Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. An Experimental Study of the Effect of Induction and Exhaust Systems on a Vehicle's Fuel Efficiency
  5. Full metadata

An Experimental Study of the Effect of Induction and Exhaust Systems on a Vehicle's Fuel Efficiency

Full metadata

Description

This thesis focuses on the effects of an engine's induction and exhaust systems on vehicle fuel efficiency, along with the challenges accompanying improvement of this parameter. The aim of the project was to take an unconventional approach by investigating potential methods of increasing fuel economy via change of these systems outside the engine, as finding substantial gains via this method negates the need to alter engine architectures, potentially saving manufacturers research and development costs. The ultimate goal was to determine the feasibility of modifying induction and exhaust systems to increase fuel efficiency via reduction of engine pumping losses and increase in volumetric efficiency, with the hope that this research can aid others researching engine design in both educational and commercial settings. The first step toward achieving this goal was purchasing a test vehicle and performing experimental fuel efficiency testing on the unmodified, properly serviced specimen. A test route was devised to provide for a well-rounded fuel efficiency measurement for each trial. After stock vehicle trials were completed, the vehicle was to be taken out of service for a turbocharger system installation; unfortunately, challenges arose that could not be rectified within the project timeframe, and this portion of the project was aborted, to be investigated in the future. This decision was made after numerous fitment and construction issues with prefabricated turbo conversion parts were found, including induction and exhaust pipe size problems and misalignments, kit component packaging issues such as intercooler dimensions being too large, as well as manufacturing oversights, like failure to machine flanges flat for sealing and specification of incorrect flange sizes for mating components. After returning the vehicle to stock condition by removing the partially installed turbocharger system, the next step in the project was then installation of high-flow induction and exhaust systems on the test vehicle, followed by fuel efficiency testing using the same procedure as during the first portion of the experiment. After analysis of the quantitative and qualitative data collected during this thesis project, several conclusions were made. First, the replacement of stock intake and exhaust systems with high-flow variants did make for a statistically significant increase in fuel efficiency, ranging between 10 and 20 percent on a 95% confidence interval. Average fuel efficiency of the test vehicle rose from 21.66 to 24.90 MPG, an impressive increase considering the relative simplicity of the modifications. The tradeoff made was in noise produced by the vehicle; while the high-flow induction system only resulted in increased noise under very high-load circumstances, the high-flow exhaust system created additional noise under numerous load conditions, limiting the market applicability for this system. The most ideal vehicle type for this type of setup is sports/enthusiast cars, as increased noise is often considered a desirable addition to the driving experience; light trucks also represent an excellent application opportunity for these systems, as noise is not a primary concern in production of these vehicles. Finally, it was found that investing in high-flow induction and exhaust systems may not be a wise investment at the consumer level due to the lengthy payoff period, but for manufacturers, these systems represent a lucrative opportunity to increase fuel efficiency, potentially boosting sales and profits, as well as allowing the company to more easily meet federal CAFE standards in America. After completion of this project, there are several further research directions that could be taken to expand upon what was learned. The fuel efficiency improvements realized by installing high-flow induction and exhaust systems together on a vehicle were experimentally measured during testing; determining the individual effects of each of these systems installed on a vehicle would be the next logical research step within the same vein. Noise, vibration, and harshness increases after installing these systems were also noticed during experimental trials, so another future research direction could be an investigation into reducing these unwanted effects of high-flow systems. Finally, turbocharging to increase a vehicle's fuel efficiency, the original topic of this thesis, is another very important, contemporary issue in the world of improving vehicle fuel efficiency, and with manufacturers consistently moving toward turbocharged platform development, is a prime research topic in this area of study. In conclusion, the results from this thesis project exhibit that high-flow induction and exhaust systems can substantially improve a vehicle's fuel efficiency without modifying any internal engine components. This idea of improving a vehicle's fuel economy from outside the engine will ideally be further researched, such as by investigating turbocharger systems and their ability to improve fuel efficiency, as well as be developed and implemented by others in their educational projects and commercial products.

Date Created
2016-12
Contributors
  • Curl, Samuel Levi (Author)
  • Trimble, Steven (Thesis director)
  • Takahashi, Timothy (Committee member)
  • Mechanical and Aerospace Engineering Program (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • Cars
  • Exhaust
  • Economy
  • efficiency
  • MPG
  • Induction
  • Turbochargers
  • Turbocharging
  • fuel
  • Intake
  • Automotive
  • Flow
Resource Type
Text
Extent
58 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.42567
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:58
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 9 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information