Matching Items (193)

132590-Thumbnail Image.png

Synthesis and Characterization of Laser Plasma that Produces Pseudocarbyne Using Laser Pulses

Description

Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances

Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain is composed of sp¹ and sp³ hybridized bonds, but it also incorporates nanoparticles such as gold or possibly silver to stabilize the chain. The polyyne generated in this process is called pseudocarbyne due to its striking resemblance to the theoretical carbyne. The formation of these carbon chains is yet to be fully understood, but significant progress has been made in determining the temperature of the plasma in which the pseudocarbyne is formed. When a 532 nm pulsed laser with a pulsed energy of 250 mJ and pulse length of 10ns is used to ablate a gold target, a peak temperature of 13400 K is measured. When measured using Laser-Induced Breakdown spectroscopy (LIBS) the average temperature of the neutral carbon plasma over one second was 4590±172 K. This temperature strongly suggests that the current theoretical model used to describe the temperature at which pseudocarbyne generates is accurate.

Contributors

Agent

Created

Date Created
  • 2019-05

136446-Thumbnail Image.png

The Comprehensive Analysis of Concussions and Their Ramifications on Society

Description

Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that

Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull. A concussion causes temporary loss of brain function leading to cognitive, physical, and emotional symptoms, such as confusion, vomiting,headache, nausea,depression, disturbed sleep, moodiness, and amnesia. Although the short-term effects of concussions are limited, the long-term effects of concussions, if untreated, can be devastating and even life-threatening. Concussions are having detrimental ramifications on society and it is important to know what these ramifications are. Concussions are a common occurrence in traditional physical sports such as soccer, basketball, and football. However, due to the violent nature of football (American football), concussions are more prevalent and the effects are more severe. Changes to rules and equipment, specifically helmets, have been made to reduce head impacts in football but there is not currently enough evidence to conclude that they significantly lessen the frequency and severity of concussions.

Contributors

Agent

Created

Date Created
  • 2015-05

136488-Thumbnail Image.png

Comparison of the Mesonic and Diquark Effects on Tetraquark States via Resonance Synchronization with Thresholds

Description

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.

Contributors

Agent

Created

Date Created
  • 2015-05

136499-Thumbnail Image.png

Spin Transport in Metallic Films with Strong Spin-Orbital Coupling

Description

In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power

In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal of attention because of its potential to generate pure spin currents using a thermal gradient (∇T), such as the spin Seebeck effect. However, unlike electric potential, the exact thermal gradient direction is experimentally difficult to control, which has already caused misinterpretation of the thermal effects in Py and Py/Pt films. In this work, we show that a well-defined ∇T can be created by two thermoelectric coolers (TECs) based on Peltier effect. The ∇T as well as its sign can be accurately controlled by the driven voltage on the TECs. Using a square-wave driven potential, thermal effects of a few μV can be measured. Using this technique, we have measured the anomalous Nernst effect in magnetic Co/Py and Py/Pt layers and determined their angular dependence. The angular dependence shows the same symmetry as the anomalous Hall effect in these films.
This work has been carried out under the guidance of the author’s thesis advisor, Professor Tingyong Chen.

Contributors

Agent

Created

Date Created
  • 2015-05

134612-Thumbnail Image.png

Cryogenic Testing of Microwave Kinetic Inductance Detectors (MKIDs)

Description

We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of

We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on the first and second stages respectively. During the first semester of my thesis I worked on getting the second stage to reach below 4K such that it would be cold enough to add a sorption fridge to reach 250mK. Various parts were machined for the cryostat and some tweaks were made to existing pieces. The largest changes were we thinned our stainless steel supports from 2mm to 10mil and we added roughly 6-10 layers of multi-layer insulation to the first and second stages. Our result was that we now reach temperatures of 36K and 2.6K on the first and second stages respectively. Next we added the sorption fridge to the 4K stage by having the 4K stage remachined to allow the sorption fridge to be mounted to the stage. Then I designed a final, two stage, setup for the 1K and 250mK stages that has maximum capabilities of housing a six inch wafer for testing. The design was sent to a machinist, but the parts were unfinished by the end of my thesis, so the parts and stage were not tested. Once the cryostat was fully tested and proven to reach the necessary temperatures, preliminary testing was done on a Microwave Kinetic Inductance Detector (MKID) provided by Stanford. Data was collected on the resonance and quality factor as they shifted with final stage temperature (5K to 285mK) and with input power (60dB to 15dB). The data was analyzed and the results agreed within expectations, as the resonant frequency and quality factor shifted down with increased temperature on the MKID. Finally, a noise characterization setup was designed to test the noise of devices, but was not fully implemented.

Contributors

Agent

Created

Date Created
  • 2017-05

134761-Thumbnail Image.png

Probing the Radio Sky with the Low Frequency Array

Description

The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very

The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and Europe which allows it to achieve superb angular resolution. I investigate a part of the northern sky to search for rare radio objects such as radio haloes and radio relics that may have not been able to have been resolved by other radio telescopes.

Contributors

Agent

Created

Date Created
  • 2016-12

134781-Thumbnail Image.png

Learning Physics Through Dance: An 8th Grade STEAM Curriculum

Description

In recent education trends, an emphasis has been placed on teaching students in STEM (Science, Technology, Engineering, and Mathematics) disciplines. Many researchers have advocated for integrating Arts education as well,

In recent education trends, an emphasis has been placed on teaching students in STEM (Science, Technology, Engineering, and Mathematics) disciplines. Many researchers have advocated for integrating Arts education as well, changing STEM education to STEAM (STEM + Arts) education. This paper describes an original 8th Grade physics curriculum integrating Science, Technology, Engineering, Arts, and Mathematics (STEAM). The curriculum was designed to teach core science concepts through inquiry and dance activities. The curriculum uses the 5E inquiry format, specifically using dance and movement activities to elaborate on the learned science content. The unit curriculum is designed to be implemented in an 8th Grade science classroom based on best practices in Science Instruction and Dance Education. The curriculum was not implemented as a research study this year, but is designed to support research in the future. The curriculum was however presented to Term 6 Pre-service Teachers in Mary Lou Fulton Teacher's College at ASU, whom evaluated the effectiveness of the lessons and offered feedback. This paper includes a review of current literature on STEAM education and dance integration, rationale for the curriculum's 5E Format and dance integration, the entire physics unit curriculum in 5E format, Pre-service Teacher feedback, and implications for a future research study with the unit curriculum.

Contributors

Agent

Created

Date Created
  • 2016-12

135129-Thumbnail Image.png

The Mathematical Successes and Failures of Students in an Introductory Physics Course

Description

A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have

A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have the necessary mathematical ability to succeed in physics. The investigation reported in this thesis used preinstruction diagnostics and interviews to examine this problem in depth. It was found that in some cases, over 75% of students could not solve the most basic mathematics problems. We asked questions involving right triangles, vector addition, vector direction, systems of equations, and arithmetic, to give a few examples. The correct response rates were typically between 25% and 75%, which is worrying, because these problems are far simpler than the typical problem encountered in an introductory quantitative physics course. This thesis uncovered a few common problem solving strategies that were not particularly effective. When solving trigonometry problems, 13% of students wrote down the mnemonic "SOH CAH TOA," but a chi-squared test revealed that this was not a statistically significant factor in getting the correct answer, and was actually detrimental in certain situations. Also, about 50% of students used a tip-to-tail method to add vectors. But there is evidence to suggest that this method is not as effective as using components. There are also a number of problem solving strategies that successful students use to solve mathematics problems. Using the components of a vector increases student success when adding vectors and examining their direction. Preliminary evidence also suggests that repetitive trigonometry practice may be the best way to improve student performance on trigonometry problems. In addition, teaching students to use a wide variety of algebraic techniques like the distributive property may help them from getting stuck when working through problems. Finally, evidence suggests that checking work could eliminate up to a third of student errors.

Contributors

Agent

Created

Date Created
  • 2016-12

135151-Thumbnail Image.png

Wet NanoBonding of Semiconducting Surfaces Optimized via Surface Energy Modification using Three Liquid Contact Angle Analysis as a Metrology

Description

Semiconductor wafers are analyzed and their total surface energy γT is measured in three components according to the van Oss theory: (1) γLW, surface energy due to Lifshitz-van der Waals

Semiconductor wafers are analyzed and their total surface energy γT is measured in three components according to the van Oss theory: (1) γLW, surface energy due to Lifshitz-van der Waals forces or dipole interactions, (2) γ+, surface energy due to interactions with electron donors, and (3) γ–, surface energy due to interactions with electron acceptors. Surface energy is measured via Three Liquid Contact Angle Analysis (3LCAA), a method of contact angle measurement using the sessile drop technique and three liquids: water, glycerin, and α-bromonaphthalene. This research optimizes the experimental methods of 3LCAA, proving that the technique produces reproducible measurements for surface energy on a variety of surfaces. Wafer surfaces are prepared via thermal oxidation, rapid thermal oxidation, ion beam oxidation, rapid thermal annealing, hydrofluoric acid etching, the RCA clean, the Herbots-Atluri (H-A) process, and the dry and wet anneals used for Dry and Wet NanoBonding™, respectively.
NanoBonding™ is a process for growing molecular bonds between semiconducting surfaces to create a hermetic seal. NanoBonding™ prevents fluid percolation, protecting integrated electronic sensors from corrosive mobile ion species such as sodium. This can extend the lifetime of marine sensors and glucose sensors from less than one week to over two years, dramatically reducing costs and improving quality of life for diabetic patients. Surface energy measurement is critical to understanding and optimizing NanoBonding™. Surface energies are modified through variations on the H-A process, and measured via 3LCAA. The majority of this research focuses on silicon oxide surfaces.
This is the first quantitative measurement of gallium arsenide surface energy in three components. GaAs is a III-V semiconductor with potential commercial use in transistors, but its oxide layer slowly evaporates over time. In subsequent research, 3LCAA may prove key to developing a stable GaAs oxide layer.

Contributors

Agent

Created

Date Created
  • 2016-05

133977-Thumbnail Image.png

Computational Electrodynamics: Adapting the Convolutional Perfectly-Matched Layer to Dispersive Media

Description

Within the context of the Finite-Difference Time-Domain (FDTD) method of simulating interactions between electromagnetic waves and matter, we adapt a known absorbing boundary condition, the Convolutional Perfectly-Matched Layer (CPML) to

Within the context of the Finite-Difference Time-Domain (FDTD) method of simulating interactions between electromagnetic waves and matter, we adapt a known absorbing boundary condition, the Convolutional Perfectly-Matched Layer (CPML) to a background of Drude-dispersive medium. The purpose of this CPML is to terminate the virtual grid of scattering simulations by absorbing all outgoing radiation. In this thesis, we exposit the method of simulation, establish the Perfectly-Matched Layer as a domain which houses a spatial-coordinate transform to the complex plane, construct the CPML in vacuum, adapt the CPML to the Drude medium, and conclude with tests of the adapted CPML for two different scattering geometries.

Contributors

Created

Date Created
  • 2018-05