Matching Items (280)

Biomedical Engineering Workforce Competencies for 21st Century Healthcare Technology Product Development Teams: A BME Student Cohort Perspective

Description

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.

Contributors

Agent

Created

Date Created
  • 2017-05

133847-Thumbnail Image.png

Structure-function study of N-isopropylacrylamide copolymers with enzyme degradable GAPGLF and GAPGLL side chains

Description

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.

Contributors

Agent

Created

Date Created
  • 2018-05

134674-Thumbnail Image.png

3D Robotic Assessment of Proprioception for Up, Down, and Back Directions

Description

Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are

Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are not reliable measures for testing proprioception in impaired or unimpaired individuals. Recent advancements in technology and robotics have brought about new assessments that involve position matching and other paradigms. However, the results are confined to the horizontal plane and only look at a very small subset of human proprioceptive ability. Objective. The present study looks to overcome these limitations and examine differences in proprioceptive sensitivity across different directions in 3D space. Methods. Participants were recruited from Arizona State University to perform a "same-different" discrimination test using a robotic arm. Each participant was tested along two of the three directions, and within each direction, proprioception at four distances (1-4 cm) was tested. Performance was quantified using percent correct, d' analysis, and permutation testing on median and variance values. Results. Proprioceptive sensitivity was significantly greater in the up direction vs. down and back across all distances. The greatest difference in sensitivity occurred at 3 cm; permutation tests using median and variance values from percent correct and d' found statistical significance at this distance in the up vs. down and up vs. back comparisons. Conclusions. There is evidence that proprioceptive sensitivity is greater in an anti-gravity direction (up), in comparison to gravity-assisted or gravity-neutral (down and back) directions.

Contributors

Agent

Created

Date Created
  • 2016-12

134522-Thumbnail Image.png

Customized Endovascular Treatment Fixture Construction for Patient-Specific Cerebral Aneurysm Repair

Description

Cerebral aneurysms are pathological bulges in blood vessels of the brain that can rupture and cause brain damage or death. Treating aneurysms by isolating them from circulation can prevent aneurysm

Cerebral aneurysms are pathological bulges in blood vessels of the brain that can rupture and cause brain damage or death. Treating aneurysms by isolating them from circulation can prevent aneurysm rupture. Endovascular techniques for cerebral aneurysm treatment are preferred because they are minimally invasive and have a shorter recovery time, and endovascular coiling is considered the gold standard as a result. The coils used in endovascular treatment come in standard shapes and sizes, mass-manufactured by medical device companies. Clinicians select the coils for treatment based on the aneurysm volume. However, cerebral aneurysms have unique shapes and dimensions, and vary on a patient-specific basis. Therefore, customizing the coils to fit a unique aneurysm morphology by using shape memory alloys could potentially improve endovascular treatment outcomes. In order to shape set a shape memory alloy into a customized coil configuration a fixture based on the aneurysm morphology must first be developed. Digital surface models of aneurysm patient cases were collected from an online repository and isolated from surrounding vasculature. Anchors used to assist in winding coils around these models were then added to create a computational fixture model. These fixtures were 3D printed in stainless steel, and tested on their ability to maintain their shape after being exposed to high temperatures needed in shape setting processes. The study demonstrated that customized fixtures can be created from patient-specific images or models, and manufactured with high levels of accuracy without deformation at high temperatures. The results suggest that 3D printed stainless steel fixtures could be used to develop customized endovascular coils for cerebral aneurysm treatment.

Contributors

Agent

Created

Date Created
  • 2017-05

134866-Thumbnail Image.png

Investigation of Student Achievement and Attitude about a Flipped Classroom Using Linked Lecture Videos in Biomedical Engineering

Description

Flipped classrooms invert the traditional teaching methods and deliver the lecture online outside of the classroom. An increase in technology accessibility is increasing the prevalence of this teaching technique in

Flipped classrooms invert the traditional teaching methods and deliver the lecture online outside of the classroom. An increase in technology accessibility is increasing the prevalence of this teaching technique in universities. In this study, we aim to address some of the uncertainties of a flipped classroom by implementing a new lecture format in Transport Phenomena. Transport Phenomena is a junior level biomedical engineering course originally flipped in Spring 2013. Since transitioning to a flipped classroom, students have been required to watch 75-minute lectures outside of class where the instructor covered key concepts and examples using paper and marker on a document camera. In class, students then worked in groups to solve problems with instructor and teaching assistant feedback. Students also completed self-graded homework with the opportunity to earn lost points back by discussing fundamental misconceptions. We are introducing re-formatted mini lectures that contain the same content broken down as well as example problems worked out in a tutorial technique instead of traditional solving method. The purpose of this study is to determine the effectiveness of newly created mini lectures with integrated questions and links in terms of student achievement and attitude [interest, utility, and "cost" (time, effort, and emotion)].

Contributors

Agent

Created

Date Created
  • 2016-12

134882-Thumbnail Image.png

Using Lethal siRNA for a Future Therapeutic in Cancerous Patients

Description

Difficult to treat cancer patients, specifically those tumors that are metastatic and drug-resistant, prove to have the lowest survival rates when compared to more localized types. The commonplace combination therapies,

Difficult to treat cancer patients, specifically those tumors that are metastatic and drug-resistant, prove to have the lowest survival rates when compared to more localized types. The commonplace combination therapies, surgery, chemotherapy, and radiation, do not usually result in remission and sometimes cannot be done with these specific patients. RNA interference therapeutics, especially those that use short-interfering RNA (siRNA), have given rise to a novel field that employs the mechanisms in the body to silence the gene expression post-transcriptionally. The main cell types used in this research were Ewing Sarcoma, Acute Myelogenous Leukemia, and Rhabdomyosarcoma cells. Initial assays involved the testing of the cells' responsiveness to a panel of siRNA compounds, to better understand the most effective ones. The siRNA UBBs1 proved to be the most cytotoxic to all cell lines tested, allowing for further investigation through transfection procedures for cellular assays and RNA purification for expression analysis. The data showed decreased cell viability for the UBBs1 treated group for both RD and RH-30 Rhabdomyosarcoma cell lines, especially at a much lower concentration than traditional chemotherapy drug dose response assays. The RNA purification and quantification of the transfected cells over time showed the biggest decrease in gene expression when treated with UBBs1. The use of siRNA in future therapeutics could be a highly-specific method to induce cytotoxicity of cancer cells, but more successful clinical testing and better manufacturing processes need to be established first.

Contributors

Agent

Created

Date Created
  • 2016-12

Electromagnetic Field Strength Analysis with Deep Brain Stimulation in Parkinson's Patients

Description

Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS

Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS to be an effective treatment in the effects of PD but the mechanism to validating this phenomenon is poorly understood. In this study, an evaluation of the DBS mechanism was analyzed in patients who received both contralateral and ipsilateral stimulation by the DBS electrode in relation to the recording microelectrode. I hypothesize that the data recorded from the neural tissue of the Parkinson’s patients will exhibit increased electromagnetic field (EMF) fall-off as spatial distance increases among the DBS lead and the microelectrode within the subthalamic nucleus (STN) as a result of the interaction between the EMF exuded by DBS and the neural tissue. Results depicted that EMF fall-off values increased with distance, observable upon comparing ipsilateral and contralateral patient data. The resulting analysis supported this phenomenon evidenced by the production of greater peak voltage amplitudes in ipsilateral patient stimulation with respect to time when compared to contralateral patient stimulation. The understanding of EMF strength and the associated trends among this data are vital to the progression and continued development of the DBS field relative to future research.

Contributors

Agent

Created

Date Created
  • 2020-12

131681-Thumbnail Image.png

Characterizing Primary Mesothelioma Cell Lines by Exome Sequencing

Description

Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to

Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to conduct in vitro research to make conclusions about specific gene mutations associated with Mesothelioma. DNA exome sequencing, a time efficient and inexpensive technique, was used for identifying specific DNA mutations. Computational analysis of exome sequencing data was used to make conclusions about copy number variation among common MPM genes. Results show a CDKN2A gene heterozygous deletion in Meso24 cell line. This data is validated by a previous CRISPR-Cas9 outgrowth screen for Meso24 where the knocked-out gene caused increased Meso24 growth.

Contributors

Agent

Created

Date Created
  • 2020-05

Human Neural Progenitor Cell Adhesion on PDMS Substrates

Description

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane (PDMS) substrate being used for the SMEA, and to derive a functional procedure for adhering hNPC’s to the PDMS. The proven method of sterilization was to plasma treat the sample and then soak it in 70% ethanol for one hour. The most successful method for cell adhesion was plasma treating the PDMS, followed by treating the surface of the PDMS with 0.01 mg/mL poly-l-lysine (PLL) and 3 µg/cm2 laminin. The development of these methods was an iterative process; as the methods were tested, any problems found with the method were corrected for the next round of testing until a final method was confirmed. Moving forward, the findings will allow for cell behavior to be researched in a unique fashion to better understand the response of adherent cells to physical stimulation by measuring changes in their electrical activity.

Contributors

Agent

Created

Date Created
  • 2016-05

136778-Thumbnail Image.png

Designing and Troubleshooting a Signal Acquisition System for Vertically Aligned Piezoelectric Nanowire Sensors

Description

The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to

The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall shear stress, a fluid dynamic characteristic. In order to gain an understanding of these novel piezoelectric sensors, the experiments performed by Sodano and Koka were to be investigated, replicated, and results reproduced. After initial trial phases, signals failed to be consistently measured from the sensors and the project's emphasis was re-defined. The outlined goals were 1) to re-design the initial system used for signal acquisition, 2) test the improved signal acquisition system, 3) successfully measure output signals from the BaTiO3 nanowire sensors, and 4) determine the cause for inconsistent signal measurements from the piezoelectric nanawire sensors. Following a detailed review of the previous experimental procedures and the initial signal acquisition system, an improved acquisition system was designed and its expected behavior was tested and verified. Despite the introduction of the improved acquisition system, voltage outputs were unable to be measured as a function of shaker table acceleration. It was impossible to verify the effect of the improved signal acquisition system on the measured BaTiO3 nanowire sensor output. Based on an analysis of data collected using a commercial 3-axis acceleromoeter, it is hypothesized that the BaTiO3 nanowire sensors were broken after the first experimental trial due to an excessively applied force from an external source (i.e. shaker table, improper handling during experimentation, and/or improper handling during transportation).

Contributors

Agent

Created

Date Created
  • 2014-05