Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Evaluation of five effect size measures of measurement non-invariance for continuous outcomes
  5. Full metadata

Evaluation of five effect size measures of measurement non-invariance for continuous outcomes

Full metadata

Description

To make meaningful comparisons on a construct of interest across groups or over time, measurement invariance needs to exist for at least a subset of the observed variables that define the construct. Often, chi-square difference tests are used to test for measurement invariance. However, these statistics are affected by sample size such that larger sample sizes are associated with a greater prevalence of significant tests. Thus, using other measures of non-invariance to aid in the decision process would be beneficial. For this dissertation project, I proposed four new effect size measures of measurement non-invariance and analyzed a Monte Carlo simulation study to evaluate their properties and behavior in addition to the properties and behavior of an already existing effect size measure of non-invariance. The effect size measures were evaluated based on bias, variability, and consistency. Additionally, the factors that affected the value of the effect size measures were analyzed. All studied effect sizes were consistent, but three were biased under certain conditions. Further work is needed to establish benchmarks for the unbiased effect sizes.

Date Created
2019
Contributors
  • Gunn, Heather J (Author)
  • Grimm, Kevin J. (Thesis advisor)
  • Edwards, Michael C (Thesis advisor)
  • Tein, Jenn-Yun (Committee member)
  • Anderson, Samantha F. (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Quantitative psychology
  • effect size
  • measurement invariance
  • non-invariance
  • Simulation
  • psychometrics
  • Effect sizes (Statistics)
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
vii, 100 pages : color illustrations
Language
eng
Copyright Statement
In Copyright
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.53458
Statement of Responsibility
by Heather J. Gunn
Description Source
Viewed on March 23, 2020
Level of coding
full
Note
Partial requirement for: Ph.D., Arizona State University, 2019
Note type
thesis
Includes bibliographical references (pages 60-68)
Note type
bibliography
Field of study: Psychology
System Created
  • 2019-05-15 12:23:55
System Modified
  • 2021-08-26 09:47:01
  •     
  • 1 year 7 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information