Description
Switching regulator has several advantages over linear regulator, but the drawback of switching regulator is ripple voltage on output. Previously people use LDO following a buck converter and multi-phase buck converter to reduce the output voltage ripple. However, these two

Switching regulator has several advantages over linear regulator, but the drawback of switching regulator is ripple voltage on output. Previously people use LDO following a buck converter and multi-phase buck converter to reduce the output voltage ripple. However, these two solutions also have obvious drawbacks and limitations.

In this thesis, a novel mixed signal adaptive ripple cancellation technique is presented. The idea is to generate an artificial ripple current with the same amplitude as inductor current ripple but opposite phase that has high linearity tracking behavior. To generate the artificial triangular current, duty cycle information and inductor current ripple amplitude information are needed. By sensing switching node SW, the duty cycle information can be obtained; by using feedback the amplitude of the artificial ripple current can be regulated. The artificial ripple current cancels out the inductor current, and results in a very low ripple output current flowing to load. In top level simulation, 19.3dB ripple rejection can be achieved.
Reuse Permissions
  • Downloads
    pdf (1.5 MB)

    Details

    Title
    • A mixed signal adaptive ripple cancellation technique for integrated buck converters
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2016
      Note type
      thesis
    • Includes bibliographical references (pages 42-43)
      Note type
      bibliography
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Zhe Yang

    Machine-readable links