Description
Bacterial biofilms exist on surfaces within pressurized water systems, posing threats to water quality and causing fouling or microbial induced corrosion. Germicidal UV irradiation has shown promise in deactivating planktonic pathogens in water but challenges in delivering light to surfaces

Bacterial biofilms exist on surfaces within pressurized water systems, posing threats to water quality and causing fouling or microbial induced corrosion. Germicidal UV irradiation has shown promise in deactivating planktonic pathogens in water but challenges in delivering light to surfaces where biofilms exist have limited advancement in understanding biofilm response to UV-C light. This dissertation aims to overcome the limitation of delivering UV-C light through use of side-emitting optical fibers (SEOFs), advance capabilities to produce SEOFs and understand if a minimum UV-C irradiance can prevent biofilm formation. Two scalable manufacturing approaches were developed for producing kilometer lengths of thin (≤500-µm) and physically flexible SEOFs. One strategy involved dip-coating amine-functionalized SiO2 nanoparticles (NPs) on bare optical fiber, followed by a coating of UV-C transparent polymer (CyTop). I showed that NPs closer to the surface achieved with higher ionic strength solutions increased side-scattering of UV-C light. This phenomenon was primarily attributed to the interaction between NPs and evanescent wave energy. The second strategy omitted NPs but utilized a post-treatment to the UV-C transparent polymer that increased surface roughness on the outer fiber surface. This modification maintained the physical flexibility of the fiber while promoting side-emission of UV-C light. The side emission was due to the enhancement of refracted light energy. Both methods were successfully scaled up for potential commercial production. Experimental platforms were created to study biofilm responses to UV light on metal or flexible plastic pipe (1/4” ID) surfaces. Delivering UV-C light via SEOFs with irradiances >8 µW/cm2 inhibited biofilm accumulation. Neither UV-A nor UV-B light inhibited biofilm growth. At very low UV-C irradiance (<3 µW/cm2), biofilms were not inhibited. Functional genomic analysis revealed that biofilms irradiated by insufficient UV-C irradiance upregulated various essential genes related to DNA repair, energy metabolism, quorum sensing, mobility, and EPS synthesis. When net UV-C biofilm inactivation rates exceeded the biofilm growth rate, biofilms were inhibited. Insights gained from this dissertation work shed light on the prospective applications of UV-C technology in addressing biofilm challenges within water infrastructure across multiple sectors, from potable water to healthcare applications.
Reuse Permissions
  • Downloads
    pdf (9.3 MB)

    Details

    Title
    • Manufacturable and Physically Flexible UV-C Side-emitting Optical Fibers for Biofilm Inhibition in Pressurized Water Systems
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Engineering

    Machine-readable links