Matching Items (160)

132637-Thumbnail Image.png

What Do Chemical Engineers Do, Exactly?

Description

When it comes to the topic of chemical engineering, the general public has a set of neutral, if slightly uninformed perceptions that are largely tempered by the initial emotional responses

When it comes to the topic of chemical engineering, the general public has a set of neutral, if slightly uninformed perceptions that are largely tempered by the initial emotional responses to the field and its associated topics. These topics include the differentiation between chemical engineers and chemists, the importance and potential danger of the products they produce, as well as the association of the subject matter with less than favorable secondary education experiences. This thesis consists of first assessing the opinions of a population meant to represent the general public regarding these subjects, then exploring the potential improvements of opinion and understanding that may be yielded from presenting the subject matter by way of a concise learning tool, such as a video. The results of this effort showed that factual understanding can be at least incrementally improved for 18% of participants through this method, while the effect on opinions can range from being improved to maintaining an enduring indifference, with an average of 17% of participants seeing improvement. Further iteration of this methodology with more consistent, impartial survey methods and refined questions could potentially yield more noteworthy improvements within the subjective domain, with the resultant learning tool of that iteration being applicable as not only an instrument of educating the general public, but also as a means to recruit potential students to the ASU chemical engineering degree program.

Contributors

Agent

Created

Date Created
  • 2019-05

136388-Thumbnail Image.png

Augmenting Protocols for In-situ Separation of Biocompounds.

Description

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.

Contributors

Agent

Created

Date Created
  • 2015-05

136494-Thumbnail Image.png

Solution-Cast Membranes for Wastewater Recovery: A New Chemical-Resistant Nanocomposite Design

Description

The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of

The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be able to withstand these harsh conditions due the incorporation of a resilient impermeable polymer layer that will be cast above the lower hydrophilic layer. Nanoparticles called zeolites will act as a water selective pathway through this impermeable layer and allow water to flow through the membrane. This membrane will be made using a variety of methods and polymers to determine both the cheapest and most effective way of creating this chemical resistant membrane. If this research is successful, many more water sources can be tapped since the membranes will be able to withstand hard conditions. This document is primarily focused on our progress on the development of a highly permeable polymer-zeolite film that makes up the bottom layer of the membrane. Multiple types of casting methods were investigated and it was determined that spin coating at 4000 rpm was the most effective. Based on a literature review, we selected silicalite-1 zeolites as the water-selective nanoparticle component dispersed in a casting solution of polyacrylonitrile in N-methylpyrrolidinone to comprise this hydrophilic layer. We varied the casting conditions of several simple solution-casting methods to produce thin films on the porous substrate with optimal film properties for our membrane design. We then cast this solution on other types of support materials that are more flexible and inexpensive to determine which combination resulted in the thinnest and most permeable film.

Contributors

Agent

Created

Date Created
  • 2015-05

134431-Thumbnail Image.png

Enhancing the Profile of Chemical Engineers as Relevant to Society amongst Middle School and High School Students

Description

The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to

The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to explore and to pursue chemical engineering. Additionally, presentations are incorporated into both methods to provide context and improve understanding of the presented poster material or activity. Pre-assessments and post-assessments are the quantitative method of measuring effectiveness. For the poster campaign, ASU juniors and seniors participated in the poster campaign by producing socially relevant messages about their research or aspirations to address relevant chemical engineering problems. For the engineering-based activity, high school students participated in an Ira A. Fulton Schools of Engineering program "Young Engineers Shape the World" in which the students participated in six-hour event learning about four engineering disciplines, and the chemical engineering presentation and activity was conducted in one of the sessions. Pre-assessments were given at the beginning of the event, and the post-assessments were provided towards the end of the event. This honors thesis project will analyze the collected data.

Contributors

Created

Date Created
  • 2017-05

134702-Thumbnail Image.png

Photocurable Networks: A Composite Materials Platform that Enables Advances in Additive Manufacturing

Description

This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in

This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in thin (<20 µm) and thick (>2 mm) layers of DMPA and poly(ethylene glycol) diacrylate (PEG-DA) mixtures was assessed for 5.0 w/v% (grams per 100 mL) concentrations of DMPA dissolved in PEG-DA. The polymerization rate and quality of curing was found to decrease as the concentration of DMPA increased beyond 1.0 w/v%; thus, confirming the existence of an optimum photo-initiator concentration for a specific sheet thickness. The optimum photo-initiator concentration for a 3-3.1 mm thick sheet of PEG-DA microstructure was determined to be between 0.3 and 0.38 w/v% DMPA. The addition of 1,6-hexanediol or 1,3-butanediol to the optimum photo-initiator concentrated solution of DMPA and PEG-DA was found to increase the Tg of the samples; however, the samples could not fully cure within 40-50 s, which suggested a decrease in polymerization rate. Lastly, the DMPA photo-initiator does not produce gaseous byproducts and is translucent when fully cured, which makes it attractive for infusion with strengthening materials because quality light penetration is paramount to quick polymerization rates. It is recommended that more trials be conducted to evaluate the mechanical properties of the optimum curing rate for DMPA and PEG-DA microstructures as well as a mechanical property comparison following the addition of either of the two alcohols.

Contributors

Agent

Created

Date Created
  • 2016-12

134356-Thumbnail Image.png

New insights into the pore development mechanism of layered hydroxides upon thermal activation

Description

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the porosity of the materials, with crucial implications for the performance in many applications. Yet, the mechanisms of pore formation and collapse are poorly understood. Combining an integrated in situ and ex situ characterization approach, here we follow the evolution of porosity changes during the thermal decomposition of LDHs integrating different divalent (Mg, Ni) and trivalent (Al, Ga) metals. Variations in porous properties determined by high-resolution argon sorption are linked to the morphological and compositional changes in the samples by in situ transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, which is facilitated by the synthesis of well crystallized LDHs of large crystal size. The observations are correlated with the phase changes identified by X-ray diffraction, the mass losses evidenced by thermogravimetric analysis, the structural changes determined by infrared and nuclear magnetic resonance spectroscopy, and the pore connectivity analyzed by positron annihilation spectroscopy. The findings show that the multimetallic nature of the LDH governs the size and distribution (geometry, location, and connectivity) of the mesopores developed, which is controlled by the crystallization of the MMO phase, providing key insights for the improved design of porous mixed metal oxides.

Contributors

Agent

Created

Date Created
  • 2017-05

134362-Thumbnail Image.png

Optimization of Front Contact Design on Nickel-Plated Si Solar Cells

Description

As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels

As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal
atural gas) are our main sources of electricity. However, their cost is increasing, they are nonrenewable, and they are very harmful to the environment. Thus, capacity expansion in the renewable energy sector must be realized to offset higher energy demand and reduce dependence on fossil fuels. Solar energy represents a practical solution, as installed global solar capacity has been increasing exponentially over the past 2 decades. However, even with government incentives, solar energy price ($/kWh) continues to be highly dependent on political climate and raw material (silicon and silver) cost. To realistically and cost effectively meet the projected expansions within the solar industry, silver must be replaced with less costly and more abundant metals (such as copper) in the front-grid metallization process of photovoltaic cells. Copper, while offering both higher achievable efficiencies and a raw material cost nearly 100 times cheaper than silver, has inherent disadvantages. Specifically, copper diffuses rapidly into the silicon substrate, requires more complex and error-prone processing steps, and tends to have less adhesive strength, reducing panel robustness. In this study, nickel deposition via sputtering was analyzed, as well as overall potential of nickel as a seed layer for copper plating, which also provides a barrier layer to copper diffusion in silicon. Thermally-formed nickel silicide also reduces contact resistivity, increasing cell efficiency. It was found that at 400 \u00B0C, ideal nickel silicide formation occurred. By computer modeling, contact resistivity was found to have a significant impact on cell efficiency (up to 1.8%). Finally, sputtering proved useful to analyze nickel silicide formation, but costs and time requirements prevent it from being a practical industrial-scale metallization method.

Contributors

Agent

Created

Date Created
  • 2017-05

134363-Thumbnail Image.png

Biochemical Methane Potential (BMP) Tests and Microbial Electrochemical Cells (MECs) Identify Differences in Pretreated Waste Activates Sludge (WAS) Streams

Description

Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed

Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were performed using alkaline and thermal pretreated waste activated sludge (WAS), a control group, and a negative control group as samples and AD sludge (ADS) as inoculum. The data obtained suggested that BMPs do not necessarily require ADS, since samples without inoculum produced 5-20% more CH4. However, ADS appears to reduce the initial methanogenesis lag in BMPs, as no pH inhibition and immediate CH4 production were observed. Consumption rate constants, which are related to hydrolysis, were calculated using three methods based on CH4 production, SSCOD concentration, and the sum of both, called the lumped parameter. All the values observed were within literature values, yet each provide a different picture of what is happening in the system. For the second set of experiments, the current production of 3 H-type MECs were compared to the CH4 production of BMPs to assess WAS solids' biodegradability and consumption rates relative to the pretreatment methods employed for their substrate. BMPs fed with pretreated and control WAS solids were performed at 0.42 and 1.42 WAS-to-ADS ratios. An initial CH4 production lag of about 12 days was observed in the BMP assays, but MECs immediately began producing current. When compared in terms of COD, MECs produced more current than the BMPs produced CH4, indicating that the MEC may be capable of consuming different types of substrate and potentially overestimating CH4 production in anaerobic digesters. I also observed 2 to 3 different consumption events in MECs versus 3 for BMP assays, but these had similar magnitudes, durations, and starting times in the control and thermal pretreated WAS-fed assays and not in alkaline assays. This might indicate that MECs identified the differences of alkaline pretreatment, but not between control WAS and thermal pretreated WAS. Furthermore, HPLC results suggest at least one hydrolysis event, as valerate, butyrate, and traces of acetate are observed in the reactors' effluents. Moreover, a possible inhibition of valerate-fixing microbial communities due to pretreatment and the impossibility of valerate consumption by ARB might explain its presence in the reactors' effluents.

Contributors

Agent

Created

Date Created
  • 2017-05

133976-Thumbnail Image.png

A Quantitative Study on the Effects of Operating Conditions on Heat Transfer in a Rotary Drum

Description

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 mm silica beads and a stainless steel rotary drum were used at fill levels ranging from 10 \u2014 25 % and rotation rates from 2 \u2014 10 rpm. Four heat guns were used to heat the system via conduction and convection, and an infrared camera was used to record temperature data. A three-level, two-factor, full-factorial design of experiments was employed to determine the effects of each factor on the steady-state average bed temperature. Low fill level and high rotation rate resulted in higher steady-state average bed temperatures. A quantitative model showed that rotation rate had a larger impact on the steady-state bed temperature than fill level.

Contributors

Agent

Created

Date Created
  • 2018-05

135407-Thumbnail Image.png

Targeting Tumors: Inclusion of Functional Groups on Ion-Containing Block Copolymers to Combat Cancer

Description

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.

Contributors

Agent

Created

Date Created
  • 2016-05