165081-Thumbnail Image.png
Description

For this thesis, the energy of the CXLS electron beam was measured and the beam’s energy jitter was calculated. It is essential to characterize the beam’s en- ergy and energy jitter in order to ensure that the powerful x-rays produced

For this thesis, the energy of the CXLS electron beam was measured and the beam’s energy jitter was calculated. It is essential to characterize the beam’s en- ergy and energy jitter in order to ensure that the powerful x-rays produced by CXLS will be of a consistent and desirable energy. The energy of the electrons within the electron beam can be calculated through utilizing basic physics prin- ciples and the geometry of the beamline. The energy of the beam for the data collected was found to be 3.426 MeV at POP module 1 and 12.3 MeV at POP module 9. The energy jitter of the beam was determined for four different angle settings of the VPSPD for linac 1 and found to be lowest when the linac 1 VPSPD was set to an angle of 97°. The energy jitter of the beam was 1.50e-03 MeV when the VPSPD for linac 1 was set to 97°.

Reuse Permissions
  • 1.5 MB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • Measuring Beam Energy and Energy Jitter on the Compact X-Ray Light Source
    Contributors
    Date Created
    2022-05
    Resource Type
  • Text
  • Machine-readable links