Matching Items (14)

128376-Thumbnail Image.png

Analysis of differential secondary effects of novel rexinoids: select rexinoid X receptor ligands demonstrate differentiated side effect profiles

Description

In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select

In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select rexinoid X receptor (RXR) analogs that we reported previously. We assessed pharmacokinetic profiles, lipid and thyroid-stimulating hormone (TSH) levels in rats, and cell culture activity of rexinoids in sterol regulatory element-binding protein (SREBP) induction and thyroid hormone inhibition assays. We also performed RNA sequencing of the brain tissues of rats that had been dosed with the compounds. We show here for the first time that potent rexinoid activity can be uncoupled from drastic lipid changes and thyroid axis variations, and we propose that rexinoids can be developed with improved side effect profiles than the parent compound, bexarotene (1).

Contributors

Agent

Created

Date Created
  • 2015-03-16

128774-Thumbnail Image.png

Sentrin/SUMO Specific Proteases as Novel Tissue-Selective Modulators of Vitamin D Receptor-Mediated Signaling

Description

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to remove small ubiquitin-like modifier (SUMO) from target proteins upon the activities of VDR and related receptors. We report that SENP1 and SENP2 strikingly potentiate ligand-mediated transactivation of VDR and also its heterodimeric partner, retinoid X receptor (RXRα) with depletion of cellular SENP1 significantly diminishing the hormonal responsiveness of the endogenous vitamin D target gene CYP24A1. We find that SENP-directed modulation of VDR activity is cell line-dependent, achieving potent modulatory effects in Caco-2 and HEK-293 cells, while in MCF-7 cells the vitamin D signal is unaffected by any tested SENP. In support of their function as novel modulators of the vitamin D hormonal pathway we demonstrate that both SENP1 and SENP2 can interact with VDR and reverse its modification with SUMO2. In a preliminary analysis we identify lysine 91, a residue known to be critical for formation and DNA binding of the VDR-RXR heterodimer, as a minor SUMO acceptor site within VDR. In combination, our results support a repressor function for SUMOylation of VDR and reveal SENPs as a novel class of VDR/RXR co-regulatory protein that significantly modulate the vitamin D response and which could also have important impact upon the functionality of both RXR-containing homo and heterodimers.

Contributors

Agent

Created

Date Created
  • 2014-02-20

134705-Thumbnail Image.png

Evaluation of Bexarotene and Novel RXR Agonists for the Treatment of Estrogen Receptor Alpha \u2014 Positive Breast Cancer

Description

Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways.

Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by acting as an estrogen receptor alpha (ERα) signaling antagonist, and can therefore be used to treat ERα-positive cancers, such as breast cancer. Using dual luciferase reporter assays, real-time qRT-PCR, and metabolic proliferation assays, the anti-estrogenic properties of Bex were ascertained. However, since Bex produces numerous contraindications, select novel RXR drug analogs were also evaluated. Results revealed that, in luciferase assays, Bex could significantly (P < 0.01) inhibit the transcriptional activity of ERα, so much so that it rivaled ER pan-antagonist ZK164015 in potency. Bex was also able to suppress the proliferation of two breast cancer cell models, MCF-7 and T-47D, and downregulate the expression of an estrogen receptor target gene (A-myb), which is responsible for cell proliferation. In addition, novel analogs A30, A33, A35, and A38 were evaluated as being more potent at inhibiting ERE-mediated transcription than Bex at lower concentrations. Analogs A34 and A35 were able to suppress MCF-7 cell proliferation to a degree comparable to that of Bex. Inhibition of T-47D cell proliferation, by contrast, was best achieved by analogs A34 and A36. For those with ERα – positive breast cancer who are refractory to current chemotherapeutics used to treat breast cancer, Bex and its analogs may prove to be useful alternative options.

Contributors

Agent

Created

Date Created
  • 2016-12

134109-Thumbnail Image.png

Identification of Transcriptomic Biomarkers for use in Diagnosis of Irritable Bowel Syndrome (IBS)

Description

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that afflicts more than 20% of the population in the United States. Symptoms include mild to severe abdominal discomfort accompanied by

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that afflicts more than 20% of the population in the United States. Symptoms include mild to severe abdominal discomfort accompanied by a change in stool character and form ranging from constipation to diarrhea. Additionally, IBS is associated with secondary effects including depression, anxiety, poor quality of life, insomnia and sexual dysfunction. Despite the known association of secondary effects, patients are often tested for potential illnesses that share similar pathological symptoms. This process can be costly and protracted and yet not deliver a completely accurate diagnosis. The aim of this research is to identify gene expression-based biological signatures and unique biomarkers for the detection of IBS. Through the use of quantitative polymerase chain reaction (qPCR), comparison of pooled samples of non-IBS patient-derived RNA were used to identify differentially expressed genes in patients with IBS. Data obtained from preliminary DNA microarray analysis demonstrated a degree of success in differentiating between IBS and asymptomatic patients. Additional comprehensive DNA microarray analyses have led to the identification of a series of 858 differentially expressed genes, including genes associated with serotonin metabolism, which may characterize the IBS pathological state. The microarray results were screened using a combination of gene ontological analysis and qPCR. Real-time PCR revealed repressed levels of tryptophan hydroxylase (TPH1), an enzyme involved in the rate- limiting step in serotonin biosynthesis, in IBS patients relative to controls. Lower concentrations of serum 25(OH)D were also observed among the IBS cohort relative to asymptomatic patients, especially among IBS-D subtype. Vitamin D was shown to modulate differentially expressed genes in IBS patients, suggesting that IBS pathophysiology may involve vitamin D insufficiency and/or an irregularity in serotonin metabolism. Additional qPCR analysis of 32 differentially expressed genes in IBS patients identified 7 putative genetic biomarkers proposed for a potential IBS diagnostic panel. Based on the quality of these results, we may be able to develop, test, and market a diagnostic kit for IBS.

Contributors

Agent

Created

Date Created
  • 2017-12

135926-Thumbnail Image.png

Modulation of 1,25-Dihydroxyvitamin D3 Signaling: Implications for Aging and Neuropsychiatric Disorders

Description

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal models. This present study employed mammalian 2-hybrid (M2H) and vitamin D responsive element (VDRE)-based transcriptional assays to investigate the potential effects of Res and SIRT-1 on VDR signal transduction. Results from VDRE-based assays indicate that Res and SIRT-1 potentiate 1,25D-VDR activity via cell-and-promoter-specific pathways. In addition, 1,25D displacement experiments revealed an increase in VDR-bound radiolabeled 1,25D in the presence of Res, suggesting that Res may potentiate VDR transactivation by stimulating 1,25D binding. M2H assays in HEK293 cells were then utilized to assess levels of interaction between VDR and VDR comodulators, including RXR, SRC-1, and DRIP-205. Both Res and SIRT-1 increased the ability of VDR to associate with RXR; however, SRC-1 and DRIP-205 interactions were not enhanced. The activity of a novel, non-acetylatable VDR mutant, K413R, was probed revealing that K413R possesses amplified transactivation capacity over wild-type VDR. A SIRT-1 inhibitor, EX-527, was used to suppress endogenous SIRT-1, resulting in significantly decreased VDR transactivation. Finally, qPCR results in HEK293 cells revealed that the 1,25D-mediated induction of CYP24A1, an endogenous VDR target gene, was enhanced (85%) by SIRT-1 while Res increased CYP24A1 expression by 294%. The combination of 1,25D, SIRT-1, and Res amplified CYP24A1 expression by 326% over 1,25D, although this effect did not reach statistical significance when compared to the Res only treated group. We conclude that acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This loop is suppressed by resveratrol/SIRT-1-catalyzed deacetylation of VDR, restoring VDR activity. The two compounds, 1,25-dihydroxyvitamin D (1,25D, vitamin D) and 5-hydroxytryptamine (5-HT, serotonin), have been proposed to play a significant role in abnormal social behavior associated with psychological conditions including autism spectrum disorders (ASDs) and depression; however, the mechanism underlying these associations has yet to be elucidated. Deficiencies in 1,25D or 5-HT have been linked to the increased incidence of ASDs. Thus, examining the modulation of genes involved in 5-HT biosynthesis, reuptake, and degradation is fundamental in linking low 1,25D levels to the increased incidence of psychiatric disorders. We propose that 1,25D regulates tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway of 5-HT. In order to evaluate the regulation of TPH2 in neuronal cells, three formulations of media were examined to optimize the cell culture conditions necessary for growth and morphology of embryonic rat medullary raphe (B14) serotonergic neurons. Next, quantitative real time-PCR (qPCR) was utilized to examine TPH2 expression in cultured human glioblastoma (U-87) cells and rat serotonergic neurons (B-14). Human TPH2 mRNA in U-87 cells was induced dose-dependently resulting in a 2.4-fold increase at 10 nM 1,25D. Strikingly, TPH2 mRNA in B-14 cells was observed to be 26- to 86-fold upregulated at 10 nM 1,25D; however, 1 nM and 100 nM 1,25D elicited significantly smaller inductions (8-fold and 1.2-fold, respectively).

Contributors

Agent

Created

Date Created
  • 2015-12

136012-Thumbnail Image.png

Characterization of Second and Third Generation, Novel RXR Selction Agonists for the Treatment of Cutaneous T-Cell Lymphoma

Description

Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which

Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective in the treatment of multiple types of cancer, including lung cancer. However, the disadvantages of using Bex include increased instances of hypothyroidism and excessive concentrations of blood triglycerides. If an analog of Bex can be developed which retains high affinity RXR binding similar to the 9-cis retinoic acid while exhibiting less interference for heterodimerization pathways, it would be of great clinical significance in improving the quality of life for patients with CTCL. This thesis will detail the biological profiling of additional novel (Generation Two) analogs, which are currently in submission for publication, as well as that of Generation Three analogs. The results from these studies reveal that specific alterations in the core structure of the Bex "parent" compound structure can have dramatic effects in modifying the biological activity of RXR agonists.

Contributors

Agent

Created

Date Created
  • 2012-05

131513-Thumbnail Image.png

A Mathematical Model of Cell Confluency In Vitro

Description

Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an

Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an experiment, the cells must reach an ideal cell confluency. Prior to conducting the cellular assays, range-finding experiments need to be conducted to determine an initial plating density that will result in this ideal confluency, which can be costly. To help alleviate this common issue, a mathematical model was developed that describes the dynamics of the cell population used in these experiments. To develop the model, images of cells from different three-day experiments were analyzed in Photoshop®, giving a measure of cell count and confluency (the percentage of surface area covered by cells). The cell count data were then fitted into an exponential growth model and were correlated to the cell confluency to obtain a relationship between the two. The resulting mathematical model was then evaluated with data from an independent experiment. Overall, the exponential growth model provided a reasonable and robust prediction of the cell confluency, though improvements to the model can be made with a larger dataset. The approach used to develop this model can be adapted to generate similar models of different cell-lines, which will reduce the number of preliminary range-finding experiments. Reducing the number of these preliminary experiments can save valuable time and experimental resources needed to conduct studies using cellular assays.

Contributors

Agent

Created

Date Created
  • 2020-05

131368-Thumbnail Image.png

Effect of Rexinoids on Inducing Effector T Cell Chemotaxis

Description

The retinoid-X receptor (RXR) can form heterodimers with both the retinoic-acid
receptor (RAR) and vitamin D receptor (VDR). The RXR/RAR dimer is activated by ligand all
trans retinoic acid

The retinoid-X receptor (RXR) can form heterodimers with both the retinoic-acid
receptor (RAR) and vitamin D receptor (VDR). The RXR/RAR dimer is activated by ligand all
trans retinoic acid (ATRA), which culminates in gut-specific effector T cell migration. Similarly,
the VDR/RXR dimer binds 1,25(OH)2D3 to cause skin-specific effector T cell migration.
Targeted migration is a potent addition to current vaccines, as it would induce activated T cell
trafficking to appropriate areas of the immune system and ensure optimal stimulation (40).
ATRA, while in use clinically, is limited by toxicity and chemical instability. Rexinoids
are stable, synthetically developed ligands specific for the RXR. We have previously shown that
select rexinoids can enhance upregulation of gut tropic CCR9 receptors on effector T cells.
However, it is important to establish whether these cells can actually migrate, to show the
potential of rexinoids as vaccine adjuvants that can cause gut specific T cell migration.
Additionally, since the RXR is a major contributor to VDR-mediated transcription and
epidermotropism (15), it is worth investigating whether these compounds can also function as
adjuvants that promote migration by increasing expression of skin tropic CCR10 receptors on T
cells.
Prior experiments have demonstrated that select rexinoids can induce gut tropic migration
of CD8+ T cells in an in vitro assay and are comparable in effectiveness to ATRA (7). The effect
of rexinoids on CD4+ T cells is unknown however, so the aim of this project was to determine if
rexinoids can cause gut tropic migration in CD4+ T cells to a similar extent. A secondary aim
was to investigate whether varying concentrations in 1,25-Dihydroxyvitamin D3 can be linked to
increasing CCR10 upregulation on Jurkat CD4+ T cells, with the future aim to combine 1,25
Dihydroxyvitamin D3 with rexinoids.
These hypotheses were tested using murine splenocytes for the migration experiment, and
human Jurkat CD4+ T cells for the vitamin D experiment. Migration was assessed using a
Transwell chemotaxis assay. Our findings support the potential of rexinoids as compounds
capable of causing gut-tropic migration in murine CD4+ T cells in vitro, like ATRA. We did not
observe conclusive evidence that vitamin D3 causes upregulated CCR10 expression, but this
experiment must be repeated with a human primary T cell line.

Contributors

Agent

Created

Date Created
  • 2020-05

131432-Thumbnail Image.png

Analysis of Vitamin D and B12 Function in Drosophila melanogaster

Description

Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital

Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital functions in arthropods. Here, we examined the effects of full (13.3 IU/mL) and half dose (6.65 IU/mL) vitamin D3 on the growth and lifespan of Drosophila melanogaster. Vitamin B12 is another micronutrient that shows decreases absorption in elderly patients and might be linked to symptoms associated with aging rather than lifespan, but again, the effects of vitamin B12 supplementation in arthropods is poorly characterized. Results showed that both full and half doses of vitamin D3 and B12 do not significantly alter the timing of pupariation or adult eclosion. Similarly, the mortality rate of adult D. melanogaster exposed to vitamin B12 or higher doses of vitamin D3 was not significantly decreased or increased. However, a low dose of vitamin D3 did significantly lower the mortality rate of D. melanogaster. The genetic composition of Drosophila for vitamin B12 and D metabolism showed similarities in humans. However, there are no biological evidences if these genes are functional thus, this may explain the results of this study.

Contributors

Created

Date Created
  • 2020-05

147641-Thumbnail Image.png

The Importance of Studying Interactions With Ovarian Hormones: Implications for Depressive Symptoms in Premenopausal and Menopausal Women

Description

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading cause of disease for women worldwide. The sex difference in depression and anxiety has guided the research of not just recent studies but older studies as well, supporting the theory that gonadal hormones are associated with the mechanisms of emotional cognition. The scientific literature points towards a clear correlative relationship between gonadal hormones, especially estrogens, and emotion regulation. This thesis investigates the neural pathways that have been indicated to regulate mood and anxiety. Currently, the research points to the hypothalamic-pituitary-adrenal axis, which regulates the stress response through its ultimate secretion of cortisol through the adrenal cortex, and its modulated response when exposed to higher levels of estrogen. Another mechanism that has been investigated is the interaction of estrogen and the serotonergic system, which is noteworthy because the serotonergic system is known for its importance in mood regulation. However, it is important to note that the research seeking to determine the neurobiological underpinnings of estrogen and the serotonergic system is not expansive. Future research should focus on determining the direct relationship between cortisol hypersecretion and estrogens, the specific neurobiological effects of serotonergic receptor subtypes on the antidepressant actions of estrogens, and the simultaneous effects of the stress and serotonergic systems on depressive symptoms.

Contributors

Created

Date Created
  • 2021-05