Matching Items (36)

135929-Thumbnail Image.png

The Effect of Heterotrophic Bacteria on the Growth Rate of Synechocystis sp. PCC6803

Description

With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels

With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the technology and information available today, the amount of biomass that would need to be produced is not economically feasible. In this work, I examined a possible factor impacting the growth of a model cyanobacterium, Synechocystis sp. PCC6803, which is heterotrophic bacteria communities accompanying the cyanobacteria. I experimented with three variables: the type of heterotrophic bacteria strain, the initial concentration of heterotrophic bacteria, and the addition of a carbon source (glucose) to the culture. With experimental information, I identified if given conditions would increase Synechocystis growth and thus increase the yield of biomass. I found that under non-limiting growth conditions, heterotrophic bacteria do not significantly affect the growth of Synechocystis or the corresponding biomass yield. The initial concentration of heterotrophic bacteria and the added glucose also did not affect the growth of Synechocystis. I did see some nutrient recycling from the heterotrophic bacteria as the phosphate levels in the growth medium were depleted, which was apparent from prolonged growth phase and higher levels of reactive phosphate in the media.

Contributors

Agent

Created

Date Created
  • 2015-12

135935-Thumbnail Image.png

Lipid Extraction from Microalgae Strains for Biodiesel

Description

The need for clean fuel sources is greater than ever, as fossil fuel dependence has soared and harmful emissions are being released into the atmosphere at increasingly higher rates. A

The need for clean fuel sources is greater than ever, as fossil fuel dependence has soared and harmful emissions are being released into the atmosphere at increasingly higher rates. A viable solution to this issue is the use of microalgae for the creation of biofuels, as it holds a high concentration of lipids without requiring arable land for growth. This experiment studies downstream applications of microalgae, including how the extraction efficiency can be improved for greater lipid yield. 3-dimethyldodecylammonium propanesulfonate, myristyltrimethylammonium bromide and sodium dodecyl sulfate were used as surfactants to break down the algae cell walls and improve lipid recovery. The incubation times of the biomass in the surfactant were also studied at 0, 4.5, 24, 48 and 72 hours to more fully examine how surfactants affect the extraction of lipids. Along with this, hexane and isopropanol were used as the main extraction solvent in this experiment, but testing was done to compare these lipid yields to when ethyl acetate was used as the solvent. It was found that the MTMAB surfactant led to the greatest cell disruption, as its lipid yields were consistently higher than those of the other surfactants. Also, longer incubation times did improve the amount of lipid extracted, showing that the surfactants do have a strong effect on the cell breakdown. Finally, it was found that the ethyl acetate was a slightly more effective solvent than hexane and isopropanol in the conditions of this experiment. Overall, a stronger understanding of the wet extraction process was gained from these tests, as well as more insight into how some of the variables interact and work together during extraction.

Contributors

Agent

Created

Date Created
  • 2015-12

135239-Thumbnail Image.png

Nitrate and Selenate Microbial Reduction in the Membrane Biofilm Reactor for Artificial Mining Wastewater

Description

Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into

Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water contaminants into innocuous reduced products. For this project, I set up two MBfRs in a lead and lag configuration to reduce NO3- [input at ~40-45 mg NO3-N/L] and SeO42- [0.62 mg/L], while avoiding sulfate (SO42-) [~1600-1660 mg/L] reduction. Over the course of three experimental phases, I controlled two operating conditions: the applied hydrogen pressure and the total electron acceptor loading. NO3- in the lead MBfR showed average reductions of 50%, 94%, and 91% for phases I, II, and III, respectively. In the lag MBfR, NO3- was reduced by 40%, 96%, and 100% for phases I, II, and III. NO2- was formed in Stage I when NO3- was not reduced completely; nevertheless NO2- accumulation was absent for the remainder of operation. In the lead MBfR, SeO42- was reduced by 65%, 87%, and 50% for phases I, II, and III. In the lag MBfR, SeO42- was reduced 60%, 27%, and 23% for phases I, II, and III. SO42- was not reduced in either MBfR. Biofilm communities were composed of denitrifying bacteria Rhodocyclales and Burkholderiales, Dechloromonas along with the well-known SeO42--reducing Thauera were abundant genera in the biofilm communities. Although SO42- reduction was suppressed, sulfate-reducing bacteria were present in the biofilm. To optimize competition for electron donor and space in the biofilm, optimal operational conditions were hydrogen pressures of 26 and 7 psig and total electron acceptor loading of 3.8 and 3.4 g H2/m2 day for the lead and lag MBfR, respectively.

Contributors

Created

Date Created
  • 2016-05

133789-Thumbnail Image.png

Mass Transfer Kinetics of Novel Asymmetric Hollow-fiber Membranes

Description

This report investigates the mass-transfer kinetics of gas diffusion through an asymmetrical hollow-fiber membrane developed for the membrane biofilm reactor (MBfR) when it is used to microbiologically convert syngas (a

This report investigates the mass-transfer kinetics of gas diffusion through an asymmetrical hollow-fiber membrane developed for the membrane biofilm reactor (MBfR) when it is used to microbiologically convert syngas (a mixture of H2, CO2, and CO) to organic products. The asymmetric Matrimid® membrane had superior diffusion fluxes compared to commercially available symmetric, three-layer composite and polypropylene single-layer membranes. The Matrimid® asymmetric membrane had a H2 gas-gas diffusion flux between 960- and 1600-fold greater than that of the composite membrane and between 32,000- and 46,800-fold greater than that of the single-layer membrane. Gas-gas diffusion experiments across the Matrimid® membrane also demonstrated plasticization behavior for pure CO2 and H2 gas feeds. In particular, a 10 psia increase in inlet pressure resulted in a 12-fold increase in permeance for H2 and a 16-fold increase for CO2. Plasticization was minimal for symmetric composite and single-layer membranes. Thus, diffusion fluxes were much higher for the asymmetric membrane than for the symmetric composite and single-layer membranes, and this supports the promise of the asymmetric membrane as a high-efficiency means to deliver syngas to biofilms able to convert the syngas to organic products. Gas-liquid diffusion was much slower than gas-gas diffusion, and this supports the benefit of using the MBfR approach over fermentation reactors that rely on sparging syngas.

Contributors

Agent

Created

Date Created
  • 2018-05

130326-Thumbnail Image.png

Archaea and Bacteria Acclimate to High Total Ammonia in a Methanogenic Reactor Treating Swine Waste

Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Contributors

Created

Date Created
  • 2016-08-11

133505-Thumbnail Image.png

Exploring the consequences of permeate recycling in a photobioreactor using multi-component, community-level modelling

Description

While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that

While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that filters the reactor effluent and returns the permeate to the system so that unutilized nutrients are not wasted, addressing these problems. The model tracks soluble and biomass components that govern the rates of the processes within the photobioreactor (PBR). It considers light attenuation and inhibition, nutrient limitation, preference for ammonia consumption over nitrate, production of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and competition with heterotrophic bacteria that predominately consume SMP. I model a continuous photobioreactor + microfiltration system under nine unique operation conditions - three dilution rates and three recycling rates. I also evaluate the health of a PBR under different dilution rates for two values of qpred. I evaluate the success of each run by calculating values such as biomass productivity and specific biomass yield. The model shows that for low dilution rates (D = <0.2 d-1) and high recycling rates (>66%), nutrient limitation can lead to a PBR crash. In balancing biomass productivity with water conservation, the most favorable runs were those in which the dilution rate and the recycling rate were highest. In a second part of my thesis, I developed a model that describes the interactions of phototrophs and their predators. The model also shows that dilution rates corresponding to realistic PBR operation can washout predators from the system, but the simulation outputs depend heavily on the accuracy of parameters that are not well defined.

Contributors

Agent

Created

Date Created
  • 2018-05

Nitrite Accumulation From Simultaneous Free-Ammonia and Free-Nitrous-Acid Inhibition and Oxygen Limitation in a Continuous-Flow Biofilm Reactor

Description

To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid

To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2–4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate.

Contributors

Created

Date Created
  • 2015-01-01

130419-Thumbnail Image.png

Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus

Description

Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic

Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic and expensive to use for large-scale fuel production. Biomass from the photosynthetic microalga Scenedesmus, subjected to a commercially available pre-treatment technology called Focused-Pulsed® (FP), yielded 3.1-fold more crude lipid and fatty acid methyl ester (FAME) after extraction with a range of solvents. FP treatment increased the FAME-to-crude-lipid ratio for all solvents, which means that the extraction of non-lipid materials was minimized, while the FAME profile itself was unchanged compared to the control. FP treatment also made it possible to use only a small proportion of chloroform and methanol, along with isopropanol, to obtain equivalent yields of lipid and FAME as with 100% chloroform plus methanol.

Contributors

Created

Date Created
  • 2014-12-01

130424-Thumbnail Image.png

How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD)

Description

Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis

Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.

Contributors

Agent

Created

Date Created
  • 2014-11-01

130431-Thumbnail Image.png

Pyrosequencing Analysis Yields Comprehensive Assessment of Microbial Communities in Pilot-Scale Two-Stage Membrane Biofilm Reactors

Description

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.

Contributors

Created

Date Created
  • 2014-07-01