Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Use of cleavable fluorescent antibodies for highly multiplexed single cell in situ protein analysis
  5. Full metadata

Use of cleavable fluorescent antibodies for highly multiplexed single cell in situ protein analysis

Full metadata

Description

The ability to profile proteins allows us to gain a deeper understanding of organization, regulation, and function of different biological systems. Many technologies are currently being used in order to accurately perform the protein profiling. Some of these technologies include mass spectrometry, microarray based analysis, and fluorescence microscopy. Deeper analysis of these technologies have demonstrated limitations which have taken away from either the efficiency or the accuracy of the results. The objective of this project was to develop a technology in which highly multiplexed single cell in situ protein analysis can be completed in a comprehensive manner without the loss of the protein targets. This was accomplished in the span of 3 steps which is referred to as the immunofluorescence cycle. Antibodies with attached fluorophores with the help of novel azide-based cleavable linker are used to detect protein targets. Fluorescence imaging and data storage procedures are done on the targets and then the fluorophores are cleaved from the antibodies without the loss of the protein targets. Continuous cycles of the immunofluorescence procedure can help create a comprehensive and quantitative profile of the protein. The development of such a technique will not only help us understand biological systems such as solid tumor, brain tissues, and developing embryos. But it will also play a role in real-world applications such as signaling network analysis, molecular diagnosis and cellular targeted therapies.

Date Created
2016-12
Contributors
  • Gupta, Aakriti (Author)
  • Guo, Jia (Thesis director)
  • Liang, Jianming (Committee member)
  • Computer Science and Engineering Program (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • Cleavable
  • Fluorescent
  • Antibodies
Resource Type
Text
Extent
26 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.42570
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:58
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information