Matching Items (12)
Filtering by

Clear all filters

135574-Thumbnail Image.png
Description
The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the internet. As the server CPU industry expands and transitions to cloud computing, Company A's Data Center Group will need to expand their server CPU chip product mix to meet new demands of the cloud industry and to maintain high market share. Company A boasts leading performance with their x86 server chips and 95% market segment share. The cloud industry is dominated by seven companies Company A calls "The Super 7." These seven companies include: Amazon, Google, Microsoft, Facebook, Alibaba, Tencent, and Baidu. In the long run, the growing market share of the Super 7 could give them substantial buying power over Company A, which could lead to discounts and margin compression for Company A's main growth engine. Additionally, in the long-run, the substantial growth of the Super 7 could fuel the development of their own design teams and work towards making their own server chips internally, which would be detrimental to Company A's data center revenue. We first researched the server industry and key terminology relevant to our project. We narrowed our scope by focusing most on the cloud computing aspect of the server industry. We then researched what Company A has already been doing in the context of cloud computing and what they are currently doing to address the problem. Next, using our market analysis, we identified key areas we think Company A's data center group should focus on. Using the information available to us, we developed our strategies and recommendations that we think will help Company A's Data Center Group position themselves well in an extremely fast growing cloud computing industry.
ContributorsJurgenson, Alex (Co-author) / Nguyen, Duy (Co-author) / Kolder, Sean (Co-author) / Wang, Chenxi (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Management (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136506-Thumbnail Image.png
Description
The purpose of this thesis was to design a market entrance strategy for Company X to enter the microcontroller (MCU) market within the Internet of Things (IoT). The five IoT segments are automotive; medical; retail; industrial; and military, aerospace, and government. To reach a final decision, we will research the

The purpose of this thesis was to design a market entrance strategy for Company X to enter the microcontroller (MCU) market within the Internet of Things (IoT). The five IoT segments are automotive; medical; retail; industrial; and military, aerospace, and government. To reach a final decision, we will research the markets, analyze make versus buy scenarios, and deliver a financial analysis on the chosen strategy. Based on the potential financial benefits and compatibility with Company X's current business model, we recommend that Company X enter the automotive segment through mergers & acquisitions (M&A). After analyzing the supply chain structure of the automotive IoT, we advise Company X to acquire Freescale Semiconductor for $46.98 per share.
ContributorsBradley, Rachel (Co-author) / Fankhauser, Elisa (Co-author) / McCoach, Robert (Co-author) / Zheng, Weilin (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / School of Accountancy (Contributor) / School of International Letters and Cultures (Contributor) / WPC Graduate Programs (Contributor)
Created2015-05
133824-Thumbnail Image.png
Description
Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we

Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we sought to accomplish in our thesis were to: 1. Understand if there is monetization potential in autonomous vehicle data 2. Create a financial model of what detailing the viability of AV data monetization 3. Discover how a particular company (Company X) can take advantage of this opportunity, and outline how that company might access this autonomous vehicle data.
ContributorsCarlton, Corrine (Co-author) / Clark, Rachael (Co-author) / Quintana, Alex (Co-author) / Shapiro, Brandon (Co-author) / Sigrist, Austin (Co-author) / Simonson, Mark (Thesis director) / Reber, Kevin (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133837-Thumbnail Image.png
Description
Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we

Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we sought to accomplish in our thesis were to: Understand if there is monetization potential in autonomous vehicle data Create a financial model of what detailing the viability of AV data monetization Discover how a particular company (Company X) can take advantage of this opportunity, and outline how that company might access this autonomous vehicle data. First, in order to brainstorm how this data could be monetized, we generated potential use cases, defined probable customers of these use cases, and how the data could generate value to customers as a means to understand what the "price" of autonomous vehicle data might be. While we came up with an extensive list of potential data monetization use cases, we evaluated our list of use cases against six criteria to narrow our focus into the following five: Government, Insurance Companies, Mapping, Marketing purposes, and Freight. Based on our research, we decided to move forward with the insurance industry as a proof of concept for autonomous vehicle data monetization. Based on our modeling, we concluded there is a significant market for autonomous vehicle data monetization moving forward. Data accessibility is a key driver in how profitable a particular company and their competitors can be in this space. In order to effectively monetize this data, it would first be important to understand the method by which a company obtains access to the data in the first place. Ultimately, based on our analysis, Company X has positioned itself well to take advantage of the new trends in autonomous vehicle technology. With more strategic investments and innovation, Company X can be a key benefactor of this unprecedented space in the near future.
ContributorsShapiro, Brandon (Co-author) / Quintana, Alex (Co-author) / Sigrist, Austin (Co-author) / Clark, Rachael (Co-author) / Carlton, Corrine (Co-author) / Simonson, Mark (Thesis director) / Reber, Kevin (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133585-Thumbnail Image.png
Description
Company X has developed minicomputing products that can change the way people think about minicomputer. The Product A (PRODUCT A) and Product B are relatively new products on the market that have the ability to change the way some industries use technology and increase end-user convenience. The key issue for

Company X has developed minicomputing products that can change the way people think about minicomputer. The Product A (PRODUCT A) and Product B are relatively new products on the market that have the ability to change the way some industries use technology and increase end-user convenience. The key issue for Company X is finding targeted use cases to which Company X can market these products and increase sales. This thesis reports how our team has researched, calculated, and financially forecasted use cases for both the PRODUCT A and Product B. The Education and Healthcare industries were identified as those providing significant potential value propositions and an array of potential use cases from which we could choose to evaluate. Key competitors, market dynamics, and information obtained through interviews with a Product Line Analyst were used to size the available, obtainable, and attainable market numbers for Company X. The models built for this research provided insight into the PRODUCT A and Product B's potential growth in the education and healthcare industries. This led to the selection of education and healthcare use cases for the Product B and the PRODUCT A use cases for healthcare. This report concludes with recommendations for success in education and healthcare with the PRODUCT A and Product B.
ContributorsHoward, James (Co-author) / Kazmi, Abbas (Co-author) / Ralston, Nicholas (Co-author) / Salamatin, Mikkaela Alexis (Co-author) / Simonson, Mark (Thesis director) / Hopkins, David (Committee member) / W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex

The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex spreadsheet model that will propose a proper project staffing level based on key qualitative variables and statistics. Using the model outputs, the Thesis team proposes a headcount solution for the company and problem areas to focus on, going forward. All sources of information come from company proprietary and confidential documents.
ContributorsLoo, Andrew (Co-author) / Brennan, Michael (Co-author) / Sheiner, Alexander (Co-author) / Hertzel, Michael (Thesis director) / Simonson, Mark (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor)
Created2014-05
134711-Thumbnail Image.png
Description
The purpose of this research project is to develop a recommendation for Company X on the strategies it should use to enter a new market. This was done through the compilation and interpretation of data from the company and the construction of a financial model capable of analyzing our different

The purpose of this research project is to develop a recommendation for Company X on the strategies it should use to enter a new market. This was done through the compilation and interpretation of data from the company and the construction of a financial model capable of analyzing our different proposed strategies. Company X is a leading producer of silicon chips which seeks to remain one of the leading forces in new technologies. Currently Company X wants to assess the value and risks associated with introducing a new packaging technology (FO-WLP) into their products either by developing the technology in-house or outsourcing production. The first portion of the research consisted mostly of gathering the necessary business acumen to be able to to fully understand our research findings. Market research was conducted to discover what competitors exist and what inputs should be included for the model with help from employees at Company X. The research then proceeded with the identification of three possible strategies and construction of financial models to analyze these options. Using the results from our analysis we were able to develop our recommendation for Company X and lay out the next steps which the Company needs to take before investing in the new technology.
ContributorsRubenzer, Jack (Co-author) / Galaviz, Roberto (Co-author) / Mariani, Stephanie (Co-author) / Mecinas, Freddy (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133432-Thumbnail Image.png
Description
We gathered and analyzed key data from a wide-range of competitors in the foundry, fabless, and Integrated design manufacturing business. After detecting a downward trend in the return of invested capital (ROIC) and higher capital intensity of Company X, we searched for alternatives to turn this around. We conclude that,

We gathered and analyzed key data from a wide-range of competitors in the foundry, fabless, and Integrated design manufacturing business. After detecting a downward trend in the return of invested capital (ROIC) and higher capital intensity of Company X, we searched for alternatives to turn this around. We conclude that, to decrease the net PPE of Company X, a sale-leaseback transaction would help Company X reduce their balance sheet and provided financing to advance their manufacturing capabilities.
ContributorsBhat, Arjun Khandige (Co-author) / Brock, Ethan (Co-author) / Gamperl, Max (Co-author) / Gupta, Viraj (Co-author) / Macha, Sanketh (Co-author) / Simonson, Mark (Thesis director) / Duran, Juan Carlos (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134822-Thumbnail Image.png
Description
Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of

Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of smart cities. Company X is a leader in the semiconductor industry looking to grow its revenue in the IoT space. This thesis will address how Company X can deliver IoT solutions to government municipalities with the goal of simultaneously increasing revenue through value-added engagement and decreasing spending by more efficiently managing infrastructure upgrades.
ContributorsJiang, Yichun (Co-author) / Davidoff, Eric (Co-author) / Dawoud, Mariam (Co-author) / Rodenbaugh, Ryan (Co-author) / Sinclair, Brynn (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Psychology (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12