Description
Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is

Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of conductivity reconstruction algorithms are suitable for isotropic conductivity distributions. However, tissues such as cardiac muscle and white matter in the brain are highly anisotropic. Until recently, the conductivity distributions of anisotropic samples were solved using isotropic conductivity reconstruction algorithms. First and second spatial derivatives of conductivity (∇σ and ∇2σ ) are integrated to obtain the conductivity distribution. Existing algorithms estimate a scalar conductivity instead of a tensor in anisotropic samples.

Accurate determination of the spatial distribution of a conductivity tensor in an anisotropic sample necessitates the development of anisotropic conductivity tensor image reconstruction techniques. Therefore, experimental studies investigating the effect of ∇2σ on degree of anisotropy is necessary. The purpose of the thesis is to compare the influence of ∇2σ on the degree of anisotropy under two different orthogonal current injection pairs.

The anisotropic property of tissues such as white matter is investigated by constructing stable TX-151 gel layer phantoms with varying degrees of anisotropy. MREIT and Diffusion Magnetic Resonance Imaging (DWI) experiments were conducted to probe the conductivity and diffusion properties of phantoms. MREIT involved current injection synchronized to a spin-echo pulse sequence. Similarities and differences in the divergence of the vector field of ∇σ (∇2σ) among anisotropic samples subjected to two different current injection pairs were studied. DWI of anisotropic phantoms involved the application of diffusion-weighted magnetic field gradients with a spin-echo pulse sequence. Eigenvalues and eigenvectors of diffusion tensors were compared to characterize diffusion properties of anisotropic phantoms.

The orientation of current injection electrode pair and degree of anisotropy influence the spatial distribution of ∇2σ. Anisotropy in conductivity is preserved in ∇2σ subjected to non-symmetric electric fields. Non-symmetry in electric field is observed in current injections parallel and perpendicular to the orientation of gel layers. The principal eigenvalue and eigenvector in the phantom with maximum anisotropy display diffusion anisotropy.
Reuse Permissions
  • Downloads
    pdf (2 MB)

    Details

    Title
    • Anisotropy in diffusion and electrical conductivity distributions of TX-151 phantoms
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2015
      Note type
      thesis
    • Includes bibliographical references (pages 59-60)
      Note type
      bibliography
    • Field of study: Bioengineering

    Citation and reuse

    Statement of Responsibility

    by Neeta Ashok Kumar

    Machine-readable links