Matching Items (134)

132490-Thumbnail Image.png

Codon Optimization of Human TRAIL Gene for Maximal Expression in a Self-Destructing Salmonella Strain for Efficient Colorectal Cancer Treatment

Description

Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most

Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has long been shown to have inherent tumor targeting properties and have been able to penetrate and exist in all aspects of the tumor environment, something that chemotherapy is unable to achieve. This lab has developed a genetically modified Salmonella typhimurium (GMS) which is able to deliver DNA vaccines or synthesized proteins directly to tumor sites. These GMS strains have been used to deliver human TNF-related apoptosis inducing ligand (TRAIL) protein directly to tumor sites, but expression level was limited. It is the hope of the experiment that codon optimization of TRAIL to S. typhimurium preferred codons will lead to increased TRAIL expression in the GMS. For preliminary studies, BALB/c mice were subcutaneously challenged with CT-26 murine colorectal cancer cells and treated with an intra-tumor injection with either PBS, strain GMS + PCMV FasL (P2), or strain GMS + Pmus FasL). APC/CDX2 mutant mice were also induced to develop human colon polyps and treated with either PBS, strain GMS + vector (P1), P2, or P3. The BALB/c mouse showed statistically significant levels of decreased tumor size in groups treated with P2 or P3. The APC/CDX2 mouse study showed statistically significant levels of decreased colon polyp numbers in groups treated with P3, as expected, but was not significantly significant for groups treated with P1 and P2. In addition, TRAIL was codon optimized for robust synthesis in Salmonella. The construct will be characterized and evaluated in vitro and in vivo. Hopefully, the therapeutic effect of codon optimized TRAIL will be maximal while almost completely minimizing any unintended side effects.

Contributors

Agent

Created

Date Created
  • 2019-05

134307-Thumbnail Image.png

The Effects of Environmental Changes on the Rhamnolipid Production in Pseduomonas aeruginosa

Description

Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist

Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from the environment of the CF lung, changing the expression of phenotypes over the course of the infection. As P. aeruginosa infections become chronic, some phenotype changes are known to be linked with negative patient outcomes. An important exoproduct phenotype is rhamnolipid production, which is a glycolipid that P. aeruginosa produces as a surfactant for surface-mediated travel. Over time, the expression of this phenotype decreases in expression in the CF lung.
The objective of this investigation is to evaluate how environmental changes that are related to the growth environment in the CF lung alters rhamnolipid production. Thirty-five P. aeruginosa isolates from Dartmouth College and Seattle Children’s Hospital were selected to observe the impact of temperature, presence of Staphylococcus aureus metabolites, and oxygen availability on rhamnolipid production. It was found that the rhamnolipid production significantly decreased for 30C versus 37C, but not at 40C. The addition of S. aureus spent media, in any of the tested conditions, did not influence rhamnolipid production. Finally, the change in oxygen concentration from normoxia to hypoxia significantly reduced rhamnolipid production. These results were compared to swarming assay data to understand how changes in rhamnolipid production impact surface-mediated motility.

Contributors

Agent

Created

Date Created
  • 2017-05

134414-Thumbnail Image.png

Inhibition of PKR phosphorylation by Vaccinia Virus' E3 Protein

Description

Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of

Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of the principal host defense mechanisms against orthopoxvirus infection. PKR can bind double-stranded RNA and phosphorylate eukaryotic translation initiation factor, eIF2α, shutting down protein synthesis and halting the viral life cycle. To combat host defenses, vaccinia virus encodes E3, a potent inhibitor of the cellular anti-viral eIF2α kinase, PKR. The E3 protein contains a C-terminal dsRNA-binding motif that sequesters dsRNA and inhibits PKR activation. We demonstrate that E3 also interacts with PKR by co-immunoprecipitation. This interaction is independent of the presence of dsRNA and dsRNA-binding by E3, indicating that the interaction is not due to dsRNA-bridging.
PKR interaction mapped to a region within the dsRNA-binding domain of E3 and overlapped with sequences in the C-terminus of this domain that are necessary for binding to dsRNA. Point mutants of E3 were generated and screened for PKR inhibition and direct interaction. Analysis of these mutants demonstrates that dsRNA-binding but not PKR interaction plays a critical role in the broad host range of VACV. Nonetheless, full inhibition of PKR in cells in culture requires both dsRNA-binding and PKR interaction. Because E3 is highly conserved among orthopoxviruses, understanding the mechanisms that E3 uses to inhibit PKR can give insight into host range pathogenesis of dsRNA producing viruses.

Contributors

Agent

Created

Date Created
  • 2017-05

134704-Thumbnail Image.png

Engineering a Co-Culture of Bacteria and Yeast for the Production of Renewable p-Coumaric Acid

Description

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.

Contributors

Agent

Created

Date Created
  • 2016-12

134374-Thumbnail Image.png

Analysis of the prrAB two-component system regulatory effects on the lipid profile of Mycobacterium smegmatis

Description

The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium

The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from Mtb controlled by Pmyc1_tetO, a deletion mutant, and a deletion mutant complemented with prrAB from M. smegmatis controlled by the native prrAB promoter sequence (~167 bp upstream sequence of prrAB). In a previous study, the prrAB deletion mutant clumped excessively relative to the wild-type strain when cultured in a nitrogen-limited medium. To address this irregularity, the lipid profiles of these mutants were analyzed through several experimental methods. Untargeted lipidomic profiles were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS). The ESI-MS data suggested the deletion mutant accumulates triacylglycerol species relative to the wild-type strain. This data was verified by thin-layer chromatography (TLC) and densitometry of the TLC images. The mycolic acid profile of each mutant was also analyzed by TLC but no noteworthy differences were found. High-throughput RNA-Seq analysis revealed several genes involved in lipid biosynthetic pathways upregulated in the prrAB deletion mutant, thus corroborating the ESI-MS and TLC data.

Contributors

Agent

Created

Date Created
  • 2017-05

131157-Thumbnail Image.png

Surveilling United States Sewage Sludge for Genetic Evidence of Genomoviridae & Microviridae Populations

Description

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.

Contributors

Agent

Created

Date Created
  • 2020-05

131672-Thumbnail Image.png

Investigating geopolymer-mediated adsorption of methicillin-resistant Staphylococcus aureus cells and secreted proteins

Description

The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap,

The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA cells and MRSA secreted proteins [culture filtrate proteins (CFPs)] as a complementary method of controlling MRSA infections. GPs have been synthesized with variable pore sizes (meso/macro scale) and further modified with stearic acid (SA) to increase surface hydrophobicity. Four GPs (SA-macroGP, macroGP, SA-mesoGP, and mesoGP) were incubated with whole cells and with CFPs to quantify GP adsorption capabilities. Following MRSA culture incubation with GPs, unbound MRSA cells were filtered and plated to determine cell counts. Following CFP incubation with GPs, unbound CFPs were separated via SDS-PAGE, stained with SYPRO Ruby, and analyzed using densitometry. Results indicate that macroGP was the most effective at adsorbing whole MRSA cells. Visual banding patterns and densitometry quantitation indicate that SA-mesoGP was the most effective at adsorbing CFP. Ultimately, GP-based products may be further developed as nonselective or selective adsorbents and integrated into fibrous materials for topical applications.

Contributors

Agent

Created

Date Created
  • 2020-05

131560-Thumbnail Image.png

Characterization of the physiological fluid shear response of the foodborne pathogen Salmonella enterica serovar Enteritidis

Description

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.

Contributors

Agent

Created

Date Created
  • 2020-05

131628-Thumbnail Image.png

The impact of Staphylococcus aureus volatiles on Pseudomonas aeruginosa phenotypes

Description

Persons with cystic fibrosis (CF) are highly susceptible to lung infections caused by the opportunistic pathogens Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). By age 20, ~16% of CF patients

Persons with cystic fibrosis (CF) are highly susceptible to lung infections caused by the opportunistic pathogens Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). By age 20, ~16% of CF patients have co-infections with these two bacteria, and this number grows as the patients age1. PA-SA co-infections are associated with worsened clinical outcomes in CF patients, but the reasons are not well understood. One hypothesis is that SA influences the production of PA virulence factors and other chronic infection phenotypes. Previous work in our lab investigated the effects of SA on PA quorum-regulated phenotypes when they are grown as planktonic co-cultures. We are expanding on this result by testing whether SA can influence PA phenotypes without being in direct contact, and without being able to exchange soluble secreted factors. In this study, we hypothesized that SA produces volatile organic compounds (VOCs) that cause changes in PA phenotypes leading to a down-regulation of motility and protease production, and increased antibiotic resistance. To test this hypothesis, we exposed two laboratory strains of PA to the VOCs produced by pre-grown lawns of two strains of SA, and measured PA motility by conducting swarming, swimming, and twitching assays, measuring protease production, as well as antibiotic sensitivity. After exposing PA to a pre-grown lawn of SA, there was a significant difference in some phenotypes compared to controls. There were significant decreases in swarming motility, twitching motility, and protease production, and an increase in a bright green pigment (possibly siderophores) when PA was exposed to SA. The degree of phenotypic alterations was dependent on both the PA strain and the SA strain being tested. Exposure to SA VOCs also altered PA sensitivity to ciprofloxacin, though one strain caused an increase in susceptibility while the other SA strain caused an increase in resistance. These data demonstrate that SA VOCs can influence PA phenotypes in vitro, which may have relevance for CF patients who are co-infected with these two bacteria.

Contributors

Agent

Created

Date Created
  • 2020-05

131505-Thumbnail Image.png

Luminometric Analysis of Yeast Calcium Channel Homeostasis Following Hypotonic Shock

Description

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis,

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.

Contributors

Agent

Created

Date Created
  • 2020-05