Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Identification of Transcriptomic Biomarkers for use in Diagnosis of Irritable Bowel Syndrome (IBS)
  5. Full metadata

Identification of Transcriptomic Biomarkers for use in Diagnosis of Irritable Bowel Syndrome (IBS)

Full metadata

Description

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that afflicts more than 20% of the population in the United States. Symptoms include mild to severe abdominal discomfort accompanied by a change in stool character and form ranging from constipation to diarrhea. Additionally, IBS is associated with secondary effects including depression, anxiety, poor quality of life, insomnia and sexual dysfunction. Despite the known association of secondary effects, patients are often tested for potential illnesses that share similar pathological symptoms. This process can be costly and protracted and yet not deliver a completely accurate diagnosis. The aim of this research is to identify gene expression-based biological signatures and unique biomarkers for the detection of IBS. Through the use of quantitative polymerase chain reaction (qPCR), comparison of pooled samples of non-IBS patient-derived RNA were used to identify differentially expressed genes in patients with IBS. Data obtained from preliminary DNA microarray analysis demonstrated a degree of success in differentiating between IBS and asymptomatic patients. Additional comprehensive DNA microarray analyses have led to the identification of a series of 858 differentially expressed genes, including genes associated with serotonin metabolism, which may characterize the IBS pathological state. The microarray results were screened using a combination of gene ontological analysis and qPCR. Real-time PCR revealed repressed levels of tryptophan hydroxylase (TPH1), an enzyme involved in the rate- limiting step in serotonin biosynthesis, in IBS patients relative to controls. Lower concentrations of serum 25(OH)D were also observed among the IBS cohort relative to asymptomatic patients, especially among IBS-D subtype. Vitamin D was shown to modulate differentially expressed genes in IBS patients, suggesting that IBS pathophysiology may involve vitamin D insufficiency and/or an irregularity in serotonin metabolism. Additional qPCR analysis of 32 differentially expressed genes in IBS patients identified 7 putative genetic biomarkers proposed for a potential IBS diagnostic panel. Based on the quality of these results, we may be able to develop, test, and market a diagnostic kit for IBS.

Date Created
2017-12
Contributors
  • Grozic, Aleksandra (Author)
  • Jurutka, Peter (Thesis director)
  • Sandrin, Todd (Committee member)
  • Foxx-Orenstein, Amy (Committee member)
  • School of Mathematical and Natural Sciences (Contributor)
  • School of Social and Behavioral Sciences (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • IBS Biomarkers
  • DNA Microarrays
  • TPH1
  • Vitamin D
Resource Type
Text
Extent
52 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2017-2018
Handle
https://hdl.handle.net/2286/R.I.45862
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-11-18 12:15:48
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 9 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information