and food industries, as well as a potential biofuel. Here, a novel, non-natural pathway was engineered in Escherichia coli and subsequently evaluated. Following strain and bioprocess optimization, accumulation of inhibitory acetate byproduct was reduced and 2PE titers approached 2 g/L – a ~2-fold increase over previously implemented pathways in E. coli. Furthermore, a recently developed mechanism to

allow E. coli to consume xylose and glucose, two ubiquitous and industrially relevant microbial feedstocks, simultaneously was implemented and systematically evaluated for its effects on L-phenylalanine (Phe; a precursor to many microbially-derived aromatics such as 2PE) production. Ultimately, by incorporating this mutation into a Phe overproducing strain of E. coli, improvements in overall Phe titers, yields and sugar consumption in glucose-xylose mixed feeds could be obtained. While upstream efforts to improve precursor availability are necessary to ultimately reach economically-viable production, the effect of end-product toxicity on production metrics for many aromatics is severe. By utilizing a transcriptional profiling technique (i.e., RNA sequencing), key insights into the mechanisms behind styrene-induced toxicity in E. coli and the cellular response systems that are activated to maintain cell viability were obtained. By investigating variances in the transcriptional response between styrene-producing cells and cells where styrene was added exogenously, better understanding on how mechanisms such as the phage shock, heat-shock and membrane-altering responses react in different scenarios. Ultimately, these efforts to diversify the collection of microbially-produced aromatics, improve intracellular precursor pools and further the understanding of cellular response to toxic aromatic compounds, give insight into methods for improved future metabolic engineering endeavors.

Contributors

Agent

Created

Date Created
  • 2019

155661-Thumbnail Image.png

Optimum co-product utilization from hydrothermal liquefaction of microalgae

Description

The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae

The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae liquefaction at a temperature of 300 °C for 30 minute, converted 31.22 % of the Galdieria sulphuraria and 41.00 % of the Kirchneriella cornutum into biocrude. Upon changing the reactor from a 100 ml to a 250 ml reactor, the yield in biocrude increased to 31.48 % for G. sulphuraria and dropped to 38.05 % for K. cornutum. Further, energy recoveries based on calorific values of HTL products were seen to drop by about 5 % of the 100 ml calculated values in the larger reactor.

Biochar from HTL of G. sulphuraria at 300 °C showed 15.98 and 5.27 % of phosphorous and nitrogen, respectively. HTL products from the biomass were analyzed for major elements through ICP-OES and CHNS/O. N and P are macronutrients that can be utilized in growing microalgae. This could reduce the operational demands in growing algae like, phosphorous mined to meet annual national demand for aviation fuel. Acidic leaching of these elements as phosphates and ammoniacal nitrogen was studied. Improved leaching of 49.49 % phosphorous and 95.71 % nitrogen was observed at 40 °C and pH 2.5 over a period of 7 days into the growth media. These conditions being ideal for growth of G. sulphuraria, leaching can be done in-situ to reduce overhead cost.

Growth potential of G. sulphuraria in leached media was compared to a standard cyanidium media produced from inorganic chemicals. Initial inhibition studies were done in the leached media at 40 °C and 2-3 vol. % CO2 to observe a positive growth rate of 0.273 g L-1 day-1. Further, growth was compared to standard media with similar composition in a 96 well plate 50 μL microplate assay for 5 days. The growth rates in both media were comparable. Additionally, growth was confirmed in a 240 times larger tubular reactor in a Tissue Culture Roller drum apparatus. A better growth was observed in the leached cyanidium media as compared to the standard variant.

Contributors

Agent

Created

Date Created
  • 2017

154350-Thumbnail Image.png

Exploring growth essential genes in E. coli using synthetic small RNA to enhance production of phenylalanine

Description

Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular

Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli BW25113 was explored with the use of synthetic trans-encoded small RNA (sRNA) to achieve greater efficiency. The naturally occurring sRNA MicC was used as a scaffold, and combined on a plasmid with a promoter for anhydrous tetracycline (aTc) and a T1/TE terminator. The coding sequence corresponding to the target binding site for fourteen potentially growth-essential gene targets as well as non-essential lacZ was placed in the seed region of the of the sRNA scaffold and transformed into BW25113, effectively generating a unique strain for each gene target. The BW25113 strain corresponding to each gene target was screened in M9 minimal media; decreased optical density and elongated cell morphology changes were observed and quantified in all induced sRNA cases where growth-essential genes were targeted. Six of the strains targeting different aspects of cell division that effectively suppressed growth and resulted in increased cell size were then screened for viability and metabolic activity in a scaled-up shaker flask experiment; all six strains were shown to be viable during stationary phase, and a metabolite analysis showed increased specific glucose consumption rates in induced strains, with unaffected specific glucose consumption rates in uninduced strains. The growth suppression, morphology and metabolic activity of the induced strains in BW25113 was compared to the bacteriostatic additives chloramphenicol, tetracycline, and streptomycin. At this same scale, the sRNA plasmid targeting the gene murA was transformed into BW25113 pINT-GA, a phenylalanine overproducer with the feedback resistant genes aroG and pheA overexpressed. Two induction times were explored during exponential phase, and while the optimal induction time was found to increase titer and yield amongst the BW25113 pINT-GA murA sRNA variant, overall this did not have as great a titer or yield as the BW25113 pINT-GA strain without the sRNA plasmid; this may be a result of the cell filamentation.

Contributors

Agent

Created

Date Created
  • 2016

153276-Thumbnail Image.png

A novel engineering approach to modelling and optimizing smoking cessation interventions

Description

Cigarette smoking remains a major global public health issue. This is partially due to the chronic and relapsing nature of tobacco use, which contributes to the approximately 90% quit attempt

Cigarette smoking remains a major global public health issue. This is partially due to the chronic and relapsing nature of tobacco use, which contributes to the approximately 90% quit attempt failure rate. The recent rise in mobile technologies has led to an increased ability to frequently measure smoking behaviors and related constructs over time, i.e., obtain intensive longitudinal data (ILD). Dynamical systems modeling and system identification methods from engineering offer a means to leverage ILD in order to better model dynamic smoking behaviors. In this dissertation, two sets of dynamical systems models are estimated using ILD from a smoking cessation clinical trial: one set describes cessation as a craving-mediated process; a second set was reverse-engineered and describes a psychological self-regulation process in which smoking activity regulates craving levels. The estimated expressions suggest that self-regulation more accurately describes cessation behavior change, and that the psychological self-regulator resembles a proportional-with-filter controller. In contrast to current clinical practice, adaptive smoking cessation interventions seek to personalize cessation treatment over time. An intervention of this nature generally reflects a control system with feedback and feedforward components, suggesting its design could benefit from a control systems engineering perspective. An adaptive intervention is designed in this dissertation in the form of a Hybrid Model Predictive Control (HMPC) decision algorithm. This algorithm assigns counseling, bupropion, and nicotine lozenges each day to promote tracking of target smoking and craving levels. Demonstrated through a diverse series of simulations, this HMPC-based intervention can aid a successful cessation attempt. Objective function weights and three-degree-of-freedom tuning parameters can be sensibly selected to achieve intervention performance goals despite strict clinical and operational constraints. Such tuning largely affects the rate at which peak bupropion and lozenge dosages are assigned; total post-quit smoking levels, craving offset, and other performance metrics are consequently affected. Overall, the interconnected nature of the smoking and craving controlled variables facilitate the controller's robust decision-making capabilities, even despite the presence of noise or plant-model mismatch. Altogether, this dissertation lays the conceptual and computational groundwork for future efforts to utilize engineering concepts to further study smoking behaviors and to optimize smoking cessation interventions.

Contributors

Agent

Created

Date Created
  • 2014

151266-Thumbnail Image.png

Synthesis, characterizations and applications of mesoporous carbon composites

Description

This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors,

This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method and pore size distribution has been calculated by Kelvin equation based on toluene adsorption and desorption isotherms monitored by Ellipsometer. The addition of organometallics cobalt and vanalyl acetylacetonate in the synthesis precursor leads to the metal oxides in the carbon framework, which largely decreased the shrink of the framework during carbonization, resulting in an increase in the average pore size. In addition to the structural changes, the introduction of metal oxides into mesoporous carbon framework greatly enhances the electrochemical performance as a result of their pseudocapacitance. Also, after the addition of Co into the framework, the contraction of mesoporous powders decreased significantly and the capacitance increased prominently because of the solidification function of CoO nanoparticles. When carbon-cobalt composites are used as adsorbent, the adsorption capacity of dye pollutant in water is remarkably higher (90 mg/g) after adding Co than the mesoporous carbon powder (2 mg/g). Furthermore, the surface area and pore size of mesoporous composites can be greatly increased by addition of tetraethyl orthosilicate into the precursor with subsequent etching, which leads to a dramatic increase in the adsorption capacity from 90 mg/g up to 1151 mg/g. When used as electrode materials for amperometric biosensors, mesoporous carbons showed good sensitivity, selectivity and stability. And fluorine-free and low-cost poly (methacrylate)s have been developed as binders for screen printed biosensors. With using only 5wt% of poly (hydroxybutyl methacrylate), the glucose sensor maintained mechanical integrity and exhibited excellent sensitivity on detecting glucose level in whole rabbit blood. Furthermore, extremely high surface area mesoporous carbons have been synthesized by introducing inorganic Si precursor during self-assembly, which effectively determined norepinephrine at very low concentrations.

Contributors

Agent

Created

Date Created
  • 2012

153161-Thumbnail Image.png

Antibody based diagnostic and therapeutic approach for Alzheimer's disease

Description

Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause

Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause of death in United States, and the only one among top 10 death causes that cannot be prevented, cured or slowed. An estimated 5.4 million Americans live with AD, and this number is expected to triple by year 2050 as the baby boomers age. The cost of care for AD in the US is about $200 billion each year. Unfortunately, in addition to the lack of an effective treatment or AD, there is also a lack of an effective diagnosis, particularly an early diagnosis which would enable treatment to begin before significant neuronal damage has occurred.

Increasing evidence implicates soluble oligomeric forms of beta-amyloid and tau in the onset and progression of AD. While many studies have focused on beta-amyloid, soluble oligomeric tau species may also play an important role in AD pathogenesis. Antibodies that selectively identify and target specific oligomeric tau variants would be valuable tools for both diagnostic and therapeutic applications and also to study the etiology of AD and other neurodegenerative diseases.

Recombinant human tau (rhTau) in monomeric, dimeric, trimeric and fibrillar forms were synthesized and purified to perform LDH assay on human neuroblastoma cells, so that trimeric but not monomeric or dimeric rhTau was identified as extracellularly neurotoxic to neuronal cells. A novel biopanning protocol was designed based on phage display technique and atomic force microscopy (AFM), and used to isolate single chain antibody variable domain fragments (scFvs) that selectively recognize the toxic tau oligomers. These scFvs selectively bind tau variants in brain tissue of human AD patients and AD-related tau transgenic rodent models and have potential value as early diagnostic biomarkers for AD and as potential therapeutics to selectively target toxic tau aggregates.

Contributors

Agent

Created

Date Created
  • 2014

153163-Thumbnail Image.png

Improving yields and productivity of microbe-catalyzed production of targeted bio-molecules using in-situ adsorption

Description

With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative,

With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and "eco-friendly". Escherichia coli has recently been engineered to produce the aromatic chemicals (S)-styrene oxide and phenol directly from renewable glucose. Several factors, however, limit the viability of this approach, including low titers caused by product inhibition and/or low metabolic flux through the engineered pathways. This thesis focuses on addressing these concerns using magnetic mesoporous carbon powders as adsorbents for continuous, in-situ product removal as a means to alleviate such limitations. Using process engineering as a means to troubleshoot metabolic pathways by continuously removing products, increased yields are achieved from both pathways. By performing case studies in product toxicity and reaction equilibrium it was concluded that each step of a metabolic pathway can be optimized by the strategic use of in-situ adsorption as a process engineering tool.

Contributors

Agent

Created

Date Created
  • 2014

156858-Thumbnail Image.png

Harnessing Resistance-Nodulation-Division Family Transporters to Modify Cellular Secretion in Synechocystis sp. PCC 6803

Description

Synechocystis sp. PCC 6803 is a readily transformable cyanobacteria used to study cyanobacterial genetics, as well as production of biofuels, polyesters, and other industrial chemicals. Free fatty acids are precursors

Synechocystis sp. PCC 6803 is a readily transformable cyanobacteria used to study cyanobacterial genetics, as well as production of biofuels, polyesters, and other industrial chemicals. Free fatty acids are precursors to biofuels which are used by Synechocystis cells as a means of energy storage. By genetically modifying the cyanobacteria to expel these chemicals, costs associated with retrieving the products will be reduced; concurrently, the bacteria will be able to produce the products at a higher concentration. This is achieved by adding genes encoding components of the Escherichia coli AcrAB-TolC efflux system, part of the resistance-nodulation-division (RND) transporter family, to Synechocystis sp. PCC 6803. AcrAB-TolC is a relatively promiscuous multidrug efflux pump that is noted for expelling a wide range of substrates including dyes, organic solvents, antibiotics, and free fatty acids. Adding components of the AcrAB-TolC multidrug efflux pump to a previously created high free fatty acid producing strain, SD277, allowed cells to move more free fatty acids to the extracellular environment than did the parent strain. Some of these modifications also improved tolerance to antibiotics and a dye, rhodamine 6G. To confirm the function of this exogenous efflux pump, the genes encoding components of the AcrAB-TolC efflux pump were also added to Synechocystis sp. PCC 6803 and shown to grow on a greater concentration of various antibiotics and rhodamine 6G. Various endogenous efflux systems have been elucidated, but their usefulness in expelling products currently generated in Synechocystis is limited. Most of the elucidated pumps in the cyanobacteria are part of the ATP-binding cassette superfamily. The knowledge of the resistance-nodulation-division (RND) family transporters is limited. Two genes in Synechocystis sp. PCC 6803, slr2131 and sll0180 encoding homologs to the genes that encode acrB and acrA, respectively, were removed and the modifications resulted in changes in resistance to various antibiotics and a dye and also had an impact on free fatty acid secretion. Both of these deletions were complemented independently with the homologous E. coli gene and the resulting cyanobacteria strains had some of the inherent resistance restored to chloramphenicol and free fatty acid secretion was modified when compared to the wild-type and a high free fatty acid producing strain.

Contributors

Agent

Created

Date Created
  • 2018

152709-Thumbnail Image.png

Engineering cyanobacteria to convert carbon dioxide to building blocks for renewable plastics

Description

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the feasibility of photosynthetic production of (S)- and (R)-3-hydroxybutyrate (3HB), building-block monomers for synthesizing the biodegradable plastics polyhydroxyalkanoates and precursors to fine chemicals, synthetic metabolic pathways have been constructed, characterized and optimized in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing PHB biosynthesis pathway further promoted the 3HB production. Analysis of the intracellular acetyl-CoA and anion concentrations in the culture media indicated that the phosphate consumption during the photoautotrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. Fine-tuning of the gene expression levels via strategies, including tuning gene copy numbers, promoter engineering and ribosome binding site optimization, proved critical to mitigating metabolic bottlenecks and thus improving the 3HB production. One of the engineered Synechocystis strains, namely R168, was able to produce (R)-3HB to a cumulative titer of ~1600 mg/L, with a peak daily productivity of ~200 mg/L, using light and CO2 as the sole energy and carbon sources, respectively. Additionally, in order to establish a high-efficiency transformation protocol in cyanobacterium Synechocystis 6803, methyltransferase-encoding genes were cloned and expressed to pre-methylate the exogenous DNA before Synechocystis transformation. Eventually, the transformation efficiency was increased by two orders of magnitude in Synechocystis. This research has demonstrated the use of cyanobacteria as cell factories to produce 3HB directly from light and CO2, and developed new synthetic biology tools for cyanobacteria.

Contributors

Agent

Created

Date Created
  • 2014