Matching Items (17)

133993-Thumbnail Image.png

Characterization of Therapeutic Monoclonals by Targeted Epitope

Description

Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an

Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an efficient, inexpensive means of characterization that can be broadly applied to any antibody while still providing high-density data. Many characterization methods address an antibody's affinity for its cognate sequence but overlook other important aspects of binding behavior such as off-target binding interactions. The purpose of this study is to demonstrate how the binding intensity between an antibody and a library of random-sequence peptides, otherwise known as an immunosignature, can be evaluated to determine antibody specificity and polyreactivity. A total of 24 commercially available monoclonal antibodies were assayed on 125K and 330K peptide microarrays and analyzed using a motif clustering program to predict candidate epitopes within each antigen sequence. The results support the further development of immunosignaturing as an antibody characterization tool that is relevant to both therapeutic and non-therapeutic antibodies.

Contributors

Agent

Created

Date Created
  • 2018-05

134623-Thumbnail Image.png

Towards Characterization of Serum Antibodies Derived from Genetic Immunization and that Recognize Membrane Proteins of Therapeutic Interest

Description

Structure is a critical component in drug development. This project supports antibody- facilitated structure determination for the following eleven membrane proteins: the human histamine and dopamine G protein-coupled receptors (HRH4

Structure is a critical component in drug development. This project supports antibody- facilitated structure determination for the following eleven membrane proteins: the human histamine and dopamine G protein-coupled receptors (HRH4 and DRD2) involved in a wide variety of pathologies such as allergies, inflammation, asthma, pain along with Parkinson's and schizophrenia respectively, the human cystic fibrosis transmembrane conductance regulator (CFTR), the human NaV1.8 voltage-gated sodium ion channel, the human TPC2 two-pore channel, the SARS virus proteins 3a, E and M, the MERS virus protein E and M, and the malarial chloroquine resistance transporter (PfCRT). Serum antibodies against these proteins were generated by genetic immunization, and both in vitro and in vivo expressed membrane proteins were created to characterize the serum antibodies. Plasmid clones were generated for genetic immunization, in vitro protein expression, and in vivo expression (HEK293T transfection). Serum antibodies were generated by genetic immunization of mice by gene gun. Genetic immunization promotes an immune response that allows for the generation of antibodies in the absence of purified protein. In vitro expression was accomplished through the novel technique: in vitro translation with hydrophobic magnetic beads (IVT-HMB). Transfections were performed using the HEK293T cell line to express the protein in vivo. The generated protein was then used in gel electrophoresis and silver stain and/or Western blot analyses to identify and visualize the proteins. These expressed proteins will allow for forthcoming characterization of the generated antibodies. The resulting antibodies will in turn enable structure determination of these important membrane proteins by co-crystallization.

Contributors

Agent

Created

Date Created
  • 2017-05

134929-Thumbnail Image.png

Use of cleavable fluorescent antibodies for highly multiplexed single cell in situ protein analysis

Description

The ability to profile proteins allows us to gain a deeper understanding of organization, regulation, and function of different biological systems. Many technologies are currently being used in order to

The ability to profile proteins allows us to gain a deeper understanding of organization, regulation, and function of different biological systems. Many technologies are currently being used in order to accurately perform the protein profiling. Some of these technologies include mass spectrometry, microarray based analysis, and fluorescence microscopy. Deeper analysis of these technologies have demonstrated limitations which have taken away from either the efficiency or the accuracy of the results. The objective of this project was to develop a technology in which highly multiplexed single cell in situ protein analysis can be completed in a comprehensive manner without the loss of the protein targets. This was accomplished in the span of 3 steps which is referred to as the immunofluorescence cycle. Antibodies with attached fluorophores with the help of novel azide-based cleavable linker are used to detect protein targets. Fluorescence imaging and data storage procedures are done on the targets and then the fluorophores are cleaved from the antibodies without the loss of the protein targets. Continuous cycles of the immunofluorescence procedure can help create a comprehensive and quantitative profile of the protein. The development of such a technique will not only help us understand biological systems such as solid tumor, brain tissues, and developing embryos. But it will also play a role in real-world applications such as signaling network analysis, molecular diagnosis and cellular targeted therapies.

Contributors

Agent

Created

Date Created
  • 2016-12

133633-Thumbnail Image.png

Construction and Characterization of Recombinant anti-PD-L1 Single Chain Antibodies

Description

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity.

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.

Contributors

Agent

Created

Date Created
  • 2018-05

133792-Thumbnail Image.png

The Production of a Chimeric Monoclonal Antibody as a Therapeutic Agent Against Flaviviruses

Description

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was purified, an ELISA was conducted to validate that the antibody was able to bind to the flavivirus fusion loop.

Contributors

Agent

Created

Date Created
  • 2018-05

137783-Thumbnail Image.png

Detection of antibodies to HPV16-associated oropharyngeal cancer using custom bead arrays

Description

Oropharyngeal cancer (OPC) is the world's sixth most common cancer and in many cases is associated with infection with human papillomavirus (HPV) type 16. Antibodies (Abs) to HPV16 viral antigens

Oropharyngeal cancer (OPC) is the world's sixth most common cancer and in many cases is associated with infection with human papillomavirus (HPV) type 16. Antibodies (Abs) to HPV16 viral antigens are potential diagnostic biomarkers of HPV-associated OPC (HPV OPC). A custom multiplexed bead array assay was used to detect Abs to HPV16 antigens E1, CE2, NE2, E4, E5, E6, E7, L1, and L2. Following extensive optimization of the assay, these genes were expressed as GST-fusion proteins and captured onto anti-GST magnetic beads. Serum was obtained from 256 OPC patients at the time of diagnosis and from 78 healthy controls. The median fluorescent intensity (MFI) was determined for each antigen and ratios of MFI to control GST-fusion protein were determined for each serum sample. Cutoff values were set as the mean + 3 SD of the MFIs of healthy controls and p-values were calculated using Wilcoxon unpaired and Fisher's exact test. Results of this experiment showed that HPV16 E1, CE2, NE2, E4, E6, and E7 Ab levels were elevated in OPC patients compared to controls (p<0.001), as were Ab levels to L1 (p = 0.013) and L2 (p = 0.023), per Fischer's exact test. Abs to CE2, NE2, E6, and E7 were identified as a potential biomarker panel for early detection of HPV OPC. For the 111 patients with known HPV+ tumors as measured by tumor PCR of E6 and/or E7, this assay had a sensitivity of 90% and specificity of 87% (AUC = 0.96). From these results, we conclude that custom bead array assays can be used to detect HPV16 Abs in patient sera, and we have identified a 4-Ab biomarker panel for the early detection of HPV OPC.

Contributors

Agent

Created

Date Created
  • 2013-05

134847-Thumbnail Image.png

Characterization of Designed Ankyrin Repeat Proteins for Neurodegenerative Disease Diagnostics

Description

The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The

The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the DARPin in E. coli for simple expression. Following growth and purification the proteins were validated using SDS-PAGE, Western Blot, BCA and indirect sandwich ELISA using transgenic mouse brain tissue. Targeted functionality of the DARPin structure was utilized during characterization methods to ensure the efficacy of the protein as a diagnostic for the respective disease targets. Both the ADC7 and PDC1 demonstrated improved binding with transgenic mice compared to wild type with a maximum 1.8 and 1.7 relative ratio, respectively. Additionally, both of the proteins demonstrated exclusive binding to their disease target and did not provide false positive results.

Contributors

Agent

Created

Date Created
  • 2016-12

136668-Thumbnail Image.png

Development of Antibody-based Therapeutics from Plants to Treat Dental Disease

Description

Dental caries also known as tooth decay is a bacterial infection that causes demineralization and destruction of enamel dentin and cementum in the tooth. This bacterium, Streprococcus mutans, feeds on

Dental caries also known as tooth decay is a bacterial infection that causes demineralization and destruction of enamel dentin and cementum in the tooth. This bacterium, Streprococcus mutans, feeds on the carbohydrates in the mouth and produces lactic acids that result in dental caries. This thesis discusses the use of plants to produce antibodies, Guy 13 and anti-GTFB to treat this dental disease. We believe these plant-derived antibodies will be effective to treat dental caries and economical to produce.

Contributors

Agent

Created

Date Created
  • 2014-12

136483-Thumbnail Image.png

Optimizing Dialysis Conditions for A4 Stability

Description

The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high,

The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high, none. Furthermore, PBS, Tris, and HEPES, were tested and compared. PBS without Tween was the worst for preserving A4 stability. PBS was determined to be a better dialysis buffer than Tris or HEPES. To find the optimum buffer, other buffers will be tested and compared with PBS; methods such as gravity filtration and lyophilization will be considered as alternatives to dialysis.

Contributors

Agent

Created

Date Created
  • 2015-05

137663-Thumbnail Image.png

HPV Antibodies as Novel Biomarkers for the Detection of Cervical Neoplasia

Description

Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV

Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may be able to detect high-grade cervical intraepithelial neoplasia (CIN3). Biomarkers have potential as a rapid, point-of-care HPV screening tool for low resource areas in the way that traditional cytology cannot, and HPV DNA testing is not yet able to.
Methods: We have designed a multiplexed magnetics programmable bead ELISA (MagProBE) to profile the immune responses of the proteins from 11 high-risk HPV types and 2 low-risk types—106 genes in total. HPV genes were optimized for human expression and either built with PCR or commercially purchased, and cloned into the Gateway-compatible pANT7_cGST vector for in vitro transcription/translation (IVTT) in a MagProBE array. Anti-GST antibody (Ab) labeling was then used to measure gene expression.
Results: 53/106 (50%) HPV genes have been cloned and tested for expression of protein. 91% of HPV proteins expressed at levels above the background control (MFI = 2288), and the mean expression was MFI = 4318. Codon-optimized genes have also shown a 20% higher expression over non-codon optimized genes.
Conclusion: Although this research is ongoing, it suggests that gene optimization may improve IVTT expression of HPV proteins in human HeLa lysate. Once the remaining HPV proteins have been expression confirmed, the cDNA for each gene will be printed onto slides and tested in serologic assays to identify potential Ab biomarkers to CIN3.

Contributors

Agent

Created

Date Created
  • 2013-05