Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. A Smart Home Medical Device for Accurate Metabolic Assessment
  5. Full metadata

A Smart Home Medical Device for Accurate Metabolic Assessment

Full metadata

Description

Energy Expenditure (EE), a key diagnostic measurement for treatment of obesity, is measured via indirect calorimetry method through breath biomarkers of CO2 production and/or O2 consumption rates (VCO2 and/or VO2, respectively). Current technologies are limited due to prevailing designs requiring wearable facial accessories that present accuracy, precision, and usability concerns with regards to free living measurement. A novel medical device and smart home system, named Smart Pad, has been developed, with the capability of energy expenditure assessment via VCO2 measured from a room’s CO2 concentration. The system has 3 distinct capabilities: contactless EE measurement, air quality optimization via actuation of room ventilation, and efficiency optimization via ventilation actuation of only human-occupied environments. The Smart Pad shows accuracy of 90% for 14-19 minutes of resting measurement and accuracy of 90% for 4.8-7.0 minutes of exercise measurement after calibrating for air exchange rate (λ [hour-1]) using a reference method. Without reference instrument calibration, the Smart Pad system shows average accuracy of nearly 100% with correlations of Y=1.02X, R=0.761 for high resolution measurements and Y=1.06X, R=0.937 for averaged measurements over 50-60 minutes. In addition, the Smart Pad validation for contactless EE measurement has been performed in different environments, including a vehicle, medical office, a private office, and an ambulatory enclosure with rooms, ranging in volume from 3.1 m3 to 18.8m3. It was concluded that contactless EE measurements can be accurately performed in all tested scenarios with both low and high air exchange environments with λ ranging from 1.5 Hours-1 to 10.0 Hours -1. The system represents a new way to assess EE of individuals under free-living conditions in an unobstructive, passive, and accurate manner, and it is comparable or better in single breath gas measurement accuracy (with comparisons sourced from FDA data) than other medical devices (e.g. Vyntus CPXTM, MasterScreen CPXTM, Oxycon ProTM, and MedGemTM) which were 510(k) cleared by the FDA for prescription use in metabolic/cardiopulmonary diagnostics.

Date Created
2021
Contributors
  • Sprowls, Mark (Author)
  • Forzani, Erica (Thesis advisor)
  • Destaillats, Hugo (Committee member)
  • Kulick, Doina (Committee member)
  • Nikkhah, Mehdi (Committee member)
  • Raupp, Gregory (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • chemical engineering
  • Ambient Biometrics
  • Digital Medicine
  • Internet of Things
  • Metabolic Rate
  • Point of Care
  • Smart Home
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
159 pages
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.161783
Embargo Release Date
Tue, 08/01/2023 - 09:58
Level of coding
minimal
Cataloging Standards
asu1
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Chemical Engineering
System Created
  • 2021-11-16 03:58:24
System Modified
  • 2021-11-30 12:51:28
  •     
  • 1 year 3 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information