Matching Items (44)

Electromagnetic Field Strength Analysis with Deep Brain Stimulation in Parkinson's Patients

Description

Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS

Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS to be an effective treatment in the effects of PD but the mechanism to validating this phenomenon is poorly understood. In this study, an evaluation of the DBS mechanism was analyzed in patients who received both contralateral and ipsilateral stimulation by the DBS electrode in relation to the recording microelectrode. I hypothesize that the data recorded from the neural tissue of the Parkinson’s patients will exhibit increased electromagnetic field (EMF) fall-off as spatial distance increases among the DBS lead and the microelectrode within the subthalamic nucleus (STN) as a result of the interaction between the EMF exuded by DBS and the neural tissue. Results depicted that EMF fall-off values increased with distance, observable upon comparing ipsilateral and contralateral patient data. The resulting analysis supported this phenomenon evidenced by the production of greater peak voltage amplitudes in ipsilateral patient stimulation with respect to time when compared to contralateral patient stimulation. The understanding of EMF strength and the associated trends among this data are vital to the progression and continued development of the DBS field relative to future research.

Contributors

Agent

Created

Date Created
  • 2020-12

135402-Thumbnail Image.png

Analysis of Brain Activity in Elite Golfers

Description

It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To

It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of hitting nine putts spaced uniformly around a hole each five feet away. Data was collected at three time periods, before, during and after the putt. Galvanic Skin Response (GSR) measurements were also recorded on each subject. Three of the subjects performed a visualization of the same putting drill and their brain waves and GSR were recorded and then compared with their actual performance of the drill. EEG data in the Theta (4 \u2014 7 Hz) bandwidth and Alpha (7 \u2014 13 Hz) bandwidth in 11 different locations across the head were analyzed. Relative power spectrum was used to quantify the data. From the results, it was found that there is a higher magnitude of power in both the theta and alpha bandwidths for a missed putt in comparison to a made putt (p<0.05). It was also found that there is a higher average power in the right hemisphere for made putts. There was not a higher power in the occipital region of the brain nor was there a lower power level in the frontal cortical region during made putts. The hypothesis that there would be a difference between the means of the power level in performance compared to visualization techniques was also supported.

Contributors

Agent

Created

Date Created
  • 2016-05

Modeling Biological and Optical Tools Towards Achieving Deeper Levels of Brain Stimulation using OLEDs

Description

Optogenetics presents the ability to control membrane dynamics through the usage of transfected proteins (opsins) and light stimulation. However, as the field continues to grow, the original biological and stimulation

Optogenetics presents the ability to control membrane dynamics through the usage of transfected proteins (opsins) and light stimulation. However, as the field continues to grow, the original biological and stimulation tools used have become dated or limited in their uses. The usage of Organic Light Emitting Diodes (OLEDs) in optical stimulation offers greater resolution, finer control of pixel arrays, and the increased functionality of a flexible display at the cost of lower irradiance power density. This study was done to simulate methods using genetic and optical tools towards decreasing the threshold irradiance needed to initiate an action potential in a ChR2 expressing neuron. Simulations show that pulsatile stimulation can decrease threshold irradiances by increasing the overall duration of stimulus while keeping individual pulse durations below 5 ms. Furthermore, the redistribution of Channelrhodopsin-2 (ChR2) to the apical dendrites and a change in wavelength to 625 nm both result in lower threshold irradiances. However, the model used has many discrepancies and has room for improvement in areas such as the light distribution model and ChR2 dynamics. The simulations run with this model however still present valuable insight and knowledge towards the usage of new stimulation methods and revisions on existing protocols.

Contributors

Agent

Created

Date Created
  • 2016-05

133629-Thumbnail Image.png

Glare: NICU Environmental Consideration

Description

This study aimed to quantify glare induced into the NICU through phototherapy devices commonly used to treat neonatal jaundice. The blue light associated with the devices can cause a number

This study aimed to quantify glare induced into the NICU through phototherapy devices commonly used to treat neonatal jaundice. The blue light associated with the devices can cause a number of physiological affects including melatonin suppression, disturbances of one's circadian rhythm, and has the potential to lead to risk factors of age-related macular degeneration (AMD) in the long term. The study found that the phototherapy device tested emitted a sufficient amount of light to be considered 'disturbing' using the DeBoer scale. Due to this, phototherapy devices in the future should take into consideration the minimization of light emitted which is not directly treating the infant on the device to prevent potential physiological effects that nurses may experience.

Contributors

Agent

Created

Date Created
  • 2018-05

133764-Thumbnail Image.png

Design and Development of Injectable, Wireless, Sub-Millimeter Neurostimulators

Description

An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by

An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by device size and required surgical implantation. A method of manufacturing sub-mm devices was developed, and utilized to construct this new design. The device frequency response was characterized and its resonant modes and output voltages determined through a Fast Fourier Transform. The fundamental thickness mode frequency was found to be 15.4MHz with a corresponding 10.25mV amplitude, and a longitudinal resonant frequency of 3.1Mhz with a corresponding 2.2mV amplitude across a 50Ω resistor. The high miniaturization of the device holds promise for future work for creating an injectable, wireless system for the treatment of neurological disorders.

Contributors

Agent

Created

Date Created
  • 2018-05

137218-Thumbnail Image.png

Observing effects of drug modulation on electrophysiological response of Aplysia neurons

Description

The effect of three different drug modulators on the electrophysiological response of Aplysia neurons was observed through the use of extracellular and intracellular recordings. Extracellular recordings captured the effects of

The effect of three different drug modulators on the electrophysiological response of Aplysia neurons was observed through the use of extracellular and intracellular recordings. Extracellular recordings captured the effects of magnesium chloride and glutamate at a variety of concentrations for each. Intracellular recordings displayed the effects of magnesium chloride, glutamate, and GABA for two concentrations each. For extracellular recordings, the average firing rate, average peak-to-peak voltage, average SNR, and sorted units were considered. For intracellular recordings, average firing rate, average peak voltage, and average resting potential were considered. Significance of data could not be determined using statistical analysis due to having a sample size of 1 for every experiment.

Contributors

Agent

Created

Date Created
  • 2014-05

133444-Thumbnail Image.png

Analyzing rat sciatic nerve fibers under various electrical stimuli

Description

Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with

Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing Remak fibers using osmium tetroxide staining and imaging with the help of transmission electron microscopy. Using this method, nerves had various electrical stimuli attached to them and were analyzed as such. They were analyzed with a cuff electrode attached, a stimulator attached, and both, with images taken at the center of the nerve and the ends of them. The number and area taken by the Remak fibers were analyzed, along with the g-ratios of the Group A and B fibers. These were analyzed to help deduce the overall health of the fibers along with vacuolization, and mitochondria available. While some important information was gained from this evaluation, further testing has to be done to improve the myelin detection system, along with analyzing the proper and necessary Remak fibers and the role they play. The research tries to thoroughly look at the necessary material and find a way to use it as a guide to further experimentation with electrical stimuli, and notes the differences found within and without various groups, various points of observation, and various stimuli as a whole. Nevertheless, this research allows a strong look into the benefits of transmission electron microscopy and the ability to assess electrical stimulation from these points.

Contributors

Created

Date Created
  • 2018-05

133535-Thumbnail Image.png

Optical Feedback Mechanism for Detecting Cerebrospinal Fluid Leaks During Spinal Surgery

Description

For my honors thesis, I developed a proof of concept alpha prototype of a biomedical device for detection of cerebrospinal fluid leaks during spinal surgery. Cerebrospinal fluid leaks are a

For my honors thesis, I developed a proof of concept alpha prototype of a biomedical device for detection of cerebrospinal fluid leaks during spinal surgery. Cerebrospinal fluid leaks are a consequence of tears in the dura mater of the spinal cord and can result in potentially life-threatening conditions and are overall a large burden not only on the patient but upon the clinical teams managing the patient postoperatively. What I created was an optical sensor that I programmed to be sensitive to detecting green wavelength light. The device would ideally be attached to surgical drain tubing and used in conjunction with fluorescein (a green fluorescent dye) infused lumbar punctures into the spinal canal of patients. As the dye circulates through the spinal cord, any tears in the dura mater would cause the fluorescein to leak out with cerebrospinal fluid into the incision site. This fluid may then be collected by the surgical drain where the sensor may detect the fluorescein, triggering a buzzer response that would notify the patient or the surgeons of an ongoing leak that requires repair. The time I spent on my thesis involved sensor validation to ensure it could differentiate between colors, testing the sensor's color sensitivity by performing a fluorescein aliquot, and running proof of concept testing that could show the sensor can detect fluorescein drain tubing and provide an adequate response. The sensor was able to differentiate between varying concentrations of fluorescein in solution and provided exceptional results in its proof-of-concept testing. Next steps will be to re-run the sensor validation study with different dyes as well as consolidating the device's electrical hardware onto a single circuit board as development of beta and gamma prototypes move forward.

Contributors

Agent

Created

Date Created
  • 2018-05

137575-Thumbnail Image.png

Electroporation of HeLa Cells with Propidium Iodide using ""Anodisc"" Nanopore Inorganic Membrane-Buffered MEAs

Description

The use of microelectrode arrays (MEA) to electroporate cells is now a reliable way of transfecting RNA interfering substances with high viability and efficiency. However, as the 50-200 micron electrodes

The use of microelectrode arrays (MEA) to electroporate cells is now a reliable way of transfecting RNA interfering substances with high viability and efficiency. However, as the 50-200 micron electrodes are coated with many cells, there are differences in both viability and efficiency between the outside and inside of the electrode. This is due to the field created by the electrode, which has higher intensities toward the outside and lower intensities toward the middle. In order to get the electric field to spread in a more even manner, an "Anodisc" inorganic membrane seeded with cells was placed on the MEA to act as a buffer to the electric fields. One hundred percent transfection efficiency on live cells was found on one sample, though there were problems encountered along the experimental process that introduced error into the results, some of which included the inability for cells to grow to high levels of confluency on the Anodisc as well as the inverted imaging technique used on the opaque disc.

Contributors

Agent

Created

Date Created
  • 2013-05

132307-Thumbnail Image.png

The Use of Brain Signals to Control a Robotic Car: A First Step

Description

In this study, the engineers from biomedical engineering and electrical engineering researched and analyzed the components, uses, and processes for the brain and the Brain-Computer Interfaces (BCIs). They investigated the

In this study, the engineers from biomedical engineering and electrical engineering researched and analyzed the components, uses, and processes for the brain and the Brain-Computer Interfaces (BCIs). They investigated the basics on the brain, the signals, and the overall uses of the devices. There have been many uses for electroencephalogram (EEG) signals, including prosthetics for patients after nerve injuries, cursor movements on a computer, moving vehicles, and many more projects. There are studies currently in progress and that will be in progress in the future that extend the uses of BCIs. The researchers in this thesis focused more on the processes the scientists used to approach the given problem. Some worked with patients to better his or her life, while others worked with volunteers to gain more knowledge of the brain and/or the BCIs. This thesis includes many different approaches for many unique projects. The analysis includes the location of the signal, the processing of the signal, the filtering of the signal, the transmission of the signal, and the movement of the device based on the signal. The current BCIs are not ready to be in patient’s daily lives, but the researchers are trying to create and perfect them in order to help as many patients as possible. As a biomedical engineer, the researchers in this thesis can apply the knowledge from the articles to solving potential problems in the future and further specific studies.

Contributors

Agent

Created

Date Created
  • 2019-05